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Abstract

Hi-C and capture Hi-C (CHi-C) both leverage paired-end sequencing of chimeric fragments to gauge the strength of interactions based on the total
number of paired-end reads mapped to a common pair of restriction fragments. Mapped paired-end reads can have four relative orientations,
depending on the genomic positions and strands of the two reads. \We assigned one paired-end read orientation to each of the four possible
re-ligations that can occur between two given restriction fragments. In a large hematopoietic cell dataset, we determined the read pair counts
of interactions separately for each orientation. Interactions with imbalances in the counts occur much more often than expected by chance
for both Hi-C and CHi-C. Based on such imbalances, we identified target restriction fragments enriched at only one instead of both ends. By
matching them to the baits used for the experiments, we confirmed our assignment of paired-end read orientations and gained insights that can
inform bait design. An analysis of unbaited fragments shows that, beyond bait effects, other known types of technical biases are reflected in
count imbalances. Taking advantage of distance-dependent contact frequencies, we assessed the impact of such biases. Our results have the
potential to improve the design and interpretation of CHi-C experiments.

Introduction

The Hi-C method has been used to define higher-order struc-
tural features such as topologically associating domains (1).
Capture-C (2-4) and CHi-C (5-7) additionally employ a hy-
bridization technology to enrich interactions at selected tar-
get regions, achieving a resolution that allows interactions be-
tween specific gene promoters and their distal regulatory ele-
ments to be identified.

Hi-C involves digestion of a formaldehyde cross-linked
genome with restriction enzymes, and subsequent fill in and
repair of the digested ends, thereby incorporating biotin-
linked nucleotides. The repaired ends are then re-ligated, the
cross-links reversed and associated proteins degraded, after
which the DNA is sheared by sonication or other methods
(8). This results in chimeric fragments that are composed of
DNA from different regions of the genome. The premise in Hi-
C is that intra-molecular re-ligations in cross-linked protein—
DNA complexes are favored over inter-molecular random
re-ligations (9). Therefore, a relatively high proportion of
chimeric fragments represent pairwise DNA-DNA contacts.
In Hi-C, chimeric fragments are enriched using the previ-
ously incorporated biotin-linked nucleotides. In Capture-C

and CHi-C, additional enrichment of chimeric fragments as-
sociated with target regions is performed using complemen-
tary RNA (cRNA) probes, also referred to as baits. Baits are
targeted to the two ends of restriction fragments that con-
tain regions of interest. Certain bait selection criteria regard-
ing the distance to the restriction sites as well as GC con-
tent and mappability are used to ensure the effectiveness of
baits and to avoid off-target pull-downs, as those may com-
plicate the interpretation of the data (10-13). Enriched se-
quencing libraries are subjected to paired-end sequencing and
the reads are mapped to the corresponding reference genome.
Read pairs that map to different strands and have a small
distance to each other are considered artifacts resulting from
un- or self-ligated restriction fragments and are therefore dis-
carded (14,15). The remaining mapped read pairs are referred
to as valid and those that map to a common pair of restriction
fragments are combined into interactions with corresponding
read pair counts.

In the subsequent data analysis, the task is to mitigate tech-
nical biases arising from the protocol and to distinguish rele-
vant interactions from noise. Besides distance-dependent ran-
dom contacts, random re-ligations are a significant source
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of noise in Hi-C (15). Technical biases arise from various
limitations of the Hi-C assay, including incomplete restriction
digestion, varying restriction fragment lengths as well as dif-
fering GC content, and mappability of restriction fragment
ends. A number of methods have been developed to miti-
gate technical biases in Hi-C data (16-19). The additional
target enrichment in CHi-C results in an asymmetric nature
of the data (20). Furthermore, uneven capture efficiency rep-
resents an additional source of technical bias. cRNA baits
have variable efficiencies that are difficult to predict. More-
over, due to bait selection criteria, for some target restriction
fragments a bait can only be selected for one of the two ends,
resulting in uneven enrichment of unilaterally and bilaterally
baited fragments. Finally, interactions between two enriched
restriction fragments (baited-baited) are more enriched than
those between one enriched and any other restriction fragment
(baited-other). A number of methods have been developed to
address the specific requirements in CHi-C data analysis, some
of which have recently been systematically compared (21).
For example, the interaction caller CHICAGO (22) considers
distance-dependent random contacts and technical variability
as two distinct count-generating processes that are modeled as
a convolution of negative binomial and Poisson random vari-
ables, with the random variable for technical variability in-
tended to represent multiple bias components, including those
resulting from the Hi-C assay, target enrichment, and sequenc-
ing. CHiCANE (23) follows a similar approach but uses a re-
gression model, which allows user-specified covariates such as
GC content to be incorporated (20). Other methods use gen-
eralized linear models (24), background contact frequencies
generated from negative control probe sets (10), integration
of information from biological replicates (25), as well as max-
imum likelihood (26) or machine learning approaches (27) in
order to mitigate technical bias in CHi-C data.

We noticed that relative paired-end read orientations have
so far only been used to remove artifacts resulting from un-
or self-ligated restriction fragments. In this work, we investi-
gated whether the frequencies of different paired-end orienta-
tions of interactions contain information that could be used to
improve the performance and interpretation of CHi-C experi-
ments. In total, there are four different paired-end orientations
and the sum of supporting read pairs of interactions across
all orientations is typically interpreted as contact frequency
or interaction strength. Here, we count supporting read pairs
of interactions separately by paired-end orientation and inter-
pret the four counts as observed re-ligation frequencies. We
found substantial imbalances in the read pair counts of in-
teractions for a large proportion of interactions in numerous
human and mouse datasets. We attribute such imbalances to
a number of known sources of technical bias, including bait
effects, varying restriction fragment lengths, GC content, and
mappability. We present a framework to detect such unbal-
anced interactions and analyze them with respect to various
technical biases.

Materials and methods

Assignment of paired-end reads to chimeric
fragments

Due to restriction digestion and subsequent re-ligation,
paired-end reads from Hi-C experiments can have four dif-
ferent relative orientations to each other. On the other
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Table 1. Assignment of paired-end reads to chimeric fragments. To
each of the four possible relative orientations of mapped paired-end reads,
we assigned a chimeric fragment class that results from which ends of a
given pair of restriction fragments re-ligate with each other

Paired-end orientation Chimeric fragment class

Inwards — 3/-5’ re-ligation ‘0
Outwards —— §'-3' re-ligation ‘1
Both forward —— 3'-3' re-ligation 2
Both reverse — §5'=5' re-ligation 3’

hand, there are four possible re-ligations between the ends
of two given restriction fragments, resulting in four classes
of chimeric fragments (Supplementary Figure S1). For cis-
chromosomal interactions, i.e. both restriction fragments
come from the same chromosome, we assign each relative
paired-end read orientation to one of these chimeric fragment
classes, which we label 0%, “1°, 2> and ‘3’ (Table 1).

Counting reads pairs separately by fragment class

In a previous work we developed Diachromatic, a tool for
preprocessing and quality control of Hi-C and CHi-C data
(15). In the original version of Diachromatic, only a single
count was reported for each interaction, which is the sum of
the supporting read pair counts across all four orientations
of mapped paired-end reads. For this work, we extended Di-
achromatic to report the counts separately for each orienta-
tion to each of which we assigned one of the four chimeric
fragment classes (Table 1).

In Diachromatic’s interaction format (Supplementary
Table S1), each line represents an interaction and contains the
coordinates and enrichment states of the two associated re-
striction fragments, as well as the counts of supporting read
pairs. The fragment with the smaller coordinates (5’) always
precedes the fragment with the larger coordinates (3'). Frag-
ments selected for enrichment are marked with an E and all
others with an N. This results in four enrichment states of in-
teractions: NE, EN, EE, NN. For instance, NE means that only
the 3’ fragment was selected for enrichment. The counts for
the four orientations of mapped paired-end reads are reported
separated by colons and in the following order: <Class
0>:<Class 1>:<Class 2>:<Class 3>.

In Diachromatic, an interaction is defined as any pair of
restriction fragments with at least one supporting read pair.
We restricted our analysis to interactions that occur within the
same chromosome (cis-chromosomal) and have a distance of
at least 20 000 bp. We pool the read pair counts of interactions
that occur in more than one biological replicate by adding
them up separately for the four orientations of mapped paired-
end reads. We discarded all interactions that occur only in one
replicate. Due to the low sequencing depth of Hi-C datasets,
we also pooled interactions across eight different cell types. In
this case, we pooled the already pooled biological replicates,
requiring that pooled interactions must occur for at least two
cell types. In other words, a pooled interaction must occur for
at least two cell types and for each cell type in two biological
replicates.

Unbalanced interaction calling
Classification

Within individual interactions reported by Diachromatic, we
often observed strong imbalances in the four read pair counts.
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To classify an interaction as balanced or unbalanced, we use
the P-value from a one-sided binomial test with a probability
of success p = 0.5, taking the sum of all four counts as the
number of trials (1) and the sum of the two highest counts as
the number of successes (k). If the P-value from such a test is
smaller than a given threshold ¢z, we classify the interaction as
unbalanced (U); otherwise, it is balanced (B).

Note that, depending on the chosen threshold #, a certain
minimum number of read pairs is required for the binomial
test to produce P-values below the threshold. For instance, an
interaction with a total of # = 4 read pairs cannot be signif-
icant at a threshold of # = 0.05 because the smallest possible
P-value of 0.0625 is already above the threshold. We refer
to interactions that have fewer than the minimum number as
‘unclassifiable’; all other transactions are ‘classifiable’.

We point out that this classification procedure is not a
valid binomial test because the two highest counts are chosen
prior to performing the test. Here, we use the P-values only
as a heuristic score for classification. This heuristic score is
nonetheless adequate for the statistical analysis of the counts
of balanced and unbalanced interactions introduced below.

Selection at a chosen FDR threshold

We developed a randomization procedure that allows us both
to decide whether unbalanced interactions occur more often
than expected by chance and to select them at a chosen false
discovery rate (FDR) threshold (Supplementary Figure S2). In
each iteration, we randomize the four counts of each interac-
tion according to our null model (25% for each paired-end
read orientation) and then determine the number of interac-
tions that are still classified as unbalanced at a predetermined
P-value threshold z. We use the originally observed number of
unbalanced interactions 7,(¢) and the mean p,(¢) of the num-
bers of permuted unbalanced interactions from all iterations
to estimate the FDR (28).

FDR(t) =

(1)

To select unbalanced interactions at a chosen FDR threshold
g, we use the same randomization procedure to estimate the
FDR for each P-value threshold from a given range R = [#,i,
(Zain + X)y eony (Eypax — X), Luax ], where x is a step size parameter.
To classify interactions as unbalanced or balanced, we then
use the largest P-value threshold for which the estimated FDR
is still below g.

/

t'= argmax FDR(z) (2)
teR | FDR(t)<q

For the analyses presented in this work, we determined a ¢ for
q = 0.05 for each dataset and used this as the P-value thresh-
old for the binomial test to classify interactions as unbalanced
or balanced. In addition to the FDR, we calculate Z-scores us-
ing Z(t) = %, where 0,(t) is the standard deviation of
the numbers of permuted unbalanced interactions from all it-
erations.

Configurations of unbalanced interactions

We defined ten configurations of unbalanced interactions that
differ in which two of the four counts are the highest (Table
2). For example, we assign configuration 13 to an interaction
with counts 2:7:4:10 because the counts for classes 1 and
3 are highest. If 75% or more of the read pairs of an inter-

Table 2. Configurations of unbalanced interactions. Examples of un-
balanced read pair counts for each configuration. According to our assign-
ment of relative paired-end read orientations to chimeric fragment classes,
the configurations differ in how many chimeric fragment classes are pre-
dominantly observed and how many restriction fragment ends are involved
in re-ligations (see also Supplementary Figure S3). We assigned a label and
color to each configuration

Example Class  Ends involved Label  Color
100:10:10:10 1 2 0X -
10:100:10:10 1 2 1X -
10:10:100:10 1 2 2X -
10:10:10:100 1 2 3X -
50:15:50:15 2 3 02 Red
50:15:15:50 2 3 03 Green
15:50:50:15 2 3 12 Magenta
15:50:15:50 2 3 13 Blue
50:50:15:15 2 4 02 Pink
15:15:50:50 2 4 23 Turquoise

action are of the same class, we assign the interaction one of
the configurations 0X, 1X, 2X or 3X, whichever count is high-
est. For visual representation, we assigned different colors to
configurations. To distinguish interactions going from baited
fragments towards 5’ or 3, we used Diachromatic’s enrich-
ment state tags, where NE corresponds to 5" and EN to 3'.

Classification of baited fragments

We use our assignment of paired-end read orientations to
chimeric fragment classes (Table 1) to detect baited restriction
fragments that are either evenly enriched at both ends (BCFO),
or predominantly at the 5" end (BFC1) or 3’ end ( BFC2). To di-
vide baited fragments into the classes BFC0, BFC1, and BFC2,
we assume—based on our assignment—that class 2 read pairs
result from re-ligations between two 3’ ends of fragments,
while class 3 read pairs result from re-ligations between two 5’
ends of fragments. For a given baited fragment, we first deter-
mine the sums of the counts for read pairs of class 2 (s) and 3
(s3) across all associated interactions. From this we calculate
a score as follows.

BD-Score — TX(s2:83) + 1 3)
min(sy, s3) + 1
1 is added to each quantity to avoid division by zero errors. If
the score is greater than a specified threshold #, then we assign
the baited fragment to BFC1 or BFC2 and otherwise to BFCO.
If sum s; is greater than sum s,, we assign the baited fragment
to BFC1 and otherwise to BFC2.

1 ift <BD-Score and s; < s3
BD-Class = {2 if t < BD-Score and s3 < s2 4)
0, otherwise

We used a threshold of ¢ = 2 to classify baited fragments.
Baited fragments without interactions are not classified.

Calculation of repeat and GC content

We calculate the repeat content of a given sequence by de-
termining the number of bases masked by RepeatMasker and
dividing it by the total number of bases. We take advantage of
the fact that reference genomes are typically available in soft-
masked form, in which all bases masked by RepeatMasker are
in lowercase (acgt) and all others in uppercase (ACGT). Sim-
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ilarly, we determine the GC content of a given sequence by
dividing the number of all guanine (G) and cytosine (C) bases
by the total number of bases.

Selection of interaction sets for comparisons

We selected comparison sets of balanced and unbalanced in-
teractions that are almost identical in terms of the number of
interactions and the distribution of total read pair counts per
interaction. For such pairs of comparison sets, we then com-
pared the distribution of the interaction distances. To select
two comparison sets of balanced and unbalanced interactions
for a given dataset, we first determine how many unbalanced
interactions there are for each total read pair count. For in-
stance, there might be 100 unbalanced interactions with a read
pair count of 67. We then go through the interactions in ran-
dom order and try to select the same number of balanced in-
teractions for each read pair count, where we relabel selected
interactions from B to BR and unselected interactions from
B to BX. Furthermore, we relabel unbalanced interactions for
which a balanced reference interaction could be selected from
U to UR. If there are more unbalanced than balanced inter-
actions for a given read pair count, we subsequently relabel
the corresponding unbalanced interactions without reference
from U to UX. For example, there could be only 90 balanced in-
teractions with a read pair count of 67. In this case, we would
relabel ten unbalanced interactions with a read pair count of
67. This selection procedure ensures that the total number of
interactions and the distribution of read pair counts per in-
teraction are identical for UR and BR interactions. For CHi-C
data, we additionally take into account whether the 5 or the
3’ restriction fragment of an interaction was selected for en-
richment (Dichromatic interaction format) by performing the
procedure separately for the different enrichment states (NN,
NE merged with EN and EE). Within the enrichment states EE
and NN, there are exactly the same number of interactions in
the categories UR and BR. Within the enrichment states NE
and EN, the interaction numbers may differ slightly, since our
selection procedure for the comparison sets of unbalanced and
balanced reference interactions does not differentiate between
NE and EN. For the alternative selection of the two compar-
ison sets, we use the same procedure, but instead of the total
read pair counts (sum of the four counts), we use the maxi-
mum of the four counts as the selection criterion.

CHIiCAGO interaction calling

We have developed the script dif2chicago. py, which con-
verts Diachromatic interaction files into input files for the in-
teraction caller CHICAGO (.chinput). This script can op-
tionally generate files that include either the total of the four
read pair counts of interactions or only the maximum count.
In addition, CHiCAGO requires a set of design files provid-
ing details about restriction fragments and their selection for
enrichment. We converted the coordinates in the .baitmap file
of Javierre et al., 2016 (29) from hg19 to hg38 using UCSC’s
LiftOver tool (30). From the resulting file and the DigestMap
we used for our interaction calling with Diachromatic, we
then created a pair of .baitmap and . rmap files with consis-
tent fragment IDs. Finally, we used the CHiCAGO tools script
makeDesignFiles py3.py to create the remaining hg38
design files from these two files. For a given dataset, we create
.chinput files for each biological replicate from the unfil-
tered Diachromatic interaction files, i.e. including short and
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trans interactions, and place them in a directory. For interac-
tion calling, we pass the path to this directory to CHICAGO
(1.32.0) and use default settings.

Enrichment of regulatory elements within
other-ends

We assessed the enrichment of unbaited interacting restric-
tion fragments (other-ends) for ENCODE’ Candidate Cis-
Regulatory Elements (cCREs) (31) and enhancers from the
Enhancer Atlas 2.0 (ENA2) (32). We used UCSC’s LiftOver
tool to convert the coordinates of ENA2 enhancers from hg19
to hg38. For each of the five cCRE categories and ENA2 en-
hancers (prom, enhP, enhD, K4me3, CTCF, ENA2), we used
BEDTools (33) to determine the number of interactions where
the other-end contains at least one regulatory element. To as-
sess whether the number of such other-ends is larger than ex-
pected by chance, we randomize the other-ends of all inter-
actions. To randomize the other-end fragment of an interac-
tion, we first randomly select one from all baited fragments
and then define the genomic region at the same interaction
distance and with the length of the original other-end as the
random other-end. We performed 100 iterations of this ran-
domization procedure and determined for each iteration and
each category of regulatory element the number of random-
ized other-ends with at least one regulatory element. After-
wards, we calculated corresponding means and standard de-
viations. We consider the enrichment of the other-ends of in-
teractions to be significant for a given regulatory element cat-
egory if the observed count is more than three standard de-
viations above or below the mean. To compare the enrich-
ments of a given regulatory element category across differ-
ent interaction sets, we calculate a Regulatory Element En-
richment (REE) score by dividing the number of interactions
whose other-end contains at least one regulatory element by
the total length of all other-end fragments and multiplying the
result by 10°. The REE score is independent of the number of
interactions and the length of their other-end fragments. To
validate our randomization procedure, we randomly selected
genomic regions with a length between 50 and 1500 bp. If
we apply our procedure using these elements, the REE scores
within categories are approximately equal and our random-
ization procedure does not detect any significant enrichment
(Supplementary Figure S4).

Software
Preprocessing of Hi-C and CHI-C data

We used Diachromatic (0.6.1_dev) to process Hi-C and CHI-
C data from the raw FASTQ files to the interactions with the
four counts for the different paired-end orientations. This in-
cludes the steps of truncation, mapping and counting support-
ing read pairs of interactions. Diachromatic uses bowtie2 (ver-
sion 2.3.4.1) for mapping. Diachromatic expects the follow-
ing input: (i) two paired-end FASTQ files, (ii) a bowtie2 index
for the genomic reference sequence, (iii) information about
the restriction enzyme used and whether overhanging cutting
sites have been filled in, and (iv) a file with a genome-wide
list of all restriction fragments, with fragments selected for
enrichment marked accordingly (DigestMap). We used pre-
computed bowtie2 indices for hg38 or mm10 as input for
Diachromatic. For the restriction enzyme used, we selected
HindIII and specified that overhanging cutting sites have been
filled in. With our bait design tool GOPHER (11), we intro-
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Table 3. Interaction category labels. The output files of our unbalanced
interaction caller (UICer.py) contain four categories of interactions. La-
bels of unbalanced interactions begin with a U and those of balanced in-
teractions with a B. The ending R stands for ‘reference’ and means that
an interaction belongs to one of the comparison sets of unbalanced and
balanced interactions. Labels of interactions that do not belong to any com-
parison set end in X

Interaction category Label
Unbalanced without reference Ux
Unbalanced with reference UR
Balanced with reference BR
Balanced without reference BX

duced the DigestMap format (Supplementary Table S1), which
contains largely the same information as CHICAGO’s bait
map file. We created a Python script that uses the informa-
tion from the bait map file for the study on the hematopoietic
cells to mark the corresponding restriction fragments in the
DigestMap as baited.

Software developed for this work

We provide a collection of Python scripts, modules, Jupyter
notebooks, and related documentation that can be used to
reproduce any of the analyses presented here (https:/github.
com/TheJacksonLaboratory/diachrscripts). The scripts and
notebooks were tested on the macOS and Linux platforms
with Python versions 3.7 to 3.10. We implemented pooling in-
teractions from different replicates in the script pooler.py.
This script expects a path to a directory with Dichromatic in-
teraction files as input. By default, all interactions that occur
in fewer than two replicates are discarded. For the remain-
ing interactions, the read pair counts of interactions that oc-
cur in multiple replicates are pooled by adding them up sep-
arately for the four orientations of mapped paired-end reads.
The output file is in Diachromatic interaction format. We im-
plemented the classification of interactions at a given FDR
threshold into unbalanced (U) and balanced interactions (B)
as well as the procedure for selecting two corresponding com-
parison sets in the script UICer . py. By default, the random-
ization procedure is used to determine a classification thresh-
old that corresponds to an FDR of 5%. The output file is
in Diachromatic interaction format, with the addition of two
columns for interaction categories (Table 3) and (base 10) bi-
nomial P-value scores (logarithm to base 10). We implemented
all further analyzes of unbalanced interactions presented in
this paper in corresponding Python modules and Jupyter note-
books in which each analysis can be reproduced step by step.
Scripts and documentation for analyzing Diachromatic inter-
action files using CHiCAGO are available on Zenodo (DOI:
10.5281/zenodo.13837266).

Data

Hi-C and CHi-C sequencing data from the hematopoietic cell
study (29) were downloaded from EGA and prepared as rec-
ommended except that some chunks were omitted from the
neutrophil and fetal thymus data to limit the memory foot-
print to <100 GB (Supplementary Table S2).

Additional data are available from the Open Science
Framework platform (https://osf.io/u8tzp/). From
this repository, we used CHICAGO’s baitmap file (22), which
contains the coordinates of all fragments selected for enrich-
ment. The bait coordinates for the experiment were taken
from (7). We used UCSC’s LiftOver tool to convert the ge-

nomic coordinates from hg19 to hg38. We used BEDTools’
intersect command with the arguments F=1. 00, -wa and
-wb to assign baits to enriched fragments, where baits must
overlap completely with fragments. Out of 37 602 baits, 37
572 could be assigned to one fragment and conversely, 22
055 out of 22 056 baited fragments were assigned one or two
baits. The 30 cases in which the assignment failed are due to
the conversion from hg19 to hg38 coordinates. If the same
procedure is performed with the original hg19 coordinates,
all baits are assigned to a fragment and at least one bait is
assigned to each fragment. We assign a bait to the 5’ end of
a fragment, if the center position of the bait is in the 5" di-
rection from the center position of the fragment, otherwise
we assign the bait to the 3’ end of the fragment. For 56 frag-
ments, two baits are assigned to either the 5" or 3’ end. Most of
these cases can be attributed to particularly short fragments.
Since this analysis was concerned with whether the 5’ or the
3’ end of fragments are predominantly enriched, we treated
these fragments like those with a bait at only one end.

Results

Assignment of paired-end reads to chimeric
fragments

Cross-linking and restriction enzyme digestion results in
protein—-DNA complexes that are typically represented in a
simplified way as two restriction fragments held together in
the middle by a protein-mediated cross-link so that the ends of
the fragments are in spatial proximity and can re-ligate with
each other (Figure 1A). In most next-generation sequencing
applications, paired-end sequencing yields mapped read pairs
pointing inwards. However, due to restriction digestion and
subsequent re-ligation, all four relative paired-end read orien-
tations occur in Hi-C.

In our analysis, we focus on intrachromosomal interactions.
For a given pair of restriction fragments, we label the ends
of the upstream fragment « and B and those of the down-
stream fragment y and 8. Any two of the four restriction frag-
ment ends can potentially re-ligate, resulting in four classes
of chimeric fragments, to each of which we assign a relative
paired-end read orientation that implies information about
which of the ends have been re-ligated (Figure 1B). In the first
class (B-y, which we will call ‘0’ for conciseness), the restric-
tion fragment ends that face each other in the genomic se-
quence re-ligate. The resulting read pairs will thus point in-
wards. In the second class («-8, ‘1°), the fragment ends that
face away from each other re-ligate. The resulting read pairs
will thus point outwards. In the third and fourth case, the two
ends that are either both on the 5" or both on the 3’ terminus of
the restriction fragments re-ligate. In contrast to the first two
cases, the two DNA segments in the chimeric fragments have
opposite orientations with respect to the genomic sequence.
Therefore, only the reverse complement can be mapped for
one or the other read. Thus, with the third class (-8, 2’) both
reads map to the forward strand, and with the fourth class («-
v, 3’), both reads map to the reverse strand.

We analyzed a large hematopoietic cell dataset (29) that in-
cludes sequencing data from Hi-C experiments for 8 cell types
and CHi-C experiments for 17 cell types, with between 2 and
4 biological replicates for each cell type (Supplementary Table
S2). The CHi-C experiments were performed with a bait set
targeting the ends of >20 000 HindIII fragments containing
a total of >30 000 annotated promoters. In previous work,
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Figure 1. Assignment of paired-end reads to chimeric fragment classes. (A) Simplified representations of four cross-linked protein-DNA complexes.
Restriction fragments (curved arrows) are connected via protein-mediated cross-links (circles). The four possible re-ligations between the different
restriction fragment ends (&, 3, Y and d) are shown as colored lines. Four different structures of complexes are indicated, with one of the two
fragments being gradually rotated by 90°. (B) In this representation, the two restriction fragments from (A) are arranged sequentially on the genomic
sequence and the four possible re-ligations are represented as arcs colored accordingly. To the right, the four corresponding biotinylated re-ligation
products and chimeric fragments are shown. Chimeric fragments are sequenced from one side on the forward strand (small arrows pointing to the right)
and from the other side on the reverse strand (small arrows pointing to the left). Mapping of paired-end reads to the reference sequence results in four
different relative orientations of reads, each corresponding to one of the four chimeric fragment classes. See Supplementary Figure S1 for a more
detailed schematic representation.
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we developed Diachromatic, a tool that can be used for ini-
tial processing and quality control of Hi-C and CHi-C data
(15). We extended the output of Diachromatic so that for
an interaction not just a single read pair count is reported,
but four counts, one for each class of chimeric fragment. We
applied Diachromatic to each biological replicate. We then
pooled the biological replicates for each cell type by discard-
ing interactions that occur for only one replicate and adding
up the read pair counts of overlapping interactions separately
by class (‘Materials and methods’ section). Overall, the read
pairs are roughly evenly distributed across the four paired-end
read orientations (Supplementary Table S3), but within indi-
vidual interactions we often observe strong imbalances in the
four counts.

Unbalanced interactions

To determine whether interactions with unbalanced counts
occur more often than expected by chance, we developed a
randomization procedure (‘Materials and methods’ section).
In each iteration, we randomize the four counts of each in-
teraction according to a uniform distribution and then reclas-
sify the randomized interactions as balanced or unbalanced.
We applied our procedure with a classification threshold of
0.05 to the hematopoietic cell dataset, performing 1000 iter-
ations for each replicate (Supplementary Table S4). In none
of the permuted datasets did we observe a higher number of
unbalanced interactions as compared to the original dataset.
The numbers of classifiable interactions are much lower for
Hi-C than for CHi-C. Among the classifiable interactions, the
proportion of unbalanced interactions is substantially higher
in the original datasets than in the corresponding permuted
datasets, for both Hi-C and CHi-C (Figure 2A). However, the
proportion of unbalanced interactions observed before ran-
domization is much lower for Hi-C, indicating that the target
enrichment step in CHi-C introduces additional unbalanced
interactions.

To select unbalanced interactions at an FDR threshold of
5%, we first use our randomization procedure to estimate
the FDR for a range of classification thresholds. We then use
the largest threshold for which the estimated FDR is still be-
low 5% (‘Materials and methods’ section and Supplementary
Figure S2). For CHi-C, between 1 995 781 and 3 394 515 un-
balanced interactions are selected for the different cell types.
In contrast, only between 5 and 1021 unbalanced interactions
are selected for Hi-C, with <500 in five cases (Supplementary
Table S5). We attribute this primarily to the much lower se-
quencing depth that is typically achieved for Hi-C. Therefore,
we pooled the interactions across the eight hematopoietic cell
types for which Hi-C experiments were performed (‘Materi-
als and methods’ section). For the pooled Hi-C dataset, 297
282 unbalanced interactions are selected at an FDR threshold

of 5%.

Configurations of unbalanced interactions

We noticed that among the unbalanced interactions there are
many where the counts for two of the four paired-end read
orientations are particularly high, while the other two are low.
For a systematic investigation, we defined ten configurations
of unbalanced interactions that differ in which two counts
are the highest (‘Materials and methods’ section and Table 2).
For the unbalanced interactions selected at an FDR threshold
of 5%, we determined the distribution of interactions across

the ten configurations. For both Hi-C (Figure 2B) and CHi-C,
most interactions have the configurations 02, 03,12 and 13.
For CHi-C data, we additionally distinguished interactions
based on whether they go from a baited restriction fragment
towards 5’ or 3’ (Figure 2C). Interactions with configurations
03 and 12 predominantly go from baited fragments towards
5’, whereas interactions with configurations 02 and 13 pre-
dominantly go towards 3.

To investigate how interactions with different configura-
tions are distributed at individual baited restriction fragments,
we visualize interactions, similar as in triangle heatmaps typi-
cally used for Hi-C data, as rectangles along the genomic axis,
where the edge lengths correspond to the lengths of the two
associated fragments and colors to the configuration (‘Mate-
rials and methods’ section). For the CHi-C data, we visualized
interactions for various cell types in a number of genomic re-
gions and discovered two ubiquitous configuration patterns
at baited fragments (Figure 2D), which are consistent with the
observations made when we integrated configurations of in-
teractions genome-wide across all interactions (Figure 2C). In
one pattern, the configurations 03 (green) and 13 (blue) pre-
dominate, whereas in the other pattern, the configurations 12
(magenta) and 02 (red) predominate.

Baited fragment classes

According to our assignment of paired-end read orientations
to chimeric fragment classes (Figure 1B), the two configura-
tion patterns differ in which end of a baited fragment occurs
more frequently in the sequenced chimeric fragments. For the
pattern with configurations 03 and 13 it is the 5" end (Fig-
ure 3A), while for the pattern with configurations 12 and 02
it is the 3’ end (Figure 3B). Chimeric fragments of class 2 can
only result from re-ligations between two 5’ ends of restriction
fragments, while chimeric fragments of class 3 can only result
from re-ligations between two 3’ ends of fragments. There-
fore, to systematically divide the baited fragments into classes,
we first determine the counts of the four chimeric fragment
classes across all interactions at each given baited fragment
and then assign a baited fragment to class BFC1 if the count
for chimeric fragments of class 3 is twice as high as that for
class 2. Conversely, if the count for chimeric fragments of class
3 is twice as high as that for class 2, we assign a baited frag-
ment to class BFC2. Finally, we assign all remaining baited
fragments to class BFCO (‘Materials and methods’ section).

On average, approximately two-thirds of the baited re-
striction fragments are classified as either BFC1 or BFC2
(Supplementary Table S6). We also determined the proportion
of pairwise overlap for each of the 17 hematopoietic cell types
and each of the three baited fragment classes. The division into
the three classes is very similar for all cell types. In particular,
in no case there was an overlap between BFC1 and BFC2 frag-
ments (Supplementary Figure S5).

Bait analysis

We hypothesized that, in CHi-C, many unbalanced interac-
tions result from uneven enrichment of the 5" and 3’ ends of
given baited fragments and therefore investigated the under-
lying baits (‘Materials and methods’ section). Generally, baits
for CHi-C experiments should be designed such that there is
one bait located at each end of a restriction fragment to be
enriched. However, due to certain selection criteria for baits,
such as GC content or mappability, for some fragments a bait
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Figure 2. Unbalanced interactions and their configurations. (A) Proportions of unbalanced interactions before and after randomization for Hi-C
experiments on eight and CHi-C experiments on 17 hematopoietic cell types. For this plot, we used a threshold of 0.05 to classify interactions as
unbalanced or balanced. (B) Distribution of unbalanced interactions selcted at an FDR threshold of 5% across the 10 configurations for the Hi-C dataset
for which we pooled interactions across eight hematopoietic cell types and (C) the CHi-C dataset for the cell type MAC-MO. For CHi-C, we additionally
distinguished interactions based on whether they go from a baited fragment toward 5" or 3'. (D) Visualization of configurations of interactions at baited
fragments in a selected region on chromosome 1 for cell type MAC-MO. Balanced interactions are represented by gray rectangles and the rectangles for
unbalanced interactions are colored according to their configuration. Vertical lines are drawn at the center positions of baited fragments. We identified
two classes of baited fragments that can be distinguished based on their configuration patterns. For one class (BFC1) configurations 03 (green) and 13
(blue) predominate and for the other class (BFC2) configurations 12 (magenta) and 02 (red) predominate. We assign baited fragments that do not exhibit
either pattern to class BFCO.
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Table 4. Bait selection criteria. Bait selection criteria for CHi-C experi-
ments in human primary hematopoietic cells (29) and mouse embryonic
stem cells (6)

Human primary Mouse embryonic

blood cells stem cells
Max. dist. 330 bp 500 bp
GC content 25-65% 25-65%
Mappability No more than No more than

3 consecutive bases
masked by RepeatMasker

2 consecutive Ns

can only be selected at one end. In addition, the target se-
quences of the baits should ideally be right next to the restric-
tion sites of the fragments to be enriched. However, in some
cases, in order to meet selection criteria, baits are shifted to-
wards the restriction fragment center, causing a decrease in the
efficiency of baits (Supplementary Figure S6). For the selection
of the baits that we analyze here, a particularly strict selection
criterion with regard to mappability was applied and a rela-
tively large distance between baits and their restriction sites
was tolerated (Table 4). We consider the selection criterion
with the two consecutive Ns to be particularly strict because
it ultimately results in baits having a maximum of only four
Ns. In the entire genome, there are only very few N-periods <3
(between 22 and 64 for the different genome builds), which is
why it is very unlikely that one or more N-periods are com-
pletely contained in a bait sequence (Supplementary Table S7).
Therefore, generally only the edges of baits may overlap with
N-periods by a maximum of two bases at each end. With a
bait length of 120 nucleotides, this results in a maximum per-
mitted N content of only 3.33%. With the criterion with the
three consecutive bases masked by RepeatMasker, it is sim-
ilar. There is no masked region <4 in the entire genome. A
bait can therefore only overlap at the edges with a repeat-
masked region, and the overlap at each end must not exceed
three bases. With a bait length of 120 nucleotides, this re-
sults in a maximum allowed repeat content of only 5%. We
would like to point out that we do not consider these crite-
ria regarding mappability to be strict in the sense that the
resulting baits will hybridize exclusively to their target frag-
ments, which would be the ideal case, but in the sense that
many baits have to be moved or even discarded to meet the
criteria.

For this analysis, we matched the baits to their target restric-
tion fragments and divided these into three subsets: (I) Unilat-
erally baited fragments that have a bait at only one end, (II)
bilaterally baited fragments that have baits at both ends with
at least one bait shifted towards the fragment center, and (III)
bilaterally baited fragments that have baits at both ends with
neither of the baits shifted. For each of these subsets, we deter-
mined the distribution of fragments across BFCO, BFC1, and
BFC2 (Table 5A). In the following, we report the results for the
cell type MAC-MO. We obtain very similar results for the other
cell types, as the baited fragment classifications differ only
slightly among the 17 cell types (Supplementary Figure S5).

L. Unilaterally baited fragments

Overall, 29% of the baited fragments have a bait either only
at the 5’ or at the 3’ end. Among the fragments of BFCO,
this proportion is only 1%, whereas it is 46% for BFC1
and BFC2 (Table 5B; Fisher’s exact test; Prior odds ratio:

NAR Genomics and Bioinformatics, 2024, Vol. 6, No. 4

Table 5. Bait analysis. (A) We divided baited fragments into three sub-
sets: (I) Unilaterally baited fragments, (ll) bilaterally baited fragments,
where at least one bait is shifted towards the fragment center and ()
bilaterally baited fragments, where neither of the two baits is shifted. (B)
To compare unilaterally to bilaterally baited fragments, we combined the
counts for BFC1 and BFC2 fragments and the counts for fragments with
shifted (1) and unshifted (ll1) baits. (C) For the unilaterally baited fragments,
we determined the numbers of 5" and 3’ baits. (D) To compare bilaterally
baited fragments with shifted baits to those where neither bait is shifted,
we combined the counts for fragments of BFC1 and BFC2

A: Uni- and bilaterally baited fragments with and without shifted baits

BFCO BFC1 BFC2 Total
L 72 (1%) 3102 (48%) 3214 (44%) 6388 (29%)
IL 4536 (57%) 2787 (43%) 3125 (42%) 10 448 (48%)
III. 3325 (42%) 601 (9%) 1038 (14%) 4964 (23%)
Total 7933 6490 7377 21 800
B: Unilaterally vs. bilaterally baited fragments

BFCO BFC12 Total
I 72 (1%) 6316 (46%) 6388 (29%)
ILIII. 7861 (99%) 7551 (54%) 15412 (71%)
Total 7933 13 867 21 800
C: Unilateral separated by 5’ and 3’

5’ bait 3’ bait Total
BFCO 36 36 72
BFC1 3091 11 3102
BFC2 12 3202 3214
Total 3139 3249 6388
D: Bilaterally baited fragments: shifted vs. unshifted

BFCO BFC12 Total
IL 4536 (58%) 5912 (78%) 10 448 (68%)
0L 3325 (42%) 1639 (22%) 4964 (32%)
Total 7861 7551 15412

0.01; P ~ 0). In addition, we distinguished unilaterally baited
fragments depending on whether the bait is at the 5’ or 3’
end (Table 5C). For BFCO, the ratio of 5" and 3’ baits is
balanced. In contrast, fragments of BFC1 have almost ex-
clusively 5’ baits, whereas fragments of BFC2 have almost
exclusively 3’ baits. This result is consistent with our as-
signment of paired-end read orientations to chimeric frag-
ment classes, according to which, for BFC1, chimeric frag-
ments with the target sequence of the 5’ bait are more en-
riched (Figure 3A), whereas, for BFC2, chimeric fragments
with the target sequence of the 3’ bait are more enriched
(Figure 3B).

II. Bilaterally baited fragments with shifted baits

Among all baited fragments, the proportion of bilaterally
baited fragments with at least one bait shifted towards the
fragment center is 48% (Table 5A). Among the bilaterally
baited fragments, this proportion is 68% (Table 5D). For the
fragments of BFCO, it is 58 %, whereas it is 78 % for the frag-
ments of BFC1 and BFC2 (Fisher’s exact test; Prior odds ratio:
0.38; P =3.55 x 1071¢7).
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We also determined the distributions of the distances be-
tween baits and their restriction sites (Figure 3C). For the
fragments of BFCO, the distance distributions for 5" and 3’
baits differ only slightly (two-sided Wilcoxon signed-rank test;
Rank sum: 5037633, P = 0.28). In contrast, for the fragments
of BFC1, the distances for the 3’ baits are much larger than
those for the 5 baits (Rank sum: 142097, P ~ 0). With the
fragments of BFC2 it is the exact opposite. Here, the distances
for the 5" baits are much larger than those for the 3’ baits
(Rank sum: 214 695, P ~ 0). Since the efficiency of baits de-
creases with increasing distance from their restriction site, this
result is also consistent with our assignment of paired-end
read orientations to chimeric fragment classes.

III. Bilaterally baited fragments with unshifted baits

Overall, 23% of the baited fragments have unshifted baits at
both ends (Table SA). For these fragments, we determined the
GC content of the baits (Figure 3D). For BFCO, the GC con-
tent distributions of the 5" and 3’ baits do not differ signif-
icantly (two-sided Wilcoxon signed-rank test; Rank sum: 2
505 742, P = 0.10). In contrast, the 3’ baits of BFC1 frag-
ments often have a higher GC content than the 5 baits (Rank
sum: 34 127, P = 1.82 x 1073%). With the BFC2 fragments
it is again the exact opposite. Here, the 5’ baits often have a
higher GC content than the 3’ baits (Rank sum: 106 299, P =
6.01 x 107%%). We also determined the repeat content of the
baits (Supplementary Figure S7). More than 70% of the baits
have zero repeat content, with the 3’ baits of BFC1 and the 5’
baits of BFC2 fragments having slightly higher repeat content
on average, but at a low level.

Unbaited fragment analysis

Up to this point, we limited our analysis to baited fragments
and their baits. We also analyzed restriction fragments that
are involved in interactions but not baited. A given restriction
fragment can be involved in both balanced and unbalanced in-
teractions. Therefore, we derived two disjoint sets of unbaited
fragments, each containing fragments involved exclusively in
either balanced or unbalanced interactions. For the MAC-MO
dataset, this yields 85 736 fragments from balanced interac-
tions and 74 870 fragments from unbalanced interactions.

First, we compared the lengths of the fragments involved
exclusively in either balanced or unbalanced interactions (Fig-
ure 4A). Although there are many particularly short frag-
ments among the fragments from unbalanced interactions,
these fragments are overall significantly longer than those
from balanced interactions (Median (Mdn.) 2693 versus Mdn.
2296; Mann-Whitney U test; U: 3 244 871 871, P = 1.37 x
10~*). We removed fragments <250 bp from the two compar-
ison sets (Figure 4B). After removal, it can be seen that frag-
ments from balanced interactions predominate up to a frag-
ment length of ~2400 bp, and fragments from unbalanced
interactions predominate for larger fragment lengths (Mdn.
3376 versus Mdn. 2474; U: 2 945 426 987, P ~ 0).

Next, we compared the GC content of the fragment ends
(120 bp from each end). For the fragments from unbalanced
interactions, there is a slight but significant shift towards
higher GC content (Figure 4C; Mdn. 0.38 versus Mdn. 0.36;
U: 14 660 548 503; P ~ 0). We also compared the absolute
differences in GC content at the two ends of given fragments
(Figure 4D). For the fragments from the unbalanced interac-
tions, the GC content of the two ends differs significantly more

"

than for the fragments from balanced interactions (Mdn. 0.07
versus Mdn. 0.04; U: 3 963 866 825; P ~ 0).

Finally, we performed an analogous analysis for the repeat
content of fragment ends. Fragments from unbalanced inter-
actions have a significantly higher repeat content than those
from balanced interactions (Mdn. 0.91 versus Mdn. 0.43; U:
14 836 969 699, P ~ 0). Among both fragments from bal-
anced and fragments from unbalanced interactions, most frag-
ment ends have a repeat content of either 0 or 1. Among
the fragments from unbalanced interactions, there are signif-
icantly more fragment ends with a repeat content of 1 (Fig-
ure 4E). Looking at the absolute difference in repeat content
between the two ends of each fragment, fragments from un-
balanced interactions with differences of 0 or 1 predominate.
There is no fragment from a balanced interaction with an ab-
solute difference of 1 (Figure 4F).

While the differences between balanced and unbalanced in-
teracting restriction fragments are very pronounced in terms
of length and repeat content, we observe much smaller but
still statistically significant shifts in terms of GC content. We
performed the same analysis for the Hi-C dataset, for which
we pooled interactions across eight hematopoietic cell types,
and made comparable observations regarding restriction frag-
ment lengths as well as GC and repeat content of fragment
ends (Supplementary Figure S8).

Impact of technical biases reflected in count
imbalances

The read pair counts of interactions represent observed con-
tact frequencies that are affected by technical biases of various
kinds. The imbalances in the four read pair counts of interac-
tions reflect biases arising from bait effects, varying restriction
fragment lengths as well as differing GC content and map-
pability of the restriction fragment ends. On the other hand,
there is a strong dependency between the interaction distance
and the frequency of random contacts, with the frequencies
being greatest at short distances and decreasing as the distance
increases. We did not correct the data for distance-dependent
contact frequencies but took advantage of this relationship to
assess the impact of technical biases reflected in the imbal-
ances of the four read pair counts of interactions. For each
unbalanced interaction, we tried to find a balanced counter-
part interaction with an identical total read pair count and, if
successful, we added the interactions to two comparison sets,
one for unbalanced and one for balanced interactions (‘Mate-
rials and methods’ section). For these sets, we then compared
the distributions of the interaction distance.

For the unbalanced CHi-C interactions selected at an FDR
threshold of 5%, this procedure yields two sufficiently large
and equally sized comparison sets of unbalanced and bal-
anced interactions that have nearly identical distributions of
total read pair counts per interaction (Figure SA). Given these
nearly identical distributions and the strong dependency be-
tween interaction distances and contact frequencies, it would
be expected that the distributions of distances for balanced
and unbalanced interactions differ only slightly. However,
compared to the balanced interactions, the distances of the
unbalanced interactions are clearly shifted towards shorter
distances (Figure 5B). This suggests that the contact frequen-
cies of unbalanced interactions, as measured by their total
read pair counts, are systematically underestimated, and that
the imbalances in the four read pair counts of interactions
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Figure 4. Unbaited fragment analysis. For the MAC-MO CHi-C dataset, we selected two sets of unbaited fragments involved in either only balanced
(light blue) or only unbalanced interactions (orange) and compared them with respect to length, GC and repeat content. (A) Fragment length
distributions. (B) Fragment length distributions after removal of fragments <250 bp. (C) GC content distributions of fragment ends (120 bases from each
end). (D) Distributions of the absolute differences in GC content of the two ends of given fragments. (E) Repeat content distributions of fragment ends.
(F) Distributions of the absolute differences in repeat content of the two ends of given fragments.

reflect a substantial proportion of technical bias in CHi-C
data.

According to our assignment of paired-end read orienta-
tions (Figure 1B), the four read pair counts of an interac-
tion represent the observed frequencies of the four possi-
ble re-ligations between the two associated restriction frag-
ments. Each of the four counts reflects the same contact fre-
quency, but is affected to varying degrees by various kinds of
technical bias, resulting in unbalanced counts. We reasoned
that the maximum of the four counts might be a more ro-
bust measure of contact frequencies than the total of the four
counts.

To verify our reasoning, we implemented an alternative
procedure for the selection of two comparison sets in which
we no longer choose balanced counterpart interactions with
an identical total read pair count, but those with an identi-
cal maximum of the four counts. Using this selection proce-
dure, the read pair counts of the balanced interactions, com-
pared to those of the unbalanced interactions, are shifted
towards higher counts (Figure 5C). This is to be expected

since balanced interactions are characterized by the fact that
the four counts differ only slightly; hence, the total num-
ber of counts is close to four times the maximum count,
which is not the case for unbalanced interactions. Based solely
on distance-dependent contact frequencies, it would be ex-
pected that the distances of the balanced interactions are
shifted towards much shorter distances due to the higher
total read pair counts per interaction. However, we ob-
serve that the distance distributions of balanced and unbal-
anced interactions differ only slightly (Figure 5D), suggest-
ing that the maximum of the four counts represents a more
unbiased measure of contact frequencies than the total of
the four counts. We make comparable observations for all
17 cell types (Figure 6 and Supplementary Tables S8 and
S9).

We also performed the analysis with the distance-dependent
contact frequencies for the Hi-C dataset, for which we pooled
interactions across eight hematopoietic cell types, and made
observations comparable to those we made for the CHi-C
datasets (Supplementary Figure S10).
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Figure 5. Impact of technical biases reflected in count imbalances. Distributions of read pair counts and interaction distances for CHi-C data derived
from MAC-MO cells. (A) Distribution of read pair counts per interaction for unbalanced and balanced reference interactions. (B) Corresponding
distributions of interaction distances. (C) Distribution of read pair counts per interaction for unbalanced interactions and balanced reference interactions
selected based on identical maximum read pair counts per interaction. (D) Corresponding distributions of interaction distances. This figure only shows
the data for otherbaited (NE) interactions. We make comparable observations for baited-other (EN) interactions (Supplementary Figure S9).

Interaction calling using total or maximum counts

Each of the four read pair counts of an interaction reflects
the same contact frequency, and their total is generally used
to measure it. To explore the impact of imbalanced read pair
counts on interaction calling, we prepared two CHiCAGO in-
put datasets for the MAC-MO cell type, which differ only in
whether the total or only the maximum of the four read pair
counts of interactions is taken into account (‘Materials and

methods’ section). We then applied CHiCAGO with default
settings and a score threshold of 5 to both datasets and com-
pared the results. Most interactions are above the threshold
for both maximum and total read pair counts, but there are
also interactions that exceed the threshold only when using the
total count, while others exceed the threshold only when using
the maximum count (Figure 7A). Interactions identified only
when using the maximum read pair count are much shorter
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interaction distances.

than interactions identified when using the total count (Figure
7B). All subsets of the union of interactions identified using
either the total or maximum counts (Total\Max, TotalNnMax,
Max\Total) are significantly enriched for ENCODE’s cCRE
categories promoter, proximal enhancer, distal enhancer and
enhancers from the Enhancer Atlas 2.0. Regulatory elements
of the K4m3 and CTCEF categories are not or only slightly en-
riched in most cases and even depleted in interactions that are
only identified using the maximum counts (Figure 7C). The re-
sults for the promoter category are most likely biased because
in the underlying experiment all promoters were targeted,
which is why promoter—promoter interactions are enriched
at both ends. Therefore, we performed the same analysis but

without bait-to-bait interactions (Supplementary Figure S11).
In this case, the promoter category is depleted in all interaction
subsets, as expected. The proximal enhancer category is only
slightly enriched across all interaction subsets, which is also
to be expected because such elements by definition cannot be
located further than 2000 bp from a transcription start site.
However, distal enhancers and enhancers from the enhancer
atlas are still significantly enriched.

Representativeness of the analyzed datasets

In this manuscript and the associated repository, we analyze
datasets from the earliest publications on promoter capture
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t the number of otherends of a given interaction subset that contain at least
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shown in Supplementary Table S10.

Hi-C, for each of which the enzyme HindlIIl was used. Two
of these publications are pioneering works (6,7) that should
be cited whenever this protocol is reused, even when a differ-
ent enzyme is used. We identified all publications that cited at
least one of these two publications. From these, we retained
only those whose abstract included the term ‘capture Hi-C’ be-
cause we assumed that such publications were more likely to
have generated data. This left us with 64 publications, which
we then reviewed manually (Supplementary Table S11). We
found 28 publications for which CHi-C data were generated.
In 21 of these, the enzyme HindIIl was used, in five Mbol, in

one BglIII and in one both HindIIl and Mbol (not as a com-
bination). The publications using HindIII were cited a total of
1297 times, while all others were cited only 168 times. Many
of the subsequent publications replicated the CHi-C protocol
from the pioneering publications either one-to-one or with mi-
nor modifications. In many cases, also the baits were selected
according to identical criteria or taken one-to-one from the
pioneer publications. In this way, terabytes of data were gen-
erated that very likely exhibit all the characteristics that we
describe in our manuscript. Although this literature research
is heuristic and incomplete, we believe it demonstrates that the
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datasets analyzed here are representative of a large proportion
of available CHi-C data.

Discussion

To our knowledge, the different relative orientations of
mapped paired-end reads previously have been used only to
remove artifact read pairs resulting from un- or self-ligated
restriction fragments (14,15). Here, we investigated the rela-
tive orientations of the valid chimeric read pairs. Depending
on which ends of a given pair of restriction fragments re-ligate,
a chimeric fragment is formed which belongs in one of four
classes, to each of which we have assigned one of the four
relative orientations of mapped paired-end reads (Figure 1B).

We have extended our tool Diachromatic described in a pre-
vious publication (15) to report the four read pair counts of
each interaction separately by orientation and applied it to
a large hematopoietic cell dataset. Overall, the different read
pair orientations occur with roughly the same frequency, but
for individual interactions we often observed strong imbal-
ances. We named such interactions unbalanced and developed
a framework to select them at a chosen FDR threshold and to
analyze them with respect to various known sources of tech-
nical bias. For both Hi-C and CHi-C, unbalanced interactions
occur much more often than expected by chance. However,
at a given classification threshold of 0.03, there are far more
classifiable interactions for CHi-C than for Hi-C. In part, we
attribute this to the much lower sequencing depth typically
achieved with Hi-C (Supplementary Table S2). Therefore, we
pooled interactions across eight hematopoietic cell types for
which Hi-C data are available. With an FDR threshold of 5%,
only a few interactions are classified as unbalanced for the
individual cell types, whereas there are >200 times as many
unbalanced interactions for the pooled dataset. This suggests
that unbalanced interactions in Hi-C arise from systematic
effects that occur independently of the cell type. For CHi-
C, many more interactions are classified as unbalanced than
for Hi-C. Furthermore, the proportion of unbalanced interac-
tions among the classifiable interactions is also much larger
for CHi-C, suggesting that the target enrichment step intro-
duces additional unbalanced interactions.

For CHi-C, we used the additional information from the
four read pair counts of interactions to identify target restric-
tion fragments that are predominantly enriched at only one of
the two ends. By matching such fragments to the baits actu-
ally used for the experiments, we confirmed our assignment
of paired-end read orientations to the possible re-ligations be-
tween two given restriction fragments (Table 1C) and gained
insights that can inform bait design. The strict selection crite-
rion regarding mappability with the two consecutive Ns used
for the experiments analyzed here (Table 5), presumably re-
sults in many baits being shifted towards the center of the
target fragments as well as baits that have been discarded,
and thus in many unilaterally enriched target restriction frag-
ments. Baits located too far from their restriction site are not
effective because in such cases the target sequences in the re-
ligation products are disrupted by random fragmentation and
are therefore either only partially present or absent in the
chimeric fragments to be enriched. The results on the GC con-
tents of baits (Figure 4B) most likely reflect known sequenc-
ing and coverage biases (34,35). We included the results on
repeat content for completeness. However, the repeat content
of the vast majority of baits is zero, which is why no insights
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could be gained in this regard. We also analyzed additional
data from CHi-C experiments in mice, each of which was
performed with a bait set that targeted the ends of HindIII
fragments containing promoters of 22 225 genes (6,36). We
made observations comparable to those we made with the
hematopoietic cell data (Supplementary Figures S12-516 and
Supplementary Tables S12-S14). The bait selection criteria
used are very similar in both cases (Table 4). A strict selec-
tion criterion regarding mappability is applied and the max-
imum tolerated distance between baits and restriction sites
is relatively large. When designing baits for CHi-C experi-
ments, compromises have to be made. Regardless of which
restriction enzyme is used, it is impossible to select baits for
each desired target region that meet the criteria, which aim at
high capture efficiency while avoiding off-target pull-downs
(Supplementary Table S15). A less stringent selection criterion
regarding mappability might reduce the number of unilater-
ally baited fragments or fragments with shifted baits, but on
the other hand, the average quality of the baits could become
worse. The analysis approach and software presented here can
be used to characterize technical biases resulting from bait de-
sign, which can contribute to more informed decisions in bait
selection.

Our analysis of unbaited fragments suggests that in addi-
tion to the bait effects, known technical biases that already
arise from the Hi-C assay are reflected in read pair count im-
balances of interactions. We focused on unbaited fragments
that are involved in either balanced interactions or unbalanced
interactions but not both. Many of the fragments from un-
balanced interactions are very short (<250 bp). One possible
explanation is that with such short fragments, cross-link me-
diating proteins might more frequently occupy one of the re-
striction sites, which could interfere with restriction digestion
or re-ligation. Despite the fact that unbalanced interactions
have more very short fragments, the fragments from unbal-
anced interactions are on average longer than those from bal-
anced interactions. Fragments from balanced interactions pre-
dominate up to the length of 2400 bp, while fragments from
unbalanced interactions predominate at longer lengths. This
observation is in line with previous analyses indicating that
longer restriction fragments might be more prone to random
re-ligations (16). For a given pair of restriction fragments, each
random re-ligation means one less observed contact, which
can result in unbalanced interactions. Here, we analyzed a
number of datasets from Hi-C and CHi-C experiments using
the 6-cutter restriction enzyme HindIIl, which generates in re-
striction fragments with an average length of ~4 kb. Using 4-
cutter enzymes such as Dpnll results in shorter restriction frag-
ments that might be less affected by this bias. However, further
analyses are required to clarify to what extent the findings of
this work can be transferred to 4-cutter enzymes. The distribu-
tion of GC content in fragment ends from unbalanced interac-
tions is only slightly shifted towards higher values. However,
this shift is highly significant, showing that biases arising from
GC content are also reflected in read pair count imbalances of
interactions. Looking at the repeat content of fragment ends,
the differences between the two fragment sets are more pro-
nounced. Compared to the fragments from balanced interac-
tions, there are significantly more fragments from unbalanced
interactions whose ends have a repeat content of 1. The differ-
ence is even more pronounced when considering the absolute
differences in repeat content at the two ends of each fragment.
There are no fragments from balanced interactions for which
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the absolute difference in repeat content of the two ends is
close to 1. These results suggest that unmappable fragment
ends contribute substantially to the technical bias in Hi-C and
CHi-C data. However, further analysis is needed to better un-
derstand the relative weight of the contributions from the var-
ious sources of technical bias. We make comparable observa-
tions for the pooled Hi-C dataset in terms of fragment lengths,
GC and repeat content (Supplementary Figure S8). This pro-
vides further evidence that the imbalances in the four read
pair counts of interactions reflect not only technical biases
arising from bait effects, but also those inherent in the Hi-C
protocol.

To assess the impact of technical biases reflected in unbal-
anced read pair counts of interactions, we took advantage of
the strong dependency between the distance and the frequency
of interactions. We have demonstrated that unbalanced inter-
actions are substantially shorter than balanced interactions.
This suggests that the contact frequencies of unbalanced inter-
actions, as measured by their total read pair counts, are sys-
tematically underestimated. We reasoned that the maximum
of an interaction’s four read pair counts might be a more ro-
bust measure of its contact frequency than the total read pair
count. Our considerations are based on the fact that the four
read pair counts of an interaction represent the observed re-
ligation frequencies, all reflecting the same contact frequency
but being affected to different degrees by technical biases of
various kinds. We verified our reasoning, again taking advan-
tage of the distance-dependent contact frequencies, but using
an alternative procedure to select the comparison sets of bal-
anced and unbalanced interactions in which only the maxi-
mum of the four counts are taken into account. For two suf-
ficiently large samples, the distribution of the total read pair
counts per interaction for the balanced interactions is shifted
towards the higher counts, as expected. However, the distance
distributions of unbalanced and balanced interactions differ
only slightly, suggesting that a large proportion of technical
bias in CHi-C data can be eliminated by using only the maxi-
mum of the four counts.

Our approach can be used to assess technical biases re-
flected in imbalances in the observed re-ligation frequen-
cies for given pairs of restriction fragments, i.e. interactions.
However, it cannot be used to assess technical biases re-
sulting from uneven enrichment of different target restric-
tion fragments. Apart from that, it cannot be used to correct
for distance-dependent contact frequencies. Existing methods
such as CHiCAGO (20,22) or CHiCANE (23) model both
technical bias and distance-dependent contact frequencies sta-
tistically. Technical bias is modeled as ‘visibility’ or ‘inter-
actability’ of restriction fragments, which is estimated from
the associated transchromosomal read pair counts. This ap-
proach is suitable to correct read pair counts of interactions
for uneven enrichment of different target restriction fragments
and thus implicitly also to correct for unilateral and bilat-
eral enrichment of target restriction fragments. However, since
transchromosomal read pairs largely result from random re-
ligations, ‘interactability” does not take into account the spe-
cific properties of given restriction fragment pairs. For exam-
ple, long and short fragments may have different ligation ef-
ficiencies or compete differently on random re-ligations (16).
The assignment of relative paired-end read orientations yields
four counts of observed re-ligations for each interaction, the
distribution of which reflects such properties and the resulting
technical biases. Our approach can therefore be used to com-
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plement existing methods so that this additional information
gained from the data is taken into account.

Although the total and maximum read pair counts of given
interactions reflect the same contact frequency, CHiCAGO
identifies different sets of interactions depending on which of
the two counts is used (Figure 7). Interactions that are no
longer identified when using only the maximum count are
most likely due to reduced power because in this case three
of the four counts are discarded. Interactions that are only
identified using the maximum count are shorter than those
identified using the total counts. Due to distance-dependent
contact frequencies, shorter interactions are more difficult to
detect and previous CHi-C analyses have primarily focused
on long-range interactions. Nevertheless, it is widely accepted
that short-range interactions can also have regulatory effects,
such as in smaller-scale multi-connected enhancer-promoter
hubs (37). Our ad hoc approach, using only the maximum
counts as input for CHiCAGO, can identify short-range inter-
actions enriched for enhancers from ENCODE’s cCREs and
from the Enhancer Atlas 2.0 in addition to interactions that
are identified using the standard approach with the totals of
the four counts. However, further development is needed to
make optimal use of all four counts.

Our literature research regarding representativeness sug-
gests that a large proportion of available CHi-C datasets share
the same characteristics as the HindIII datasets analyzed here.
However, we point out that our results should not be extrap-
olated to datasets obtained with 4-cutter enzymes or enzyme
cocktails, as we observed that the lengths of the restriction en-
zymes can have a significant impact on the distribution of the
four read pair counts of interactions (Figure 4A and B).

Taken together, we have characterized a previously under-
utilized feature of Hi-C data and used it to assess technical
biases arising from bait effects and shortcomings of the Hi-C
assay. Our framework, software, and results have the potential
to improve the design and interpretation of Hi-C and CHi-C
experiments.

Data availability

The sequencing dataset on human primary hematopoi-
etic cell types is available with data usage agreement
at the EGA (EGADO00001002268). The datasets for
the CHi-C experiments in mice are publicly available
at the European Nucleotide archive (ERP008766 and
ERP005386). The Diachromatic software is available un-
der a GPL-3.0 license on GitHub (https:/github.com/
TheJacksonLaboratory/diachromatic) and on Zenodo (DOI:
10.5281/zen0do0.10623971). The software developed for
this work is available under an MIT license on GitHub
(https://github.com/TheJacksonLaboratory/diachrscripts and
on Zenodo (DOI: 10.5281/zenodo.10610460 and DOI:
10.5281/zenodo.13837266).

Supplementary data
Supplementary Data are available at NARGAB Online.
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