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The balance between dilatory and constrictive factors is important as it keeps blood

vessels in a homeostatic state. However, altered physiological processes as a result

of obesity, hypertension, oxidative stress, and other cardiovascular risk factors may

lead to vascular damage, causing an imbalance of vasoactive factors. Over time, the

sustained imbalance of these vasoactive factors may lead to vascular dysfunction, which

can be assessed by non-invasive methods, such as flow-mediated dilation, pulse wave

velocity, flow-mediated slowing, retinal vessel analysis, peripheral vascular reactivity, and

carotid intima-media thickness assessment. Although there is increasing prevalence of

cardiovascular risk factors (obesity and hypertension) in children in sub-Saharan Africa,

little is known about how this may affect vascular function. This review focuses on

vasoactive factors implicated in vascular (dys)function, highlighting the determinants

and consequences of vascular dysfunction. It further describes the non-invasive

methods used for vascular (dys)function assessments and, last, describes the impact

of cardiovascular risk factors on vascular dysfunction in children of African ancestry.
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INTRODUCTION

Cardiovascular diseases (CVDs) are a major cause of morbidity and mortality worldwide. In 2019,
an estimated 17.9 million people died from CVDs, representing 32% of all global deaths (1). In
sub-Saharan Africa (SSA), the disability-adjusted life years (DALYs) due to CVDs increased from
90.6 million in 1990 to 151.3 million in 2017 (2). CVDs in SSA are of major concern as they pose
a challenge on an already strained health system (3). Although the prevalence of CVDs is higher
in adults, the risk factors for CVDs, including obesity and hypertension, are increasing among
children in SSA (4).

There is evidence that risk factors for CVDs, including obesity, hypertension, and
hyperglycemia, begin early in life and may be associated with vascular dysfunction (5, 6). Also,
it is reported that vascular dysfunction, an early initiator of CVD, begins in childhood and may
lead to CVDs and associated complications in adulthood (7). Vascular dysfunction, which includes
endothelial dysfunction, microvascular dysfunction, and stiffening of large arteries, results when
the homeostatic function of relaxation and contraction of blood vessels is affected (8).

The endothelium is a major layer of blood vessels, and it is regulated by the release
of potent vasodilators, such as nitric oxide (NO), prostaglandin I2, hydrogen sulfide,
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endothelium-derived hyperpolarizing factor as well as
contracting factors, such as endothelin, prostacyclin, and
thromboxane (9). A balance between vasodilatory and
vasoconstrictive factors is important as it keeps blood vessels in
a homeostatic state (10). Changes in the release of vasoactive
factors, such as decreased bioavailability of NO, may lead to
endothelial dysfunction. Endothelial dysfunction, along with
other risk factors, such as aging, inflammation, obesity, increased
salt intake, smoking, and alcohol consumption, could contribute
to the development of arterial stiffness (8). Sustained arterial
stiffening may predispose the intima layer of the affected blood
vessels and may contribute to the development of atherosclerosis
(11). Obesity is one of the major risk factors for the development
of vascular dysfunction and CVDs (12). It increases the
concentration of circulating free fatty acids and alters anti-
inflammatory and pro-inflammatory cytokines that are released
from visceral fat. These functional and structural changes
affect the microvasculature, leading to vascular dysfunction
and possibly CVDs (13). Also, oxidative stress is reported to
affect vascular function as free radicals are shown to affect the
availability of NO, leading to endothelial dysfunction (14). Free
radicals can equally affect enzymes implicated in the regulation
of the extracellular matrix of the blood vessel wall, leading to
arterial stiffness (15).

It is reported that vascular dysfunction is central to the
origin of CVDs (16). Moreover, there is increasing prevalence
of cardiovascular risk factors, such as obesity and hypertension,
in African children. A study conducted among adolescents in
Fetakgomo Municipality, Limpopo Province of South Africa
found that the prevalence of obesity was 35% (17). Another
study carried out in the Eastern Cape Province of South Africa
documented a 19.8% prevalence of obesity in children aged
6–9 years old (18). A recent meta-analysis study reports an
increased prevalence of hypertension among African children
aged 2–19 years (19). Although the prevalence of cardiovascular
risk factors, such as obesity and hypertension, in children in
SSA is on the rise, little is known about how these factors
may affect vascular function. Hence, this review intends to give
an overview of bioactive factors in the regulation of vascular
function. It also discusses the causes of vascular dysfunction
along with the methods used for assessment. It further highlights
the key determinants of vascular dysfunction and the associated
consequences and provides evidence of vascular dysfunction in
children and adolescents of African ancestry.

Vascular Function
The vascular system is made up of blood vessels, such as
arteries, veins, and capillaries (20). Blood vessels are organized
in hierarchal levels with complex and different configurations
designed to ensure efficient exchange of nutrients and waste
in and between tissues throughout the body. Large arteries
with diameters above 6mm transport oxygenated blood from
the heart to smaller arteries ranging between 1 and 6mm in
diameter, then to the arteriolar network with diameters of 100–
1,000µm, and last into capillary beds of 10–15µm in diameter
(21). The arterial wall is an organized structure composed of
matrix proteins (collagen fibers oriented in various directions

and elastic lamellae), vascular smooth muscle cells (VSMCs),
and other matrix components, such as glycosaminoglycans
and endothelial cells in the inner layer (22). The cross-
sectional layers of the arterial wall are shown in Figure 1.
The endothelium is a thin monolayer of simple squamous
cells lining the inner surface of the whole cardiovascular
system (23, 24). It was once thought to be just an inert
layer wrapping all endovascular surfaces. However, over the
last four decades, research on the endothelium has become
enormous, and its results have led to an understanding of
its complex functions (25). It forms a biocompatible barrier
between the circulating blood and all the underlying tissues (26).
The endothelium plays an essential role in vascular function
through several mechanisms, including the synthesis and
release of substances that act in an autocrine and/or paracrine
form. It controls all cardiovascular activities by releasing
several vasoactive agents (27). The endothelium-derived dilating
and contracting factors are balanced under physiological
conditions so that vascular homeostasis is maintained in
favor of vasodilation. Dilatory factors include NO, hydrogen
sulfide, prostacyclin (prostaglandin I2), and endothelium-
derived hyperpolarizing factor, whereas contracting factors
include endothelin, thromboxane, and asymmetric dimethyl
arginine (ADMA) (27). Microcirculation is the terminal vascular
network of the systemic circulation comprising microvessels
with a diameter of <20µm. These microvessels consist of
arterioles, postcapillary venules, and capillaries. Microcirculation
is regarded as the last destination of the cardiovascular system
and is ultimately accountable for the transfer of oxygen from
the red blood cells in the capillaries to the parenchymal cells
where oxygen is delivered to fulfill the energy requirements of
the tissue cells (28). The capillaries consist of a single layer of
endothelial cells (29). The distensibility and elasticity of arteries
keep a relatively fixed blood pressure regardless of the pulsating
nature of blood flow by each heartbeat. Arteries expand as a
result of receiving blood expelled from the heart during systolic
contraction and eject it to the periphery during diastole to supply
the peripheral circulation with a steady flow of blood during
systole and diastole cycles (30). Some of the major vasoactive
factors implicated in the vascular function of blood vessels are
discussed below.

Vasoactive Factors
Thromboxane and Prostacyclin
Prostacyclin and thromboxane are vasoactive factors implicated
in the regulation of blood vessel relaxation and contraction.
Although prostacyclin also known as prostaglandin I2 is a
vasodilator, thromboxane is a vasoconstrictor. Prostacyclin
and thromboxane are produced from the endothelium of
blood vessels (31). Prostaglandin H2 is produced following
the enzymatic degradation of phospholipid membrane
in the endothelium by phospholipase enzyme to release
arachidonic acid (AA) (32). AA is then metabolized by
cyclooxygenase-1 (COX-1) or cyclooxygenase-2 (COX-2) to
produce prostaglandin H2, which is a precursor for thromboxane
synthase, prostaglandin synthase, and prostacyclin synthase.
Under physiological conditions, COX-1 is expressed in most
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FIGURE 1 | Cross-section of layers in the arterial wall.

tissues, whereas COX-2 is expressed by inflammatory cells, such
as macrophages, and it leads to the production of thromboxane,
which plays a role in platelet aggregation, vasoconstriction, and
proliferation (33, 34).

The platelets remain in their inactive state as they circulate
through the blood vessels of the intact endothelium. This
inactivated state is sustained by continuous secretion of
prostacyclin as well as the absence of pro-inflammatory
factors that can activate COX-2. Once there is a break in
the endothelium, platelets become activated by thromboxane,
which initiates the aggregation of platelets into a growing
thrombus through the activation of G-protein. This activates
phospholipase C to hydrolyze phosphatidylinositol phosphate
to diacylglycerol and inositol triphosphate as well as increases
calcium ion accumulation to directly heighten VSMC contraction
(35, 36). Following the release of prostacyclin, it acts on
VSMCs through prostacyclin receptors linked to the activation
ofmembrane-bound adenylate cyclase, which converts adenosine
triphosphate (ATP) to cyclic adenosine monophosphate (cAMP).
Accumulation of cAMP as a result of prostacyclin leads to
vasodilation and inhibition of platelets aggregation (37).

NO
The most important vasoactive factor is NO as it plays a
crucial role in the vasculature stimulating VSMC relaxation
and, thus, controlling vascular resistance and blood pressure.
It also eliminates free radicals and prevents build-up of plaque
(38). As blood flows through the vessels, endothelial cells detect
shear stress exerted by the pressure of blood and respond by
releasing acetylcholine to act on its endothelial receptor, which
triggers excessive release of calcium ions from the endogenous
storage sites (39). The released calcium ions attach to calmodulin
protein in the cytoplasm of the cell to form a calcium-calmodulin
complex, which activates the endothelial nitric oxide synthase
(eNOS). The active form of this enzyme catalyzes the conversion
of L-arginine and oxygen to citrulline and NO molecule. There
are three isoforms of mammalian NOS, namely, neuronal
NOS (nNOS), inducible NOS (iNOS), and endothelial NOS
(eNOS) of which the latter is the main source of NO in the
endothelium (40). To apply its dilatory effects, NO diffuses to
adjacent VSMCs, where it binds to the heme moiety of cytosolic
guanylate cyclase (GC). This active enzyme, in turn, activates
guanosine triphosphate to its active form, that is, cyclic guanosine

monophosphate (cGMP) (41). It is the cGMP that facilitates the
dephosphorylation of the myosin light chain, and this process
induces the dissociation of myosin and actin filament resulting
in VSMC relaxation (41).

Endothelin
Endothelin is a vasoconstrictor that exists in three isoforms,
namely, endothelin-1 (ET-1), endothelin-2 (ET-2), and
endothelin-3 (ET-3). Three different genes encode endothelin,
which gives rise to three different precursors of pre-pro-
endothelin (42). Pre-pro-endothelin-1 is the first product
encoded by the ET-1 gene (43). This precursor is transformed
into pro-ET-1 by removal of a short sequence by a signal
peptidase. The pro-ET-1 is then converted to big ET-1 through
the activity of furin, a maturing enzyme. Mature ET-1 is
obtained by proteolytic cleavage of big ET-1 by endothelin
converting enzyme into a small active 21 residue ET-1 (44).
Once ET-1 is formed and released from the endothelium, it acts
through two types of receptors, namely, endothelin A (ETA)
and endothelin B (ETB) receptors. Currently, ET-1 and ET-2
are known to have the strongest affinity for both receptors,
whereas ET-3 binds only on ETB (42). ET-1 binds to these
receptors on the VSMCs. ETA and ETB are coupled to G-protein
to form inositol triphosphate (IP3). This IP3 accumulates in
the sarcoplasmic reticulum, leading to the secretion of calcium
ions, which, in turn, results in the contraction of VSMCs (45).
It is documented that ET-1 is the most potent vasoconstrictor.
Moreover, ET-1 is suggested to decrease endothelium-dependent
vasodilation. This may be due to the combined effect of ET-1–
induced vasoconstriction and, to a lesser extent, ET-1–mediated
inhibition of NO production, which together affect the balance
between dilatory and constrictive factors in favor of the latter
(46). The normal vascular endothelium is considered as a
gatekeeper of cardiovascular health, whereas harmful stimuli,
such as oxidative stress and inflammation, alter the normal
endothelium function, leading to the development of vascular
dysfunction (45).

ADMA
Dimethyl arginines are formed during the methylation of
L-arginine residues within specific proteins, a process that is
catalyzed by arginine methyltransferase. ADMA is released
following a cleavage of methylated proteins during physiological
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protein turnover (47). Under physiological conditions,
ADMA is excreted in urine. However, under pathological
conditions, its elimination may be blocked due to hypertension,
hypercholesterolemia, diabetes mellitus, and chronic kidney
failure (48). As such, there is increased ADMA concentrations
in the circulation, which, in turn, competes with L-arginine for
the NOS binding site, thereby inhibiting the production of NO
(49). Furthermore, both ADMA and L-arginine are transported
into the cell through a cationic amino acid transporter; therefore,
they compete with each other at the transporter to enter the cell
where they are being catalyzed by NOS. As such, the production
of NO depends on the balance between L-arginine and ADMA
because they both compete for NOS and cell transport (50).

Endothelium-Derived Hyperpolarizing Factor
Endothelial-derived hyperpolarizing factor (EDHF) plays
an important role in controlling the vascular tone in the
microvasculature (51). Whereas blood vessel relaxation is
easily impaired as a result of decrease in NO, EDHF activity
of relaxation is enhanced to preserve the homeostasis of blood
vessels. This activity of EDHF induces the formation of a
disulfide bond between two cysteine 42 residues of each of the
adjacent chains in protein kinase G (PKG) (51). This leads to
the opening of large Ca2+-dependent channels, resulting in
hyperpolarizing and vasodilation (52). The vasoactive factors
and their functions are summarized in Table 1.

Vascular Dysfunction
Vascular dysfunction comprises dysfunction of the endothelium
(endothelial dysfunction), microvascular dysfunction, and large
artery dysfunction due to arterial stiffness (9). Endothelial
dysfunction is characterized by an imbalance between
constrictive factors and dilatory factors, increased concentration
of reactive oxygen species (ROS), pro-inflammatory factors,
and decreased NO bioavailability (41). The production of NO
depends on its precursor, L-arginine, which is synthesized in
healthy humans from l-citrulline by endogenous synthesis.
This means that reduced levels of L-arginine and l-citrulline
contribute to NO insufficiency. Also, free radicals, such as
superoxide (O2·

−), may react with NO to form peroxynitrite
(ONOO−) radicals, thereby reducing NO levels (40). A variety
of ROS-producing systems, such as NADPH oxidase, xanthine
oxidase, eNOS, and enzymes of the mitochondrial respiratory
chain, are found within the vascular wall. Moderate levels of ROS
have important signaling roles under physiological conditions.
Excessive and persistent production of ROS, however, when
exceeding the present antioxidant defense enzymes, leads
to oxidative stress and decreased NO production (53). It is
documented that NO production can also be decreased by
ADMA, which competes with the substrate of eNOS, L-arginine,
thus inhibiting NO production (54). Endothelial NO is one of
the major dilatory factors, and its insufficiency contributes to
elevated vascular constriction (55). A study documents that
deterioration of NO results in increased levels of ET-1, which
is a major vasoconstrictor, leading to a decrease in endothelial
dilatory capacity (56). A study conducted in South Africa finds
that ADMA is inversely correlated with carotid intima-media

thickness (57). Another study documents that black men and
women have higher central systolic blood pressure, higher
plasma ADMA, and lower urinary nitrate than their white
counterparts. This suggests potential increased chances for
vascular damage and large arterial stiffness in people of African
ancestry in the future as a result of endothelial dysfunction (58).

Microvascular dysfunction is a condition characterized by
impaired endothelium-dependent dilation of isolated arterioles.
It is documented that microvascular dysfunction precedes and
predicts the development of conduit artery atherosclerosis and its
determinants (59). Abnormal microvascular function may occur
as a result of structural alterations in small arteries due to inward
eutrophic remodeling without overall growth of the cell, leading
to decreased vasodilator reserves and changes in distensibility
of arterioles (60). A study reports that remodeling (damage) of
the small artery plays a crucial role in the increase of vascular
resistance. This damage in the small arteries, characterized by the
thickening of the carotid intima, may be considered as the first
manifestation of target organ damage before it occurs in the large
arteries (61). More direct impairment of microvascular function
occurs as a result of persistent ischemia, manifesting as reduced
maximal flow on computerized tomographywithout the presence
of conduit stenosis (59). Microvascular dysfunction is linked to
several conditions, such as smoking, obesity, hypertension, and
diabetes (62). As such, microcirculatory alteration noted in the
renal and retinal systems are extensively studied to investigate the
predictive role of glycemic variations early in diabetes (60).

The loss of arterial elasticity, also called arterial stiffness,
describes the mechanical property of artery resistance to
deformation (63). The stability, compliance, and resilience
of the vascular wall are dependent on the activity of two
major scaffolding proteins, namely, elastin and collagen (64).
The content of these proteins is usually made stable by a
dynamic but slow process of their synthesis and degradation.
Dysregulation of this balance between their production and
degradation commonly stimulated by inflammatory molecules
leads to the overproduction of collagen at abnormal levels,
which diminishes the normal elastin content. This affects the
elasticity and resistance of the arteries, contributing to vascular
stiffness (63). With every heartbeat, a pulse wave generated by
the arteries travels through the vascular bed until it reaches
peripheral resistance or any bifurcation point, producing a
new reflected wave back to the heart (65, 66). The reflected
wave velocity and the stage of the cardiac cycle in which it
happens (during systole or diastole) depends on the peripheral
vascular resistance, elasticity primarily of the large arteries, and
central blood pressure (66). In healthy individuals, arteries are
compliant, and therefore, the reflected wave is slow and returns to
the heart during the diastole cycle. However, in individuals with
arterial stiffness, the reflected wave reaches the heart early during
systole cycle. As a result, this increases the systolic blood pressure
with a subsequent increase in cardiac workload to overcome the
augmented systolic blood pressure (30, 66).

Assessment of Vascular Function
Vascular function constitutes endothelial function and
functioning of the microcirculation and macrocirculation.
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TABLE 1 | Vasoactive factors and their functions.

Vasoactive factors Functions Citation

Endothelium-derived hyperpolarizing factor Vascular relaxation in the microvascular beds (52)

Nitric oxide Stimulates vascular smooth muscle relaxation, modulate vascular tone and, controls blood pressure (38)

Thromboxane Powerful vasoconstrictor and stimulate platelet aggregation (35)

Prostacyclin Inhibit platelet aggregation and is a potent vasodilator (36)

Endothelin Potent vasoconstrictor and counteracts nitric oxide (45)

Asymmetric dimethylarginine Inhibitor of nitric oxide synthesis (49)

Endothelial function is mostly assessed by flowmediated dilation
(FMD) techniques, which require occlusion. Retinal imaging
is mostly used to assess the functioning microcirculation, and
the macrocirculation function can be assessed by measuring the
pulse wave velocity (PWV) as discussed below (67, 68).

FMD
Vascular function can be assessed by numerous methods,
including invasive and non-invasive techniques (69). Among the
non-invasive techniques, FMD is one of the validated methods
for the assessment of vascular function. The method involves
ultrasound imaging in stages, at baseline (before occlusion) and
during reactive hyperemia (5min after occlusion of the artery)
(70). Endothelial cells lining the artery sense an increase in blood
flow and react by generating NO, which causes the diameter of an
artery to increase to accommodate the increased demand (71).
Such a response is known as FMD. In this technique, a blood
pressure cuff is inflated in the forearm to temporarily occlude the
brachial artery for a few minutes. This is followed by deflation of
the pressure cuff to restore blood flow to the forearm and using
an ultrasound to measure the increased diameter of the brachial
artery caused by the sudden increase in blood flow (69, 71).

Impaired FMD is linked with conditions predisposing CVDs
and is known to be the earliest step in developing subclinical
target organ damage (72). In addition, assessment of FMD can
classify individuals at low, moderate, or high risk for future
clinical events (69). FMD provides valuable prognostic data
and is considered the gold standard for assessing endothelial
dysfunction (72). However, it has a few limitations that are
worth consideration. First, the absence of standardization and
differences in placement or positioning of the cuff/probe
makes comparison of results difficult. Results may be operator-
dependent as the technique requires expertise in the placement of
the probe on the arm to identify the pulsating artery. Moreover,
changes in structure of the arteries and impaired dilation may be
a limiting factor during an FMD test (69).

Flow-Mediated Slowing
Flow-mediated slowing (FMS) can be described as the minimum
PWV during reactive hyperemia representing endothelial
function (73). A vicorder device is used to perform this test, in
which the participant is requested to rest in a supine position for
at least 20min before oscillometric cuffs are wrapped around the
upper arm and wrist. FMS assessment commences with baseline
measurement of PWV for 4min followed by 5min of blood

pressure occlusion and finally, 4min of a postocclusion in which
the pressure cuff is released (74). At the end of the test, minimum
PWV (m/s) during hyperemia is recorded. PWV is calculated
by dividing the arterial length by transit time between the upper
arm and wrist. Particularly, the length is measured directly using
the device to bypass body contours between the two midpoints
of the two cuffs (73). FMS is easier to perform than FMD and
is less operator-dependent. As a result, some studies report that
FMS seems to be a promising and feasible method for endothelial
function assessments (75, 76).

Peripheral Vascular Reactivity Assessment
Endothelial dysfunction can also be measured non-invasively
by using a quantitative magnetic resonance imaging (MRI)
technique that measures the peripheral vascular reactivity in
the superficial femoral artery and vein (77). In this method,
participants are required to lie in a supine position on the imager
table whereby an eight-channel extremity transmitter–receiver
coil is used for assessment. Following 2min of a baseline period,
a sphygmomanometer cuff is applied to the upper right thigh
proximal to the targeted vessels, and then it is quickly inflated
with a pneumatic pump for a 5-min occlusion period to the
target pressure of 220mmHg. This is followed by a post-occlusion
period of 5min (78). Vessel-wall imaging is done at baseline,
occlusion, and post-occlusion to quantify superficial femoral
artery luminal flow-mediated dilation, venous oxygen saturation,
and arterial blood flow velocity (78). A study reports that
methods of quantitative MRI can detect endothelial dysfunction
in the presence of overt cardiovascular disease. However, so
far, the use of this instrument is limited to research to identify
biomarkers for disease progression (77).

Retinal Microvasculature Assessment
The retina is rich with blood vessels and, thus, shares
similar anatomical features and physiological properties with
blood vessels in the body. As such, visualization of the
retinal vasculature allows direct non-invasive assessment of the
microvasculature in relation to health and diseases of the vascular
system (79). Retinal microvascular changes, such as arteriolar
narrowing, arteriovenous nicking, focal arteriolar narrowing, and
changes in static retinal vascular caliber, are reported to be
early signs of hypertensive retinopathy and atherosclerosis (80).
Analysis of the retinal image is of importance as it assists in early
diagnosis of diabetic and hypertensive retinopathy and CVDs
(80). A portable and easily movable fundus camera is a tool used
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to assess changes in the retina, retinal vasculature, and macula of
the eye using a low-power intricate microscope in a cost-efficient
manner (80, 81). Furthermore, dynamic measurements, such as
maximal retina vessel dilation, can also be used to further assess
retinal microcirculation (77). The digital interior imaging of the
eye through a fundus camera has sensors that convert a light
signal into an electric signal, and the result is stored in the form
of a pixel (80). Static digital photographs of the retina are taken
from both eyes, and computer-based software is used to measure
the diameter of arterioles and venules (79). The diameter of the
central retinal artery (CRAE) and central renal vein equivalent
(CRVE) are calculated. Also, other structural changes, including
arteriovenous nicking (AVN) and focal arteriolar narrowing
(FAN), are assessed (79). To perform this test, the patient is
required to sit in front of the camera with the patient’s forehead
against the bar. The trainer focuses and aligns the fundus camera
on the pupil, and the shutter button is released, thus, firing a flash
that forms a photograph of the interior surface of the eye (82).
A fundus camera can assist health workers to control vascular
diseases affecting both the central and peripheral retina, and it
can help patients understand the extent of their cardiovascular
health condition (82). An observational study among 40- to 60-
year-old adults in the United Kingdom shows that retinal fundus
imaging alone may predict multiple cardiovascular risk factors,
such as age, gender, and systolic blood pressure (83).

Pulse Wave Velocity
At the end of the ventricular ejection phase, a pressure wave
generated from the heart propagates along the arterial tree
(69). PWV is defined as a measure of the speed of the arterial
pressure wave traveling from the heart along the aorta to the
large arteries. It is calculated as the distance of the pressure
wave between the arteries/transit time. PWV is the most widely
used measure for arterial stiffness (84). There are different types
of PWV measurements with carotid-femoral PWV (cfPWV)
and brachial-ankle (baPWV) being the most commonly used
methods in clinical settings and research (84). PWV can be
assessed non-invasively using a vicorder device, and it is referred
to as the “gold standard” measurement for arterial stiffness
because it is a reliable, inexpensive, and simple non-invasive tool
to identify or detect CVD risk in its earliest stages (84). A study
finds that the 10th, 50th, and 90th percentiles of cfPWV assessed
using a vicorder were, respectively, 4.8, 5.57, and 6.6 m/s as
reference values for adolescents aged 18 years old (85).

Apart from the vicorder, the sphygmocor cardiovascular
management suite (CvMS) has been used in the field as a
non-invasive method for PWV and aortic pressure waveform
assessment. This device depends on applanation tonometry to
detect radial, carotid, and femoral blood pressure waveforms
(86). Studies utilize this device to measure PWV (87, 88). A study
in South Africa has equally utilized this device to assess PWV in
pre-eclamptic women (89). Although this device is reported to be
effective in assessing PWV, its major disadvantage is difficulty in
obtaining the peripheral waveform. Also, the device is technically
difficult to use, and it is operator-dependent in identifying the
peripheral signal (86, 90).

Recently, a new device called the Sphygmocor XCEL, which
makes use of the volumetric displacement (cuff-based) technique
to obtain pulse information, was developed (86). It is used to
measure arterial stiffness and wave reflection strength (91). A
study in South Africa reports that further studies are required to
investigate the accuracy of PWV measurements by Sphygmocor
XCEL (89). This device is preferable over the Sphygmocor CvMS
because it is not operator-dependent (92). Furthermore, there is
no need for an electrocardiogram to be aligned sequentially to
acquire signals when assessing cfPWV using Sphygmor XCEL.
However, Sphygmocor CvMS is more suitable in research than
Sphygmocor XCEL in measuring high-frequency components of
the waveform (86).

Another device for the measurement of PWV and central
systolic blood pressure is the Complior. This device measures the
PWV between the carotid and radial arteries using piezoelectric
clips (sensors) placed around the neck and the wrist (93). This
device is suggested to be accurate and reliable in the non-invasive
assessment of PWV and is utilized in studies in South Africa to
measure PWV (94–97). However, one of the limitations of this
device is that it is operator-dependent in accurately positioning
the sensors in the various arteries to measure the waveform.
This may lead to discrepancies between the distance measured
between the sensors and the actual path length traveled by the
pulse wave. Furthermore, the sensors are highly sensitive to
motion and may be affected by the positioning of the arteries
(94, 98).

Carotid Intima-Media Thickness Assessment
Carotid intima-media thickness (cIMT) is the thickness of the
intimal and medial layers of the carotid arterial wall, and it
can be measured non-invasively using a scanner imaging device
(99). The test is performed using a sonography with a high
frequency of 7.5 MHz linear array transducer. The patient is
required to lie in a supine position, and the common carotid
artery is visualized at 1 cm proximal to its bifurcation (100).
The cIMT is described as the length between the leading edge
of the luminal echo to the leading edge of the adventitia of the
media (101). It is documented that cIMT >0.9mm is denoted
as a marker of asymptomatic organ damage. Moreover, intima
media thickness (IMT) is accepted as an earliest marker of
atherosclerotic vascular disease, and screening of IMT can help
physicians to classify patients with cardiovascular risk into lower
or higher risk categories (102). A study conducted in South Africa
reveals that cIMT is elevated in females with HIV aged 35–45
years old in Elandsdoorn, Limpopo (103). A study among a group
of individuals from Johannesburg and Limpopo, South Africa,
finds that increased cIMT is associated with cholesterol (104).
In the North West Province of South Africa, lower cIMT was
associated with physical activity among female teachers (105).

Determinants of Endothelial Dysfunction
It is known that risk factors for CVDs begin early in life
(5, 6). A study finds that carotid bifurcation regions depicted
widespread intimal lipid accumulation among newborn cadavers
(106). Moreover, bifurcation anatomy affects blood flow, which
causes endothelial injury (106). This indicates that endothelial

Frontiers in Pediatrics | www.frontiersin.org 6 December 2021 | Volume 9 | Article 769589

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Matjuda et al. Vascular Dysfunction in African Children

dysfunction begins early in life. A study confirms that offspring
have a distinct endothelial regulatory micro RNA profile at
birth, which is associated with altered endothelial cell behavior
during the first 3 months of life (107). It is documented that
maternal total cholesterol (TC) concentrations increase in human
pregnancy to meet the demands of the growing fetus (108). In
some pregnancies, however, TC increases excessively mainly due
to low-density lipoprotein cholesterol levels, a condition called
maternal supraphysiological hypercholesterolemia in pregnancy,
which is associated with endothelial dysfunction of the umbilical
vein and early development of atherosclerosis in the fetal
aorta (109). Furthermore, endothelial dysfunction is associated
with various obstetrical syndromes, such as fetal growth
restriction (FGR) (110). Evidence shows that FGR fetuses alter
their cardiovascular function in utero to adjust to persisting
suboptimal conditions, mainly chronic hypoxia (111). Changes in
cardiovascular function secondary to utero-placental deficiency
may result in permanent alterations in vascular structure (112).
Fetal growth restriction leads to low birth weight. Children born
with low birth weight experience catch up growth during their
first years of life, thus, accumulating greater visceral adiposity,
exposing them to an adverse metabolic outcome (110). All these
findings suggest that maternal cardiovascular risk factors may
affect the vascular function of the fetus and neonates.

Obesity, a multifactorial condition characterized by excess
adipose tissue is a major determinant of vascular dysfunction
and constitutes a serious worldwide health problem (113). The
adipose tissue, where fat is stored in the body, is a type
of connective tissue comprising lipid-filled cells (adipocytes)
surrounded by a matrix of collagen fibers, blood vessels,
immune cells, and fibroblasts. It consists of several cells
with adipocytes being the most abundant. Other cells include
stromal vascular fraction (SVF), endothelial cells, macrophages,
stem cells, fibroblasts, and lymphocytes (114). Persistent
accumulation of fat in the adipose tissue leads to adipocyte
hypertrophy and hyperplasia (113). Adipose tissue hypertrophy
(adipocyte cell size increases) and hyperplasia (increase in
adipocyte number) occurs in childhood (115). The expansion
of adipocytes leads to an increased release of free fatty acids
and necrotic cell death due to hypoxia and inflammation (116).
During physiological conditions, inflammation is regarded as
a protective mechanism. However, obesity is accompanied by
some degree of inflammation called low-grade inflammation
(117) whereby the adipose tissue secretes high levels of pro-
inflammatory adipocytokines, including tumor necrosis factor
alpha (TNF-α), interleukin-6 (IL-6), resistin, and leptin, due
to cell death by necrosis following hypoxia (113). This causes
an infiltration of neutrophils, eosinophils, monocytes, and
lymphocytes to clean up the dead cells (117). The resident
macrophages in the adipose tissue release chemo-attractants
for macrophages, which results in the persistent nature of
chronic inflammation. This, in turn, promotes the inhibition of
the production of adiponectin, an anti-inflammatory adipokine
(117). Adiponectin is regarded as a beneficial adipokine in
relation to metabolism with plasma concentration indirectly
associated with trunk obesity, type 2 diabetes risk, and
insulin resistance, whereas leptin positively correlates with waist

circumference and is associated with the onset of insulin
resistance (95, 118). TNF-α is known to trigger insulin resistance
in obese individuals. IL-6 is known to be implicated in the
pathways of insulin sensitivity, lipoprotein lipase downregulation
and triglyceride synthesis (119). Persistent release of these pro-
inflammatory markers, such as TNF-α and IL-6 results in
decreased production of adiponectin (120). Decreased plasma
levels of adiponectin promote the synthesis of arginase, a
metalloprotease that catalyzes the conversion of L-arginine to
L-orthinine and urea. The increased concentrations of arginase
compete with eNOS for the substrate L-arginine. Increased
arginase activity uncouples eNOS for the synthesis of NO,
thereby leading to reduced production of NO (121). A decreased
bioavailability of NO leads to endothelial dysfunction. Defect in
the synthesis of NO can also be caused by high concentrations
of ADMA in the plasma (122). ADMA is an endogenous
competitive inhibitor of L-arginine for all three isoforms of NOS.
High levels of ADMA block the synthesis of NO and limit
the cellular uptake of L-arginine, thereby further disrupting the
production of NO. In this manner, ADMA further affects the
endothelial function (123).

Secreted inflammatory molecules, including pro-
inflammatory cytokines, contribute to the generation of
ROS (124). Since adipose tissue are known to secrete pro-
inflammatory cytokines, they may promote the generation of
ROS. As such, adipose tissue is regarded as an independent
factor for the development of oxidative stress (125). ROS are
highly reactive radicals derived from molecular oxygen, such as
O2−, hydrogen peroxide (H2O2), hydroxyl radical (OH·), and
ONOO−, that impair structural conformation of protein, DNA,
and RNA in the cell, resulting in cellular dysfunction and cell
death (126). Under physiological conditions, ROS contribute to
cellular growth regulation, differentiation, and apoptosis (114).
Furthermore, they are produced from endothelial cells by several
enzymes, including NADPH oxidases, xanthine oxidoreductase
(XOR), and mitochondrial enzymes, among many other sources
(127). It is known that H2O2 has vasodilatory effects, whereas
O2− is a vasoconstrictor and leads to endothelial dysfunction
(128). High levels of O2− may react with NO to form an unstable
free radical called ONOO− (129). Furthermore, ROS can be
produced from the uncoupling of eNOS (129). eNOS uncoupling
may occur due to limited availability of the substrate L-arginine
(128). As a result, eNOSmay produce O2− instead of NO, leading
to more defect in the synthesis of NO and, hence, endothelial
dysfunction (129). Also, small, dense, low-density lipoprotein
(LDL) in the lumen is deposited into the subendothelial space
where it becomes oxidized by ROS to become ox-LDL, which
activates endothelial cells, causing expressed receptors for white
blood cells on the surface (130). It is reported that ox-LDL
induces the expression of ICAM-1 and VCAM-1, increasing the
adhesive properties of the endothelium. The production of NO
by endothelial cells is inhibited by ox-LDL. It is documented
that ox-LDL leads to oxidative stress, producing high amounts of
O2−, which inactivates NO to form ONOO− (131). The decrease
in NO as a result of ox-LDL leads to endothelial dysfunction.

Although hypertension is generally known be a consequence
of endothelial dysfunction (132, 133), recent data suggest that
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hypertension may be a cause of endothelial dysfunction. There
are reports that hypertension-induced endothelial dysfunction
may be a result of hypertension-induced oxidative and
inflammation (134). Hypertension-associated oxidative stress
regulated by nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase and mitochondria show reductions in
endothelium-dependent vasodilation to acetylcholine in carotid
arteries of mice exposed to increasing intraluminal pressure as a
result of increase in NADPH oxidase activity and vascular O2−

production (135). Also, obese hypertensive rats with perivascular
inflammation show impaired endothelial function (136). Further,
the activation of the innate immunity complement pathway,
which regulates inflammation, is negatively associated with
vascular endothelial function in hypertensives (137). All these
studies support the notion that hypertension may be the cause
of endothelial dysfunction.

Consequences of Vascular Dysfunction
Endothelial dysfunction is a crucial risk factor for the
development of high blood pressure as it not only impairs the
control of the vascular tonus, but also alters structural function,
such as the tunica intima of blood vessels (138). LDL as a
result of hyperlipidemia, which is associated with obesity, may
be deposited into the intima of blood vessels where they may
be oxidized by ROS. This oxidized LDL (ox-LDL) activates
the endothelial cells to induce monocyte recruitment into the
endothelial wall (139). The recruited monocytes differentiate into
macrophages that take up the ox-LDL via scavenger factors,
resulting in intracellular lipid accumulation and subsequently
the formation of foam cells (139, 140). Foam cells produce
growth factors that cause the synthesis of collagen and VSMC to
migrate into the intima, which begins to proliferate and secrete
extracellular matrix, resulting in thickening of the arterial intima.
Thickening of the intima can lead to severe CVDs, such as
stroke, ischemic disease, and congestive heart failure later in life
(139, 141).

It is known that early endothelial dysfunction decreases
vascular relaxation and causes the infiltration of inflammatory
cells, leading to mild inflammation in blood vessels (142). eNOS
is formed in high concentrations in endothelial cells, specifically
in the renal medulla, where it maintains medullary blood flow
in response to renal vasoconstrictors, such as angiotensin II.
Impaired activity of eNOS may be due to endothelial damage
or extrinsic free radical activity altering NO activity (143). ROS
may influence the effects of dilatory and constrictive factors,
thus leading to elevated vascular resistance and acute kidney
injury (144).

Sustained damage by hyperglycemia or other factors, such
as hypertension in the microvessels of the retina results in
diabetic retinopathy (145). Diabetic retinopathy is the main
cause of blindness in high- and middle-income countries (109).
Hyperglycemia increases hypoxia induced factor 1 (HIF-1)
and insulin-like growth factor-1 (IGF-1). The overexpression
of HIF-1 and IGF-1 and other factors activate Müller cells
to transform into chronic inflammatory cells. Moreover, this
induces overexpression and buildup of vascular endothelial
growth factor (VEGF) causing fibroblast growth, thereby

initiating fibrosis (146). VEGF is documented to stimulate
angiogenesis and neovascularization, which are involved in the
pathogenesis of proliferative retinopathy (145). Microvascular
dysfunction can also result from arterial stiffness (147). Arterial
stiffness is associated with normal and accelerated aging (147).
The consequence of arterial stiffness includes augmented systolic
blood pressure, which is characterized by pulse pressure (30, 148).
Greater pulsatile pressure increases the pulsatile flow to penetrate
deeper into the periphery and damage the microvasculature
specifically in the brain and kidney (30).

Vascular Dysfunction in Children and
Adolescents of African Ancestry
The increasing prevalence of cardiovascular risk factors, such as
hypertension, in SSA children has implications on their vascular
health (4). However, very few studies assess the vascular function
of children of African ancestry. A study in Kwa-Zulu Natal
Province of South Africa shows that age and resting heart rate
were positively associated with arterial stiffness among children
aged 10–13 years old (149). Age could play an important role
when assessing arterial stiffness (150). However, for a deeper
understanding, it should be examined in conjunction with
growth and maturation, given that body height at the transition
from childhood to adolescence is documented to affect arterial
stiffness. An association between resting heart rate and arterial
stiffness in children is still lacking in the literature (149). A study
conducted in the Eastern Cape Province, South Africa, among
6- to 9-year-old children finds that blood pressure parameters,
such as mean arterial and diastolic blood pressure, increased
with increasing PWV (151). This suggests that hypertension
may result in vascular impairment in children. Another study
conducted in Potchefstroom, North West Province of South
Africa, in 6- to 8-year-old boys shows that oxidative stress is
positively associated with cfPWV and carotid dorsalis pedis PWV
in boys exposed to maternal cardiovascular risk compared with
the non-maternal risk group (152). This suggests that oxidative
stress may be an early mediator of vascular changes in children
exposed to maternal cardiovascular risk. PWV significantly
correlates with ADMA and systolic blood pressure (SBP) in
a study conducted among 13- to 16-year-old children in the
Eastern Cape Province of South Africa, suggesting that ADMA
might be considered as amajor risk factor of vascular dysfunction
in adolescents (153). The PWV increased with cumulative time
on ART in children living with HIV among primary school
children in Cape Town, Western Cape Province of South Africa
(154). In Mozambique, a study conducted among children with
perinality-acquired HIV finds that PWV is higher in participants
with increased visceral fat, elevated lipids, and insulin resistance
(155). A study carried out in Egypt among 74 obese children aged
6–18 years finds a significant positive correlation between cIMT
and BMI. cIMT equally shows a significant positive correlation
with triglycerides and TC (156). Another study conducted in
Egypt among 5- to 14-year-old children finds that cIMT is higher
in obese children as compared with non-obese children. Further,
obese children with elevated LDL and TC show increased risk
for endothelial dysfunction and early signs of atherosclerosis
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TABLE 2 | Vascular dysfunction and their associated risk factors in African children.

Age Number of

children

Country Type of study Measure of vascular

function

Outcome Citation

10–13 59 South Africa Cross-sectional PWV Arterial stiffness was associated with

age in boys.

(149)

6–9 303 South Africa Cross-sectional PWV PWV increased with an increase in

arterial pressure

(151)

6–18 74 Egypt Cross-sectional cIMT cIMT correlated with BMI (156)

13–16 244 South Africa Cross-sectional PWV and ADMA PWV significantly correlated with

ADMA

(153)

5–14 82 Egypt Cross-sectional cIMT Increased cIMT in obese children (157)

6–8 81 South Africa Cross-sectional PWV High PWV observed in black boys as

compared to their white counterparts

(158)

6–8 81 South Africa Cross-sectional PWV Lipid peroxidation correlated with

cfPWV

(152)

6–12 77 Mozambique Cross-sectional PWV PWV higher in children with increased

visceral fat, insulin resistance and

increased lipids

(155)

ADMA, Assymetric Dimethyl arginine; PWV, Pulse wave velocity; CIMT, Carotid intima-media thickness; BMI, Body mass index; cfPWV, Carotid-femur PWV.

(157). Thus, higher cIMT in obese children denotes increased
risk for early vascular dysfunction. Exposure to risk factors
of CVDs, such as hypertension and hyperlipidemia in obese
children may induce alterations in the arteries, thus contributing
to impaired endothelial function (156, 157). Higher PWV
(carotid-radial, carotid-femoral, and carotid-dorsalis), diastolic
blood pressure, and cIMT are reported in black boys than in
white boys aged 6–8 years old in Potchefstroom, North West
Province of South Africa. Moreover, black boys had increased
levels of pentosidine, which is a biomarker for microvascular
complications. However, arterial stiffness was not associated with
pentosidine in both groups of boys, suggesting that vascular aging
begins early in black population (158). Risk factors associated
with vascular dysfunction in African children are summarized in
Table 2.

CONCLUSION

Cardiovascular risk factors, such as obesity and hypertension,
are known to be major contributors to the development of
vascular dysfunction in children of African ancestry. Parameters
of vascular function, such as PWV, cIMT, and ADMA, are
used to assess cardiovascular risk in children of African

ancestry. The presence of vascular dysfunction triggered by
obesity, hypertension, oxidative stress, and inflammation in these
children suggest a future risk of CVDs, such as stroke and heart
attack in adulthood. However, only a few studies assess vascular
changes in children of African ancestry, and such assessments
are mostly limited to arterial stiffness and cIMT, as non-invasive
methods along with a few vasoactive factors. Moreover, limited
or no studies utilize FMD, FMS, retinal vascular assessments,
and other recent PWV techniques to assess vascular function.
These findings are, therefore, not sufficient to clearly describe
the state of vascular dysfunction in children of African ancestry,
and thus, additional studies with more robust methods for
the assessment of vascular function, such as FMD and retinal
microvasculature measurements are needed to provide sufficient
information on vascular function in children of African ancestry
and its implication.
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