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Charge transfer to ground-state ions produces
free electrons
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T. Nishiyama2,3, K. Asa2,3, Y. Sato2,3, N. Saito2,4, M. Oura2, M. Schöffler2,5, G. Kastirke5, U. Hergenhahn6,7,

V. Stumpf8, K. Gokhberg8, A.I. Kuleff8, L.S. Cederbaum8 & K. Ueda1,2

Inner-shell ionization of an isolated atom typically leads to Auger decay. In an environment,

for example, a liquid or a van der Waals bonded system, this process will be modified, and

becomes part of a complex cascade of relaxation steps. Understanding these steps is

important, as they determine the production of slow electrons and singly charged radicals, the

most abundant products in radiation chemistry. In this communication, we present experi-

mental evidence for a so-far unobserved, but potentially very important step in such

relaxation cascades: Multiply charged ionic states after Auger decay may partially be

neutralized by electron transfer, simultaneously evoking the creation of a low-energy free

electron (electron transfer-mediated decay). This process is effective even after Auger decay

into the dicationic ground state. In our experiment, we observe the decay of Ne2þ produced

after Ne 1s photoionization in Ne–Kr mixed clusters.
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W
hen a light atom is irradiated by X-rays, the most
likely process is photoionization of an inner-shell
electron, followed by the emission of one or several

Auger electrons of relatively high energy (4200 eV; ref. 1). When
condensed matter is irradiated by X-rays however, the majority of
electrons emitted into vacuum is of low energy (o20 eV). The
process of low-energy electron production by X-rays is therefore
highly indirect. These low-energy electrons are traditionally
believed to be secondary electrons produced via inelastic
scattering of a photoelectron or Auger electrons by the
surroundings. In a biological system, a high potency for
genotoxic effects has been assigned to these low energy
electrons2,3.

In 1997, Cederbaum et al.4 predicted another pathway to
produce a low-energy electron in a loosely bound system: If an
ion in such system is produced in an excited state, it may transit
to a lower electronic state, while simultaneously a low-energy
electron is emitted from a neighbouring atom or molecule. This
interatomic/intermolecular Coulombic decay process (ICD) has
since been the topic of both theoretical5 and experimental6

studies, and it was shown to be an important source of slow
electrons in water7,8. In particular, excited ionic states populated
in an Auger process were shown to decay by ICD in an
environment9–11. As both slow electrons and reactive radicals are
produced in such Auger-ICD cascades, their relevance for
radiation damage and radiation therapy was suggested12,13.

In ICD, the decay starts from an electronically excited ionic
state of the atom or molecule that was originally ionized. The
majority of Auger transitions, however, populate the ionic ground
state, or states that are weakly excited. Although these states
cannot decay by ICD, surprisingly Stumpf et al.14 predicted in
2013 that they still may decay electronically in a heterogeneous
system. Here, another interatomic process called electron transfer
mediated decay (ETMD)15 comes into play, in which ‘electron
transfer’ to an ion is accompanied by electron emission from the
donor, or from a second neighbour (Fig. 1). According to the
number of sites involved, the reaction is classified as ETMD(2) or
ETMD(3). Both variants were demonstrated experimentally16,17,
but ETMD was seen as a minor decay channel since in systems
considered initially it could not compete with ICD15. It can
become the dominant relaxation pathway, however, for
configurations in which ICD is energetically forbidden17. As an
example, Stumpf et al. presented ab initio calculations for the
NeKr2 trimer and showed that ETMD(3) takes place between
Ne2þ in its ground state configuration (2p� 2), and the
Kr neighbours (Fig. 1). In addition to emitting a slow electron,
ETMD leads to the partial neutralization of Ne2þ and the double
ionization of its environment, resulting in Neþ and two
Krþ ions. According to ref. 14, the process takes place within
a few picoseconds in a trimer, which could shorten to below
1 ps owing to environmental effects in larger systems. Such
ETMD-driven neutralization has a broad significance and was
predicted to play an important role in radiation damage to
biomolecules subjected to the action of ionizing radiation18. Here,
we show experimental evidence for this efficient neutralization
process using larger Ne–Kr mixed clusters as a prototype
example.

Results
Electron transfer mediated decay in NeKr clusters. Figure 1
sketches the series of events from the initial Ne 1s photoioniza-
tion to Coulomb explosion following ETMD(3) in Ne–Kr mixed
clusters. We expect the production of three singly charged ions
(Neþ , 2Krþ ) and three electrons (photoelectron, Auger electron
and ETMD electron). To search for the experimental signature of
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Figure 1 | Process investigated. First step (photoionization): an ionizing

X-ray photon ejects a Ne 1s electron (photoelectron) from a Ne atom in the

Ne–Kr mixed cluster. Second step (Auger effect): Auger decay of the

resulting Neþ ion leads to Ne2þ with two holes in the valence shell and an

ejected electron (Auger electron). Third step (ETMD(3)): one of the

electrons of a neighbouring Kr atom fills one of the Ne valence holes and

one of the valence electrons of another Kr atom is ejected (ETMD electron).

Fourth step (Coulomb explosion): the cluster explodes by Coulomb

repulsive forces and releases one Neþ and two Krþ ions. Active electrons

are indicated by filled blue discs and the positive charges created by empty

blue circles.
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Figure 2 | Time-of-flight spectra of ions released from Ne–Kr mixed

cluster. Results filtered for events in which three ions were detected in

coincidence. The photon energy used was 888 eV. (a) Time of flight (TOF)

of the first ion arriving at the detector. The shaded region was used to select

events, in which a Neþ ion was detected. (b) TOFs of the second versus

the third ion, detected in coincidence with Neþ as the first ion. Scale bar

indicates counts.
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these particles, we irradiated free Ne–Kr mixed clusters by X-rays
at photon energies of 878 and 888 eV, that is, 8 and 18 eV above
the Ne 1s ionization threshold. For every absorbed photon, the
momenta of the electrons and ions produced were measured in
coincidence. In the following, we will discuss these results.

Ion time-of-flight spectra. First, we extracted all events in which
the above three ions were produced (see Supplementary Note
1 for details). Figure 2 shows time-of-flight (TOF) spectra of ions
released after absorption of a photon of 888 eV energy. Different
mass-to-charge ratios give rise to peaks at different TOF values.
The peaks are broadened by the initial velocities of the ions.
We expect Neþ and Krþ to appear around 3.2 and 6.5 ms,
respectively, and select only events in which we detected a Neþ

ion, followed by two other ions. Neþ , followed by Krþ–Krþ , is
the most abundant such triple (Fig. 2b). The total TOF of all three
ions can be used to distinguish different ion combinations,
and amounts to approximately 16 ms for Neþ þ 2Krþ . More
information is contained in the ion spectra plotted versus ion
kinetic energy in Supplementary Figs 1 and 2, and discussed in
Supplementary Note 2.

Electron energy spectra. We were able to go a decisive
step further by measuring the correlation between ions and
electrons. Figure 3a,b show the electron kinetic energy versus

total ion TOF for the events selected above. Regions at B18 eV
kinetic energy in Fig. 3a and at B8 eV in Fig. 3b correspond to
Ne 1s photoelectrons. This provides evidence that the ion triples
are indeed produced after Ne 1s photoionization. In addition to
the photoelectrons, significantly enhanced intensity is seen
around 0–5 eV in both panels of Fig. 3a,b. Although we expect the
ETMD electrons to appear in this energy region, we have to
consider also other events triggered by Kr photoionization, since
the photoabsorption cross-section of Ne is B60% of that of Kr at
900 eV (ref. 19).

To assess the contributions from Kr photoionization,
we repeated the experiment at a photon energy of 860 eV
(below the Ne 1s ionization threshold). At this energy,
the photoabsorption cross-section of Ne is only B4% of that
of Kr (ref. 19), and here we may attribute most events to
Kr photoionization. Figure 3c depicts the correlation map
measured at 860 eV. The intensity around 0–5 eV is weaker than
in Fig. 3a,b. Panels (a) and (b) are scaled such that their intensity
in the high energy background region between 25 and 40 eV in
(a) and (b) agrees with panel (c) (see Supplementary Fig. 3 and
Supplementary Note 3). Islands at 0–5 eV in Fig. 3a,b thus include
contributions from both Ne and Kr photoionization. We may use
Fig. 3c to subtract the contributions of Kr photoionization in the
former panels, with results shown in Fig. 3d,e for 888 and 878 eV,
respectively. After subtraction of the intensity from Kr photo-
ionization, we may conclude that there are electrons at least in the
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Figure 3 | Electrons measured in coincidence with the target ions. Kinetic energy of electrons detected in coincidence with three ions, for total ion TOFs

pertaining to one Neþ and two Krþ ions. Panels correspond to (a) a photon energy of 888 eV, (b) 878 eV and (c) of 860 eV (below the Ne 1s ionization

threshold). In total, in a–c, 18,616; 17,610; and 13,086 events are plotted, respectively. Correlation map of an electron and these three ions after subtracting

the contributions from Kr ionization (c), for a photon energy of (d) 888 eV and (e) 878 eV. Scale bar indicates counts in a–e. (f) Projections of d and e on

the electron energy axis. Two Gaussian functions fitted to the photoelectron peaks are also shown as yellow fill patterns. (g) The same, after subtracting the

contributions from photoelectrons, fitted by two Gaussian functions. Error bars in f and g are defined as standard deviation. Electron spectra in coincidence

with the target ions for energy range between 0 and 40 eV before subtraction are shown in Supplementary Fig. 3.
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range about 0–11 eV in addition to the Ne 1s photoelectrons. Our
choice of the scaling factor in the background subtraction
procedure described here is conservative, and its influence on our
results is discussed in depth in Supplementary Note 4, with
Supplementary Figs 4–7 and Supplementary Tables 1–4.

Finally, we determined the electron energy spectra shown in
Fig. 3f by projecting Fig. 3d,e on the electron energy axis. We
normalized the spectra to unit area of the intensity between 0 and
25 eV. In addition to contributions from photoelectrons, there are
two components which do not shift with photon energy, as
expected for ETMD. One appears at about 0–11 eV as already
seen in Fig. 3d,e, and the other at about 11–20 eV. After
subtracting the contributions from photoelectrons (Fig. 3g), we
can see more clearly that the two low-energy components appear
at both photon energies. The relative intensities of the
components making up the electron spectra are summarized
again in Table 1. The intensity of the 0–11 eV electrons is
B70% of that of the photoelectrons. This implies that when a Ne
1s photoionization event at the Ne–Kr interface occurs, almost
always an electron with a low kinetic energy of several
electronvolts is emitted from the Ne–Kr mixed cluster.
A contribution of electron scattered inelastically to the low
kinetic energy fraction cannot be ruled out in principle, but
seems negligible in this experiment as discussed in Supplementary
Note 5.

Discussion
We now discuss in detail how these extra electrons are produced
in the Ne–Kr mixed clusters (Fig. 4). We assume that branching
ratios for Auger decay in atoms apply to our weakly bonded
clusters as well20. After Ne 1s ionization, 93% of the resulting
Neþ (1s� 1) vacancies undergo Auger decay to Ne2þ (ref. 21).
Figure 4 depicts schematically the decay pathways via these
dicationic states. When Ne2þ (2p� 2 1D) and Ne2þ (2p� 2 1S) are
produced by Auger decay in the mixed clusters, they decay via
ETMD(3) giving rise to Neþ and two Krþ and to ETMD
electrons with energies of 0–4.5 eV (Ne2þ (2p� 2 1D)) and
1–8.5 eV (Ne2þ (2p� 2 1S))14. When higher electronic states of
Ne2þ are produced by Auger decay, they continue to decay by
ICD. Ne2þ (2s� 12p� 1 3P) decays into Ne2þ (2p� 2 3P) emitting
ICD electrons of 0–3.5 eV; the next state of higher energy,
Ne2þ (2s� 12p� 1 1P), decays into Ne2þ (2p� 2 1D) and
Ne2þ (2p� 2 1S) with a branching ratio of 5:1 (ref. 22)
and emits ICD electrons of 8–11 eV and 5–7.5 eV, respectively.
The highest excited state in the Auger spectrum, Ne2þ (2s� 2 1S),
first decays by ICD to Ne2þ (2s� 12p� 1 1P) emitting 0–2 eV
electrons, which then decays by another ICD step, as described
above. The last step after these Auger-ICD cascades, for ‘all’ states
produced, is the decay by ETMD, as seen at the bottom of Fig. 4.
Interestingly, also the dicationic state Ne2þ (2p� 2 3P), which is

not populated by Auger is populated via ICD. The latter emits
ETMD electrons in the range 0–1.5 eV. The above energies of the
ICD and ETMD electrons were estimated from NeKr and NeKr2,
respectively. In the larger mixed clusters measured here, the
electron energies may, of course, shift somewhat. Qualitatively
similar, but more involved decay cascades are also expected after
double Auger decay to Ne3þ (6% branching ratio21).

In the electron emission events described above, the
ICD process from Ne2þ (2s� 12p� 1 1P) to Ne2þ (2p� 2 1D)
leads to electrons of rather high kinetic energy, which can be
identified with the intensity in the 11–20 eV range shown in
Fig. 3f and assigned ‘ICD (high)’ in Table 1. All other ETMD and
ICD electrons correspond to the 0–11 eV electrons, assigned
‘ETMD and ICD (low)’ in Table 1. In addition to the
experimental results in Table 1, we also show estimated values
of the relative intensities of the various groups of electrons
by using the atomic Auger ratios and the branching ratio of the
ICD from Ne2þ (2s� 12p� 1 1P). The estimated and experimental
values are in satisfactory agreement, in view of the complexity of
the involved multi-step ICD and ETMD processes.

Table 1 | Relative intensities of the various groups of electrons.

Electron energy (eV) Assignment Relative intensity

Measured Estimated

8 or 18 Photoelectron 1.00 1.000

0–11 ETMD, 0.73±0.09 1.000
ICD (low) 0.163

11–20 ICD (high) 0.25±0.05 0.194

Measured values are extracted from Fig. 3. For comparison, estimated values are shown, which are extracted from atomic Auger ratios and ICD branching ratios in small clusters. Depending on the
photon energy used to ionize the Ne 1s shell in the cluster, the energy of the photoelectrons is around 8 or 18 eV. Experimental relative intensities for the ETMD and ICD contributions are valid for both
photon energies. The estimated relative intensity of ETMD is 1.0 because all cascades end with ETMD, see Fig. 4.
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Figure 4 | Schematic view of the decay pathways of Neþ produced by Ne

1s photoionization in Ne–Kr mixed clusters. The first step consists of
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various dicationic Ne2þ states shown on the left, in the order of ascending

energy. For each state, the abundance25 is shown at the respective energy

level. States with the electronic configuration Ne2þ (2p� 2), which are the

most abundant, can only decay by ETMD(3), thus neutralizing Ne2þ to

Neþ . This is indicated by magenta lines. The higher lying dicationic states

produced by Auger decay first decay by ICD (indicated by turquoise lines)

and then further by ETMD(3).
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Our interpretation is additionally supported by an analysis of
the ion kinetic energy release (KER), shown in the Supplementary
Fig. 2 and Supplementary Note 2. The KER spectrum clearly
shows a component related to Ne photoionization, the energies
of which are in reasonable agreement with a Coulomb explosion
of Neþ and 2Krþ , in which some momentum is taken away
by neutral fragments.

In summary, we have shown that the dicationic states
produced via Auger decay following Ne 1s photoionization of
Ne–Kr mixed clusters are subject to ETMD(3). The most
abundant states in the Auger spectrum are at low energy and
undergo ETMD directly. The dicationic states at higher energy
undergo a multi-step decay, at which ETMD(3) occurs at the end
of the cascade (Fig. 4). The ETMD step partially neutralizes the
Ne dication and gives rise to the emission of low-energy electrons.

Although our experiment has provided evidence for the
existence and the efficiency of Auger-ETMD cascade processes,
the statistics of our data were not sufficient to assess it in all
quantitative detail. More sophisticated modelling of the cascade
processes as well as extended measurements should further
improve our understanding.

Our results apply to relaxation pathways after interaction with
energetic particles in a broad range of weakly bonded systems, for
example, aqueous solutions. We show that non-local autoioniza-
tion may occur even from states with no or a small amount of
electronic excitation energy. Taking these processes into account
is very important for understanding the chemical effect of
radiation on a microscopic level.

Methods
Experiment. The experiment was carried out at the b-branch of the beamline
BL17SU of SPring-8 (ref. 23). The storage ring was operated in several-bunches
mode providing 12 single bunches (1/14 filling bunches) separated by 342 ns.
Circular polarization of the incident light was chosen to maximize the photon
flux at the used photon energies (860, 878 and 888 eV; ref. 23).

The Ne–Kr mixed cluster beam was prepared by expanding mixed gas through
an 80mm nozzle at a stagnation pressure of 0.6 MPa. The molar mixing ratio of
Ne : Kr was 60:1. Temperature of the nozzle was 160 K. The average cluster size
for pure Ne clusters under these conditions is B10 (ref. 24). Since Kr is condensed
easier than Ne, the ratio of Kr to Ne in the clusters is larger than in the gas
mixture. We estimated the ratio of Ne : Kr in the clusters as 4:1 from coincidence
counts of the Neþ–Neþ–Krþ and Neþ–Krþ–Krþ ion sets, respectively, with
Ne 1s photoelectrons, after subtracting contributions from Kr photoionization.
For the estimate, we consider the decay of the Ne2þ (2s� 12p� 1 1P) excited
dicationic state. This state will decay via ICD, for which two alternative routes
exist however: The decay may involve either a neighbouring Kr atom (Ne2þ–Kr),
or it may decay via ICD with a Ne atom (Ne2þ–Ne; ref. 20). The latter decay
will lead to production of a Neþ–Neþ–Krþ ion triple, and is the only important
channel giving that signature. The alternative route involving a Kr neighbour,
like all other decay pathways considered here, will produce a Neþ–Krþ–Krþ

signature. We thus multiply the abundance of Neþ–Krþ–Krþ with the branching
ratio into the Ne2þ (2s� 12p� 1 1P) state, which is 17.2% (ref. 25) and relate
it to the abundance of Neþ–Neþ–Krþ to arrive at the above result.

To measure ions and electrons produced by the series of events, we used
an electron–ion three-dimensional momentum coincidence spectrometer26–28.
The spectrometer consists of two TOF spectrometers equipped with
delay-line type position-sensitive detectors. One of them detects ions and the
other detects electrons. Those face each other with the reaction point between
them. The lengths of the acceleration region and the drift region of the electron
spectrometer are 33.0 and 67.4 mm, respectively. For the ion spectrometer,
there are two acceleration regions and no drift region. The length of the first
acceleration region is 16.5 mm and that of the second one is 82.5 mm. The
TOF spectrometer for electrons is equipped with a hexagonal multi-hit
position-sensitive delay-line detector of effective diameter of 120 mm, while that
for the ions is of effective diameter of 80 mm. In the present experiments, the
static extraction field was set to 1.7 V mm� 1, and that of the second acceleration
region for the ions was set to 21 V mm� 1. A uniform magnetic field of 6.8 G
was superimposed to the spectrometer by a set of Helmholtz coils outside the
vacuum chamber. The knowledge of position and arrival time on the particle
detectors allows us to extract information about the three-dimensional
momentum of each particle. Approximately 18,000 ion–ion–ion–electron
coincidences were collected over about 4.5 h acquisition time in each of
Fig. 3a,b.

Data availability. All relevant data are available from the corresponding author on
request.
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