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Induction of ischemic tolerance as a promising 
treatment against diabetic retinopathy
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Diabetic retinopathy
About 380 million people across the globe are estimated to 
have diabetes, and its prevalence is expected to drastically 
increase in the near future (Shi et al., 2014). One of the most 
serious complications of diabetes is diabetic retinopathy 
(DR) (Szabadfi et al., 2014). Nearly all individuals with type 
1 diabetes mellitus (T1DM), and more than 60% of indi-
viduals with type 2 diabetes mellitus (T2DM) have some 
degree of retinopathy after 20 years of diabetes (Robinson 
et al., 2012). DR is a leading cause of reduced visual acuity 
and acquired blindness. In inadequately controlled patients, 
the retinal microvasculature is constantly exposed to high 
glucose levels, which results in vascular damage and leakage, 
edema, capillary basement membrane thickening, neovascu-
larization, hemorrhage, ischemia, and neuroglial alterations 
(Barber et al., 2011, Kowluru and Chan, 2007). Despite many 
differences between T1DM and T2DM, both forms of dia-
betes will lead to a similar retinopathy (Szabadfi et al., 2014). 
Current treatments for DR such as laser photocoagulation, 
corticosteroids, or anti-vascular endothelial growth factor 
(VEGF) agents are indicated for advanced DR, but have ad-
verse effects. Therefore, new therapeutic treatments for DR 
are needed. In experimental studies, efforts to inhibit DR 
have focused either on highly specific therapeutic approaches 
for pharmacologic targets (Du et al., 2010) or using genetic 
approaches to change expression of certain enzymes (Zheng 
et al., 2007). Alternatively, identification of innovative treat-
ment modalities that act by multiple potential mechanisms 
would be necessary. In this review, we will discuss evidence 

that supports that ischemic conditioning might pave the way 
for finding novel therapeutic strategies against retinal dia-
betic damage.

Ischemic conditioning
The resistance to ischemic injury, or ischemic tolerance, can 
be transiently induced by prior exposure to a non-injurious 
preconditioning stimulus. Ischemic preconditioning (IPC) 
itself initiates several adaptive reactions that lead to the 
establishment of what might be described as a “latent” pro-
tective phenotype; priming the tissue for the actual injurious 
ischemic event (Gidday, 2006). The first landmark paper on 
cardiac preconditioning in dogs by brief coronary ischemia 
was published in 1986 (Murry et al., 1986). Since then, many 
studies have strongly demonstrated that preconditioning 
stimuli trigger ischemic tolerance in different tissues (Gidday, 
2006). 

Ischemia is one of the key factors determining the patho-
physiology of many retinal diseases, such as DR, glauco-
ma, and age-related macular degeneration, among others. 
Ischemic retinopathy develops when retinal blood flow is 
insufficient to match the metabolic needs of the retina (one 
of the highest oxygen consuming tissues), and induces irre-
versible morphologic and functional changes that result in 
blindness. Studies have focused on the ability of exogenous 
agents to treat retinal ischemic damage, but thus far, none 
of these strategies is completely effective. Roth et al. (1998) 
first demonstrated a complete functional and histologic 
protection against retinal ischemic damage by previous pre-
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conditioning with non-damaging ischemia (5-minute isch-
emia). According to these authors, IPC is more effective in 
decreasing retinal ischemic injury than nearly any previously 
reported pharmacologic treatment. However, despite the 
robust neuroprotection induced by IPC, its use as a clinical 
strategy is limited because the onset of retinal ischemia is 
unpredictable, in contrast to the onset of reperfusion, which 
may be more predictable. Another endogenous form of pro-
tection in which a short series of repetitive cycles of brief 
ischemia-reperfusion were applied immediately at the onset 
of reperfusion, termed postconditioning (PostC), has been 
reported. PostC reduces myocardial injury to an extent com-
parable to that of IPC (Zhao et al., 2003). Other groups have 
confirmed the effectiveness of PostC in the central nervous 
system (Pignataro et al., 2008; Wang et al., 2008). We have 
shown that repetitive cycles of briefly interrupted reperfu-
sion performed at the onset of full reperfusion, or even one 
7-minute ischemia pulse applied 5 minutes after ischemia 
(PostC) induces a complete recovery from retinal I/R dam-
age which is effective even when applied 60 minutes after the 
onset of reperfusion (Fernandez et al., 2009). The effective-
ness of ischemic tolerance against acute ischemic events sug-
gests that these strategies could contribute to the discovery 
of new therapeutic alternatives for chronic ischemic diseases, 
such as DR.
    

Ischemic conditioning and diabetic retinopathy
Since available treatments for DR are not completely effec-
tive, it is imperative to develop better approaches for its pre-
vention and treatment. Unraveling which is the most critical 
mechanism to be targeted by new therapeutic strategies, is 
unlikely to be achieved in studies limited to the clinically 
observable retinal changes in human DR. Far more detailed 
and invasive studies are required, preferably in readily avail-
able animal models. The streptozotocin (STZ)-induced dia-
betes in rats shows many of the retinal alterations observed 
in human DR associated with T1DM (Wei et al., 2003). We 
have shown that the combination of diet-induced insulin 
resistance and a slight secretory impairment resulting from 
a low-dose STZ treatment mimics some features of human 
T2DM at its initial stages, and provokes significant retinal 
alterations (Salido et al., 2012). Based on the highly effective 
protection induced by IPC and PostC against an acute isch-
emic episode, and considering that DR is the most common 
ischemic disorder of the retina (Stitt et al., 2011), the effect 
of ischemic tolerance on retinal damage induced by both 
experimental T1DM and T2DM was analyzed. The results 
obtained are summarized below.

Ischemic tolerance on diabetic retinopathy 
associated to T1DM 
T1DM was induced by an intraperitoneal injection of STZ, 
and ischemic tolerance was induced by increasing intraoc-
ular pressure (IOP) to 120 mmHg for 5 minutes; this ma-
neuver started 3 days after STZ injection and was weekly re-
peated in one eye, while the contralateral eye was submitted 

to a sham procedure. Weekly ischemia pulses, which show 
no effect per se, prevent retinal alterations induced by exper-
imental diabetes (Fernandez et al., 2011). It is well known 
that human diabetes induces significant alterations in the 
electroretinogram (ERG) and oscillatory potentials (OPs) 
(Coupland, 1987; Holopigian et al., 1992; Lovasik and Ker-
goat, 1993). In agreement, a significant and progressive ERG 
dysfunction is observed in eyes from rats injected with STZ, 
whereas weekly ischemia pulses prevent the decrease in ERG 
a- and b-wave, and OP amplitude induced by experimental 
diabetes (Fernandez et al., 2011).

Evans blue has been widely used for blood-retinal barrier 
(BRB) studies in several species (Ma et al., 1996; Zhang et 
al., 2005). Since intravenously injected Evans blue binds irre-
versibly to serum albumin, its distribution reflects albumin 
exchange between the intra- and extravascular compart-
ments. In diabetic retinas submitted to a sham procedure, 
extravasated Evans blue is evident, whereas ischemia pulses 
prevent the effect of diabetes on BRB integrity. Astrocytes 
are closely associated with retinal vessels (Schnitzer, 1988), 
helping to maintain their integrity (Zhang and Stone, 1997), 
and increasing the vascular endothelium barrier properties 
(Gardner, 1995). Astrocyte dysfunction plays a pivotal role 
in inner BRB breakdown, resulting in the production of va-
sogenic edema (Chan-Ling and Stone, 1992; Gardner et al., 
1997). Experimental diabetes induces a decrease in astrocyte 
glial fibrillary acid protein (GFAP) immunoreactivity, which 
is restored by ischemia pulses. A reduction in retinal astro-
cyte GFAP expression during diabetes may be linked to a re-
duced ability to maintain BRB characteristics in endothelial 
cells (Barber et al., 2000). Thus, changes in GFAP immuno-
reactivity could account for Evans blue leakage in diabetic 
eyes and its prevention by ischemic tolerance. The BRB plays 
an important role in the homeostatic regulation of the ret-
inal microenvironment. Disruption of the BRB associated 
with increased vascular permeability results in edema and 
tissue damage, with consequent adverse effects on vision. 
Factors such as enhanced production of VEGF underlie the 
increased permeability of the BRB, and inhibition of VEGF 
is beneficial in humans and experimental models (Kaur et 
al., 2008; Jeganathan, 2011). In this vein, we have shown that 
ischemia pulses abrogate the increase in retinal VEGF lev-
els induced by DR (Fernandez et al., 2011). Taken together, 
these results suggest that weekly ischemia pulses prevent ret-
inal damage induced by experimental T1DM. However, the 
translational relevance of these results is limited by the fact 
that application of ischemia pulses started before the ap-
pearance of retinal changes provoked by diabetes. Therefore, 
we analyzed whether ischemia pulses could not only prevent 
but also reduce DR progression. For this purpose, we started 
the application of ischemia pulses at 6 weeks of diabetes on-
set, a time point in which a functional alteration is already 
evident. The delayed treatment resulted in a significant 
protection when compared with diabetic eyes submitted to 
a sham procedure, supporting that ischemic tolerance not 
only prevents but also restores the retinal function (Fernan-
dez et al., 2011). On the other hand, we have shown that 
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axoglial alterations at the distal portion of the optic nerve 
could be the first structural change in the diabetic visual 
pathway (Fernandez et al., 2012a). Therefore, we analyzed 
the ability of ischemic conditioning on optic nerve axon 
protection against T1DM damage. In this sense, we demon-
strated that ischemia pulses prevent a deficit in the antero-
grade transport from the retina to the superior colliculus, 
as well as an increase in astrocyte reactivity, ultraestructural 
myelin alterations, and altered morphology of oligodendro-
cyte lineage in the optic nerve distal portion at early stages 
of experimental diabetes (Fernandez et al., 2012b), which 
supports that ischemic tolerance protects optic nerve axonal 
function and structure against diabetic damage.

Ischemic tolerance on diabetic retinopathy 
associated to T2DM
In order to analyze the effect of ischemic tolerance on ret-
inal damage associated with T2DM, adult male Wistar rats 
received a control diet or 30% sucrose in the drinking water, 
and 3 weeks after this treatment, animals were injected with 
vehicle or STZ (25 mg/kg) (Salido et al., 2012). Starting 3 
weeks after vehicle or STZ, retinal ischemia was weekly in-
duced by increasing IOP for 5 minutes in one eye, while con-
trol eyes were submitted to a sham procedure. At 12 weeks of 
treatment, animals that received a sucrose-enriched diet and 
STZ show significant differences in fasting and postprandial 
glycemia, and glucose, and insulin tolerance tests, as com-
pared with control groups. Brief ischemia pulses in one eye 
and a sham procedure in the contralateral eye do not affect 
glucose metabolism in control or diabetic rats. Ischemic 
pulses reduce the decrease in the ERG a-wave, b-wave, and 
OP amplitude, and the increase in retinal VEGF levels in rats 
with experimental T2DM. Enhanced oxidative stress and in-
flammatory signals play important roles in the pathogenesis 
of diabetes mellitus and its complications (Zheng and Kern, 
2009; Mokini et al., 2010). A significant increase in retinal 
lipid peroxidation, TNFα levels, and NOS activity, as well as 
a decrease in catalase activity was observed in diabetic ani-
mals, which are reduced by ischemic tolerance (Salido et al., 
2013).

Concluding remarks
These results indicate that ischemic tolerance protects the 
retina against damage induced by experimental T1DM and 
T2DM. Notably, the protection induced by ischemia pulses is 
independent from the glycemic profile in both experimental 
models (Fernandez et al., 2011; Salido et al., 2013). Although 
different pathogenic mechanisms could be involved in reti-
nal alterations induced by T1DM and T2DM, the application 
of ischemia pulses is effective in reducing retinal changes in 
both experimental models. The precise mechanisms respon-
sible for the retinal protection induced by ischemia pulses 
remain to be established. Our results indicate that ischemic 
tolerance can behave as an antioxidant, antinitridergic, an-
ti-inflammatory, and anti-VEGF therapy. Notwithstanding, 
the involvement of other mechanisms that have been impli-

cated in retinal IPC (such as hypoxia-inducible factor-1 alpha 
and heme oxygenase-1 (Zhu et al., 2007), mitogen-activated 
protein kinase p38 (Dreixler et al., 2009a), protein kinase B/
Akt (Dreixler et al., 2009b), and mitochondrial K+/ATP chan-
nels (Roth et al., 2006), among others), cannot be excluded. 
Therefore, further studies to determine the mechanisms 
behind ischemic tolerance will provide a more complete 
picture of how neuroprotection is achieved in the context of 
retinal diabetic damage.

The relevance of these experimental studies to human DR 
is still an open question. Although care must to be taken 
when extrapolating data generated in rodents to humans, 
rodent retinas lacking the ability to develop bona fide prolif-
erative DR, exhibit almost all of the biochemical, pathophys-
iologic, and histopathologic features of background retinop-
athy. Many exogenously delivered chemical preconditioning 
agents (e.g., inflammatory cytokines, anesthetics, and meta-
bolic inhibitors) can also induce ischemic tolerance, raising 
the hope that in the future, IPC and PostC could be pharma-
cologically mimicked in vivo (Gidday, 2006). Therefore, the 
present results support that induction of ischemic tolerance 
could constitute a fertile avenue for the development of new 
therapeutic strategies for DR treatment.
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