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Panitumumab is a monoclonal antibody developed against the human epi-

dermal growth factor receptor (EGFR). TAS-102 is a novel chemothera-

peutic agent containing trifluridine (FTD) as the active cytotoxic

component. Both panitumumab and TAS-102 have been approved for the

treatment of metastatic colorectal cancer. In this study, we revealed the

mechanism underlying the anticancer effects of panitumumab/TAS-102

combination using preclinical models. Panitumumab/FTD cotreatment

showed additive antiproliferative effects in LIM1215 and synergistic

antiproliferative effects in SW48 colon cancer cells. Consistent with the

in vitro effects, panitumumab/TAS-102 combination caused tumor regres-

sion in LIM1215 and COL-01-JCK colon cancer patient-derived xenograft

models. In LIM1215 cells, FTD induced extracellular signal-regulated

kinase (ERK)/protein kinase B (AKT)/signal transducer and activator of

transcription 3 (STAT3) phosphorylation and subsequent serine/threonine

phosphorylation of EGFR, while it had no effects on EGFR tyrosine phos-

phorylation. Panitumumab and the tyrosine kinase inhibitor erlotinib

reduced the basal level of EGFR tyrosine phosphorylation and reversed

FTD-induced ERK/AKT/STAT3 and EGFR serine/threonine phosphory-

lation. These results suggested that FTD in combination with the basal

activity of EGFR tyrosine kinase induced downstream prosurvival signal-

ing through ERK/AKT/STAT3 phosphorylation. Collectively, we propose

that panitumumab interacts with FTD by targeting EGFR-mediated adap-

tive responses, thereby exerting anticancer effects when used in combina-

tion with TAS-102. These preclinical findings provide a compelling

rationale for evaluating the combination of anti-EGFR antibodies with

TAS-102 against metastatic colorectal cancer.
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1. Introduction

Colorectal cancer (CRC) is the third most commonly

diagnosed cancer and the fourth leading cause of can-

cer-related deaths worldwide (Ferlay et al., 2015).

Patients with advanced and unresectable CRC can be

eligible for multiple lines of treatment. Three major

chemotherapeutic agents [5-fluorouracil (5-FU),

irinotecan, and oxaliplatin], an antivascular endothelial

growth factor antibody (bevacizumab), and two

antiepidermal growth factor receptor (EGFR) antibod-

ies (cetuximab and panitumumab) have shown

well-documented clinical activity for the treatment of

metastatic CRC (mCRC) (Jonker et al., 2007; Van

Cutsem et al., 2007). Randomized trials in first-line

setting combining cetuximab with FOLFILI (irinote-

can/5-FU/leucovorin) or FOLFOX (oxaliplatin/5-FU/

leucovorin) or panitumumab with FOLFOX demon-

strated a significant survival benefit compared with

that of chemotherapy alone. Although the use of

cetuximab and panitumumab is restricted only to

mCRC patients with KRAS (Kirsten rat sarcoma viral

oncogene homolog) and NRAS wild-type genes owing

to the well-established link between RAS (rat sarcoma

GTPase) mutations and lack of response to antibodies

(Karapetis et al., 2008; Amado et al., 2008; Siena

et al., 2009), these EGFR-targeting monoclonal anti-

bodies have expanded the range of treatment options

for mCRC (Heinemann et al., 2016).

Mechanistically, both panitumumab and cetuximab

competitively inhibit endogenous ligand binding,

thereby suppressing the subsequent activation of

EGFR, a member of the human ERBB family of

receptor tyrosine kinases. EGFR tyrosine kinase acti-

vation stimulates the key processes in tumor growth

and progress via activation of downstream signaling

pathways, including RAS/RAF (rapidly accelerated

fibrosarcoma) kinase/mitogen-activated protein kinase

(MAPK) kinase (MEK)/extracellular signal-regulated

kinase (ERK), phosphatidylinositol 3-kinase (PI3K)–
protein kinase B (also known as AKT), and signal

transducer and activator of transcription (STAT) path-

ways (Yarden and Sliwkowski, 2001; Scaltriti and

Baselga, 2006; Hynes and Lane, 2005). The lack of

benefit from EGFR antibodies in mCRC with a RAS

mutation, where downstream signaling is activated

irrespective of EGFR ligand binding, underscores that

signaling inhibition is critically important for the anti-

cancer efficacy of EGFR antibodies.

TAS-102 is a novel, orally administered combination

of a nucleoside analog trifluridine (FTD) and

thymidine phosphorylase inhibitor tipiracil hydrochlo-

ride (TPI), at a molar ratio of 1:0.5 (Salvatore et al.,

2015; Peters, 2015). FTD is the active cytotoxic com-

ponent of TAS-102, while TPI plays a role in prevent-

ing the rapid degradation of FTD to its inactive form

by thymidine phosphorylase (Fukushima et al., 2000).

FTD is sequentially phosphorylated; its monophos-

phate form (FTD-MP) transiently inhibits thymidylate

synthase (TS), and its triphosphate form (FTD-TP) is

incorporated into DNA (Temmink et al., 2007a; Reyes

and Heidelberger, 1965; Santi and Sakai, 1971; Eck-

stein et al., 1994; Tanaka et al., 2014). TS inhibition is

a major mechanism of action of classical fluoropyrim-

idines such as 5-FU (Van Triest and Peters, 1999).

Although TS inhibition by FTD-MP may partly

account for the antitumor effects of FTD (Santi and

Sakai, 1971; Temmink et al., 2004), the incorporation

of FTD-TP into DNA and the resulting DNA damage

appear to be the major mechanism of action of FTD

(Tanaka et al., 2014; Suzuki et al., 2011; Matsuoka

et al., 2015). Importantly, TAS-102 exhibits antitumor

activity against FU-resistant cell lines in preclinical

xenograft models (Emura et al., 2004a; Emura et al.,

2004b; van der Velden et al., 2016). Compared with

the placebo, TAS-102 provided an overall survival

benefit of approximately 2 months in a randomized

phase III trial that included patients with refractory

(or intolerant) mCRC (Mayer et al., 2015).

TAS-102 is also a promising candidate for combi-

nation therapy with other agents that serve as a

backbone chemotherapy, especially for the treatment

of mCRC refractory to initial 5-FU-based chemother-

apy. The combination of TAS-102 and anti-EGFR

antibodies is effective preclinically; however, the exact

mechanism underlying the combination effects

remains to be elucidated (Tsukihara et al., 2015). In

the present study, we evaluated the anticancer efficacy

and molecular mechanism of a combination of TAS-

102 and panitumumab in in vitro and in vivo colon

cancer models.

2. Materials and methods

2.1. Cells and reagents

The human colon cancer cell lines SW48 and LIM1215

were obtained from Horizon Discovery (Cambridge,

UK) and DS Pharma Biomedical (Osaka, Japan),

respectively. SW48 cells were cultured in McCoy’s 5A

medium (Wako, Osaka, Japan) with 10% fetal bovine

serum (FBS). LIM1215 cells were cultured in RPMI
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1640 medium (Wako) with 10% FBS, 1 lg�mL�1

hydrocortisone (Sigma, St. Louis, MO, USA),

0.6 lg�mL�1 insulin (Thermo Fisher Scientific, Wal-

tham, MA, USA), and 10 lM 1-thioglycerol (Wako).

Panitumumab was provided by Amgen, Inc. (Thou-

sand Oaks, CA, USA). Cetuximab was purchased

from Merck Serono (Darmstadt, Germany). FTD was

purchased from Tokyo Chemical Industry (Tokyo,

Japan). TPI was purchased from Biochempartner

(Wuhan, China). Erlotinib was purchased from Selleck

Chemicals LLC (Houston, TX, USA). U0126,

LY294002, and SB203520 were purchased from Wako.

Trametinib was purchased from Cayman Chemical

Company (Ann Arbor, MI, USA). All antibodies used

in the study were purchased from Cell Signaling Tech-

nology (Danvers, MA, USA), except anti-glyceralde-

hyde 3-phosphate dehydrogenase (GAPDH) antibody

(Merck Millipore, Billerica, MA, USA).

2.2. Cell proliferation and clonogenic assay

For the cell proliferation assay, colon cancer cells were

plated in 96-well plates at a density of 1 9 103 cells

per well. Serial dilutions of FTD, panitumumab, and

FTD/panitumumab as well as dimethyl sulfoxide

(DMSO; control) were added to the culture media

24 h after cell plating. The cells were then cultured for

an additional 72 h, and cell viability was determined

by the CellTiter-Glo assay (Promega, Fitchburg, WI,

USA). For the clonogenic assay, 1 9 103 SW48 or

LIM1215 cells were plated in each well of six-well

plates and subsequently treated with FTD, panitu-

mumab, FTD/panitumumab in combination, or

DMSO for 14 days. The cell colonies were stained

with 0.5% crystal violet and counted using a GelCount

colony counter (Oxford Optronix, Abingdon, UK)

(Franken et al., 2006).

2.3. Analysis of drug combination effects

Calculation of the combination metrics was performed

as described previously (Garcia et al., 2014). Briefly,

isobologram analysis was used to determine the effects

of drug combinations. A nine-parameter response sur-

face model was used to fit the relationship between

normalized viability and drug concentrations (Minto

et al., 2000). To quantify the combined effects of two

drugs, a combination index (CI) (Berenbaum, 1985;

Chou and Talalay, 1984) or nonlinear blending (Peter-

son and Novick, 2007) was computed. A CI value

below 0.7 was classified as synergy, while a value

above 1.3 was classified as antagonism. A value in the

range between 0.7 and 1.3 was considered to be

additive. Nonlinear blending was applied to determine

synergy if the maximum inhibition by a single agent

was less than 50%. A blending value above 20 was

classified as synergy, while that below �20 was classi-

fied as antagonism.

2.4. Western blotting

LIM1215 cells were plated at a density of 5 9 105 cells

per well in six-well plates. One day later, the cells were

treated with FTD, panitumumab, erlotinib, U0126,

LY294002, SB203520, or DMSO for 24 h. The cells

were then washed once with cold phosphate-buffered

saline and lysed in lysis buffer [62.5 mM Tris/HCl (pH

7.5), 10% glycerol, 1% SDS] supplemented with pro-

tease inhibitor cocktail set II and phosphatase inhibi-

tor cocktail set III (Merck Millipore). After

centrifugation, the protein concentrations of the cell

lysates were determined using the bicinchoninic acid

(BCA) protein assay reagent (Thermo Fisher Scien-

tific). The cell lysates were mixed with Laemmli SDS

sample buffer, heated, and subjected to SDS/PAGE,

followed by immunoblotting. Detection was performed

using an enhanced chemiluminescence reagent (GE

Healthcare, Chicago, IL, USA).

2.5. Stable isotope labeling with amino acids in a

cell culture-based phosphoproteomics analysis

LIM1215 cells were cultured in stable isotope labeling

with amino acids in cell culture (SILAC) K8R10 med-

ium for heavy samples or K0R0 medium for light sam-

ples (Thermo Scientific), supplemented with 10%

dialyzed FBS (Thermo Scientific), 100 mg�L�1
L-pro-

line (Sigma), 1 lg�mL�1 hydrocortisone (Sigma),

0.6 lg�mL�1 insulin (Thermo Fisher Scientific), and

10 lM 1-thioglycerol (Wako). After treatment with

FTD alone, panitumumab alone, FTD/panitumumab

combination, or DMSO for 24 h, the cells were lysed

in ice-cold lysis buffer [20 mM Tris/HCl [pH 7.4], 0.1%

SDS, 1% NP-40, 1 mM ethylenediaminetetraacetic

acid, protease inhibitor cocktail (Sigma), and phos-

phatase inhibitors cocktail (Sigma)]. Equal amounts of

protein from light and heavy samples were mixed, and

the proteins were precipitated with five volumes of ace-

tone. The precipitates were dissolved in 8 M urea,

100 mM triethylammonium bicarbonate (TEAB;

Wako), and 5 mM tris(2-carboxyethyl)phosphine

(Thermo Scientific). The samples were digested with

Lys-C protease (Wako) at a ratio of 1:200 for 4 h,

after which 50 mM iodoacetamide (Wako) was added

for alkylation. The samples were diluted with 20 mM

TEAB to 1 M urea concentration and then digested
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with sequencing-grade modified trypsin (Promega) at a

ratio of 1 : 100. The digested samples were acidified

with 0.5% trifluoroacetic acid, and the supernatants

were subsequently desalted on a C18 column (Shiseido

C18MG, 4.6 9 250 mm, Tokyo, Japan). The desalted

peptides were loaded onto TiO2 chips (GL Science,

Tokyo, Japan) to enrich phosphopeptides in accor-

dance with the instruction manual. The eluted phos-

phopeptides were desalted on a C18 column (Shiseido

C18MG, 2.0 9 10 mm). The phosphopeptides were

separated into 16 fractions on a polysulfoethyl A SCX

column (PolyLC, 2.1 9 35 mm, 5 lm, 300 �A) using a

gradient changing from buffer A [0.1% formic acid

and 80% acetonitrile (MeCN)] to buffer B (350 mM

ammonium formate, 30% MeCN, pH 3). The fraction-

ated peptides were analyzed using fusion mass spec-

trometry (MS) (Thermo Scientific) coupled to a nano-

liquid chromatography (LC) system (EASY-nLC

1000). The peptides were loaded onto a trap column

(C18 Pepmap100, 3 lm, 0.075 9 20 mm) and sepa-

rated on an analytical column (Reprosil-Pur C18AQ,

3 lm, 0.075 9 150 mm; Nikkyo Technos, Tokyo,

Japan) at a flow rate of 300 nL�min�1 for 90 min. LC/

MS/MS measurements were performed by acquiring

MS spectra at a resolution of 120 000 at 200 m/z, and

data-dependent higher-energy collisional dissociation

MS/MS at 30% normalized collision energy of the 30

most abundant ions in the ion trap. The dynamic

exclusion time was 12 s. All MS raw files were pro-

cessed to identify and quantify peptides with Proteome

Discoverer 1.4 (Thermo Scientific) using MASCOT (v.

2.5, Matrix Science, London, UK) against the UniProt

human protein database. The mass tolerances of a pre-

cursor and fragment were set to 10 ppm and 0.3 Da,

respectively. A false discovery rate of 0.01 was applied

to peptide identification.

2.6. Subcutaneous tumor xenograft models

All in vivo procedures were conducted in compliance

with the Guide for the Care and Use of Laboratory Ani-

mals (8th Edition), US National Research Council, and

approved by the Institutional Animal Care and Use

Committee of the Shonan Research Center (#00011823),

Takeda Pharmaceutical Company, Ltd. Female BALB/

cA Jcl-nu/nu (nude) mice and C.B17/Icr-scid/scid Jcl

(SCID) mice (CLEA, Tokyo, Japan) were maintained

under specific pathogen-free conditions. LIM1215 cells

(5 9 106) mixed with Matrigel were inoculated subcuta-

neously into the right flank of six- to seven-week-old

SCID mice. Once established, the tumors were surgically

excised, and smaller tumor fragments (about 2 mm in

diameter) were subcutaneously implanted in the right

flank of SCID mice. To establish the patient-derived

colon tumor xenograft (PDX) model, COL-01-JCK

PDX line was obtained from the Central Institute for

Experimental Animals (Kawasaki, Japan), and tumor

fragments were implanted into the right flank of female

nude mice. The mice were randomized when the mean

tumor volume reached approximately 50–200 mm3. The

mice were then treated with the vehicle (0.5% hydrox-

ypropyl methylcellulose solution or saline), panitu-

mumab (intraperitoneally), TAS-102 [a mixture of FTD

and TPI at a molar ratio of 1:0.5 (orally)], or panitu-

mumab/TAS-102 combination for 2 weeks. The tumor

volumes were measured twice weekly with Vernier cali-

pers and calculated as the length 9 width2 9 0.5. The

treated/control ratio (T/C,%) was calculated by dividing

the change in tumor volume in the drug-treated mice by

that in the vehicle-treated control mice. The percentage

of tumor regression was calculated as follows: tumor

regression (%) at day X = [1�(tumor volume at day X/

tumor volume at day 0)] 9 100. Statistical comparisons

of tumor volumes and body weights were made using

Dunnett’s multiple comparison tests; P < 0.05 was con-

sidered statistically significant.

3. Results

3.1. The combination of panitumumab and FTD

has significant antiproliferative effects in colon

cancer cells

First, we evaluated the in vitro antiproliferative effects

of panitumumab and FTD combination in SW48 and

LIM1215 cells, which harbor the wild-type KRAS and

BRAF genes (Fig. 1A,B). Panitumumab blocked SW48

and LIM1215 cell proliferation in a dose-dependent

manner, although the maximum inhibition rates

remained around 40 and 60%, respectively. FTD sig-

nificantly inhibited proliferation of SW48 and

LIM1215 cells with IC50 values of 8.1 and 0.57 lM,
respectively. Cotreatment with FTD and panitumumab

produced synergistic combination effects in SW48 cells

(nonlinear blending score >20) and additive combina-

tion effects in LIM1215 cells (0.7 < CI < 1.3). Combi-

nation effects were also seen between FTD and

cetuximab, another anti-EGFR antibody, in LIM1215

cells but not in WiDr cells harboring the BRAF V600E

mutation (Fig. S1). In clonogenic assays, cotreatment

with panitumumab/FTD significantly suppressed col-

ony formation and growth of SW48 and LIM1215

cells (Figs 1C,D and S2). Quantification analysis

revealed that SW48 cell colony areas decreased by

75% when treated with 3 lM FTD and 50 ng�mL�1

panitumumab, while those of LIM1215 decreased by
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87% at even lower concentrations, that is, 0.3 lM
FTD and 5 ng�mL�1 panitumumab. FTD showed a

broad spectrum of anticancer activities against various

colon cancer cell lines, irrespective of KRAS or BRAF

mutation status, with IC50 values ranging from single

to low double-digit micromolar concentrations

(Fig. S3). LIM1215 cells were highly sensitive to FTD

compared to other colon cancer cells (Fig. 1B). There-

fore, LIM1215 cells were used to investigate the inter-

action between panitumumab and FTD further.

3.2. The combination of panitumumab and FTD

leads to tumor regression in subcutaneous colon

cancer xenograft models

Colon cancer xenograft mouse models were used to

evaluate the combination effects of panitumumab/

TAS-102 in vivo. SCID mice were inoculated subcuta-

neously with LIM1215 cells. After the tumors reached

appropriate volumes, the mice received panitumumab

(3 mg�kg�1, twice weekly; intraperitoneally), TAS-102

(75 mg�kg�1, twice daily on a 5-days-on/2-days-off

schedule; orally), their combination, or the vehicle for

2 weeks. As shown in Fig. 2A, treatment with panitu-

mumab alone and TAS-102 alone resulted in statisti-

cally significant tumor growth suppression with T/C

values of 3.8 and 17.9%, respectively, on day 14

(P < 0.001). The combination treatment had more

profound antitumor effects, leading to substantial

tumor regression, with a maximum regression rate of

63.2% on day 18. In this model, the mean body

weight of the vehicle-treated mice decreased gradually

over the experimental period (Fig. S4A). However,

two-week treatments with panitumumab, TAS-102, or

the combination were tolerated and caused less body

weight loss than vehicle treatment on day 21. To

extend these findings, we conducted a similar efficacy

study using a COL-01-JCK PDX model. COL-01-

JCK is a colon PDX line without KRAS and BRAF

mutations. TAS-102 moderately inhibited tumor

growth in this model, with the lowest T/C value of

33.4% on day 14 (P < 0.01; Fig. 2B). In contrast,
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panitumumab treatment led to significant regression

of tumor xenografts during the treatment period (by

36.1% on day 18 vs. day 0). Combination of panitu-

mumab and TAS-102 resulted in greater tumor

regression than panitumumab alone, and the regres-

sion continued for more than 3 weeks after drug

withdrawal (by 68.7% on day 35 vs. day 0).

Although body weight loss was observed in the vehi-

cle-treated mice in this PDX model as well, all drug

treatments were generally tolerated (Fig. S4B).

In addition, the effect of panitumumab on FTD

incorporation into DNA was examined with an anti-

5-bromo-2-deoxyuridine (BrdU) antibody because

FTD incorporated into DNA can be recognized by

BrdU antibodies (Kitao et al., 2016). Immunohisto-

chemical staining experiments showed that there was

no statistically significant difference in the percentage

of FTD-positive nuclei in tumor xenografts between

the mice treated with FTD alone and those treated

with FTD/panitumumab combination (Fig. S5).

3.3. Panitumumab blocks FTD-induced ERK and

AKT activation as well as EGFR gel mobility shift

To determine the potential interaction between panitu-

mumab and FTD in EGFR signaling, we analyzed the

phosphorylation status of signaling mediators ERK

and AKT in FTD-treated colon cancer cells using

western blotting. Consistent with the results of a previ-

ous study (Bijnsdorp et al., 2010), ERK1/2, AKT, and

STAT3 phosphorylation was induced in SW48 and

LIM1215 cells after exposure to 3 lM FTD for 16 h or

longer (Fig. S6). We tested whether panitumumab

affected FTD-induced phosphorylation of ERK1/2

and AKT and observed that cotreatment of panitu-

mumab with FTD for 24 h suppressed FTD-induced

AKT and ERK phosphorylation (Fig. 3). Notably,

FTD treatment also led to a slight EGFR gel mobility

shift, suggesting that it modified EGFR to a certain

extent. However, this EGFR mobility shift was inhib-

ited by cotreatment with panitumumab.
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3.4. FTD induces serine/threonine but not

tyrosine phosphorylation of EGFR

We performed SILAC-based phosphoproteomics anal-

ysis to investigate FTD-induced EGFR modification

and cellular signaling activation further. A complete

list of phosphopeptides is provided in Table S3. The

results of pathway analyses based on proteomic data

confirmed the pharmacodynamic effects of FTD and

panitumumab in LIM1215 cells. FTD treatment led to

the significant enrichment of several Kyoto Encyclope-

dia of Genes and Genomes pathways associated with

DNA damage, such as the Fanconi anemia pathway,

cell cycle, homologous recombination, and p53 signal-

ing (Table S1). Panitumumab treatment decreased the

phosphopeptides derived from MAPK1 (ERK2),

MAPK3 (ERK1), and ribosomal protein S6 kinases

A1 and A3, suggestive of EGFR signaling inhibition

by panitumumab (Tables 1 and S2).

As FTD-induced gel mobility shift of EGFR

occurred in parallel with AKT and ERK phosphoryla-

tion and was reversed by cotreatment with

panitumumab, we speculated that FTD might have

induced EGFR tyrosine phosphorylation. However,

SILAC-based analyses revealed that FTD-induced

EGFR phosphorylation occurred at serine/threonine

residues rather than at tyrosine residues (Table 1).

Consistently, western blotting confirmed that FTD

stimulated EGFR phosphorylation at threonine (T)

669 and serine (S) 1046/1047, but not at known tyro-

sine phosphorylation sites (Fig. 4A). The time depen-

dence and concentration dependence of FTD-induced

EGFR serine/threonine phosphorylation were con-

firmed in additional experiments (Figs S7 and S8).

Panitumumab alone reduced the basal levels of EGFR

tyrosine phosphorylation at almost all sites tested

(Fig. 4A). Moreover, cotreatment with panitumumab

suppressed FTD-induced serine/threonine phosphory-

lation of EGFR. Increase in TS protein level, a phar-

macodynamic marker of inhibition of TS activity by

fluoropyrimidine derivatives (Chu et al., 1991), was

observed with a similar extent in cells treated with

both FTD alone and FTD/panitumumab combination.

These results suggest that cotreatment with

Table 1. Effects of FTD on EGFR-, ERK1/2-, and p38 MAPK-derived phosphopeptides. Phosphopeptides derived from EGFR, ERK1/2, and

p38 MAPK were identified by phosphoproteomics analysis in LIM1215 cells treated with DMSO (ctr), FTD, panitumumab (Pmab), or a

combination of FTD and panitumumab (FTD + Pmab). Amino acid numbers correspond to those in the UniProt protein database, except

those for EGFR, which is a mature form, with the first 24 amino acids of the signal peptide cleaved off. Log2FC, log2 fold change.

Name

Gene

Symbol Phosphosite

Log2FC

FTD/ctr

Log2FC

Pmab/ctr

Log2FC

(FTD +

Pmab)/ctr Sequence Start End

EGFR EGFR pT669 1.34 �1.02 �0.35 ELVEPL[pT]PSGEAPNQALLR 663 681

pS967 1.07 �0.86 0.32 MHLP[pS]PTDSNFYR 963 975

pS1002 0.02 �0.31 0.20 ALMDEEDMDDVVDADEYLIPQQGFFS[pS]PSTSR 976 1007

pS1004 0.05 �0.29 �0.08 ALMDEEDMDDVVDADEYLIPQQGFFSSP[pS]TSR 976 1007

pS1015 1.06 0.07 1.15 TPLLSSL[pS]ATSNNSTVACIDR 1008 1028

pS1018 1.07 �0.05 0.74 TPLLSSLSAT[pS]NNSTVACIDR 1008 1028

pS1039 pS1021 0.78 0.17 1.14 TPLLSSLSAT[pS]NN[pS]TVACIDR 1008 1028

pT1017 pS1018 1.46 0.21 1.40 TPLLSSLSA[pT][pS]NNSTVACIDR 1008 1028

pS1040 �0.70 �0.74 �0.95 NGLQSCPIKED[pS]FLQR 1029 1044

pS1047 pT1050 2.18 0.19 1.01 YS[pS]DP[pT]GALTEDSIDDTFLPVPEYINQSVPK 1045 1075

pS1057 0.77 �0.58 0.01 YSSDPTGALTED[pS]IDDTFLPVPEYINQSVPK 1045 1075

pY1068 �0.15 0.16 �0.13 YSSDPTGALTEDSIDDTFLPVPE[pY]INQSVPK 1045 1075

pS1142 0.53 �0.78 �0.45 GSHQI[pS]LDNPDYQQDFFPK 1137 1155

pY1148 �0.09 0.09 �0.28 GSHQISLDNPD[pY]QQDFFPK 1137 1155

pY1173 �0.08 0.01 �0.30 GSTAENAE[pY]LR 1165 1175

ERK1 MAPK3 pT202 pY204 0.77 �1.74 �1.91 IADPEHDHTGFL[pT]E[pY]VATR 190 208

pY204 0.59 �0.78 �0.89 IADPEHDHTGFLTE[pY]VATR 190 208

ERK2 MAPK1 pT185 pY187 0.75 �2.08 �1.96 VADPDHDHTGFL[pT]E[pY]VATR 173 191

pY187 0.55 �0.83 �1.07 VADPDHDHTGFLTE[pY]VATR 173 191

p38 alpha MAPK14 pT180 0.69 0.41 1.19 HTDDEM[pT]GYVATR 174 186

pT180 pY182 0.56 0.75 1.51 HTDDEM[pT]G[pY]VATR 174 186

pY182 0.82 0.35 0.70 HTDDEMTG[pY]VATR 174 186

p38 delta MAPK13 pT180 1.04 0.76 HADAEM[pT]GYVVTR 174 186

pY182 0.86 0.40 1.04 HADAEMTG[pY]VVTR 174 186

1071Molecular Oncology 11 (2017) 1065–1077 ª 2017 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

Y. Baba et al. Effect of panitumumab/TAS-102 combination



panitumumab has little effects of FTD on TS inhibi-

tion, although TS inhibition is not considered to be

the main mechanism underlying FTD cytotoxicity.

3.5. Serine/threonine phosphorylation of EGFR is

dependent on the activation of MEK/ERK

signaling pathway

To investigate the mechanism underlying FTD-induced

serine/threonine phosphorylation of EGFR, LIM1215

cells were cotreated with FTD and several kinase inhi-

bitors (Fig. 4B). FTD-induced EGFR serine/threonine

phosphorylation was suppressed by erlotinib and pani-

tumumab. It was also blocked by the MEK inhibitor

U0126. The PI3K inhibitor LY294002 inhibited

FTD-induced AKT/STAT3 phosphorylation, but not

FTD-induced ERK1/2 and EGFR serine/threonine

phosphorylation. In addition, the time dependence and

concentration dependence between FTD-induced

ERK1/2 phosphorylation and EGFR serine/threonine

phosphorylation (Figs S7 and S8) were similar. Using

the SILAC-based phosphoproteomic data, we deter-

mined the responsible kinases and their substrates that

were affected by FTD treatment and created a kinase–
substrate connected network (Fig. S9). A subnetwork

of EGFR and the first neighbors showed significant

contributions of ERK1/2 (MAPK3 and MAPK1,

respectively) to FTD-induced serine/threonine phos-

phorylation of EGFR. These results suggest that

EGFR serine/threonine phosphorylation occurs down-

stream of MEK/ERK signaling pathway.

Trifluridine also induced p38 MAPK phosphoryla-

tion (Fig. 4B, Table 1), which was not affected by

either panitumumab or erlotinib, suggesting that

upstream signaling through p38 MAPK phosphoryla-

tion and ERK/AKT/STAT3 phosphorylation was dif-

ferentially induced by FTD. However, FTD-induced

AKT/STAT3 and EGFR S1046/1047 phosphorylation

was inhibited by the p38 MAPK inhibitor SB203580,

suggestive of signaling crosstalk.

3.6. Cotreatment with a MEK inhibitor and FTD

shows additive antiproliferative effects

As the MEK inhibitor U0126 blocked FTD-induced

AKT/ERK/STAT3, EGFR T669, and S1046/1047

phosphorylation to a similar extent as panitumumab,

the effect of cotreatment with FTD and the MEK

inhibitors U0126 or trametinib on cell proliferation

was evaluated. Cotreatment with either FTD/U0126 or
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FTD/trametinib yielded additive antiproliferative

effects in LIM1215 cells (0.7 < CI< 1.3; Fig. 5).

4. Discussion

In this study, we demonstrated that the combination

treatment of TAS-102 and panitumumab exerted sig-

nificant anticancer activity compared to that achieved

by single-agent treatment in in vitro and in vivo wild-

type KRAS colon cancer models. Previous studies sug-

gested that TAS-102 may potentially enhance the

effects of combination treatment of chemotherapeutics

irinotecan and oxaliplatin (Nukatsuka et al., 2015;

Temmink et al., 2007b) or targeted therapeutics, such

as bevacizumab and anti-EGFR agents (Tsukihara

et al., 2015; Bijnsdorp et al., 2010). Our results are

consistent with that of Tsukihara et al. (2015), wherein

TAS-102/panitumumab combination suppresses tumor

growth in an SW48 tumor xenograft model. However,

the in vivo combination efficacy was prominent in

LIM1215 and COL-01-JCK models used in this study

when compared with that in SW48 model, as reflected

by the profound and sustained tumor regression

achieved with a similar dosing regimen. The difference

in responses among these wild-type KRAS colon can-

cer models may provide an intriguing tool for explor-

ing determinants or predictive markers of the

response. In our two models, the vehicle-treated mice

experienced gradual body weight loss as the tumors

grew, which was probably due to cancer-related

cachexia. However, the combination regimen was tol-

erated and had no confounding effects on body weight

loss caused by TAS-102, suggesting that TAS-102 and

panitumumab had few overlapping toxicities. Indeed,

the most frequently observed adverse events associated

with TAS-102 in a phase III study were neutropenia

and leukopenia (Mayer et al., 2015), while those asso-

ciated with panitumumab were skin toxicities, hypo-

magnesemia, and diarrhea (Van Cutsem et al., 2007).

However, panitumumab has no cross-reactivity with

mouse EGFR, which makes it difficult to assess the

therapeutic window in tumor xenograft models. Thus,

careful evaluation of safety is needed in clinical

settings.

We also assessed the molecular mechanism underly-

ing the interaction between FTD and panitumumab,

and found that FTD treatment induced ERK1/2,

AKT, and STAT3 phosphorylation in SW48 and

LIM1215 cells. Several other chemotherapeutics

induced similar ERK/AKT/STAT3 activation, which

is considered to mediate prosurvival signaling and be

implicated in resistance to these genotoxic agents

(McCubrey et al., 2011; Liu et al., 2014; Winograd-

Katz and Levitzki, 2006; Mabuchi et al., 2002; Taylor

et al., 2011; Poli and Camporeale, 2015). Thus, we

believe that FTD-induced activation of ERK/AKT/

STAT3 plays a similar role in the adaptive response of

colon cancer cells to genotoxic stress caused by FTD.

In particular, the MEK inhibitors U0126 and trame-

tinib when combined with FTD caused additive effects

on the proliferation of LIM1215 cells. Therefore, we

believe that MEK/ERK signaling may, at least partly,

mediate prosurvival signaling in response to FTD.

We further observed that FTD-induced ERK/AKT/

STAT3 phosphorylation was suppressed by panitu-

mumab and erlotinib. Initially, these results led us to

speculate that FTD could induce EGFR tyrosine

kinase activation and subsequent phosphorylation of

its downstream molecules. However, SILAC-based

proteomics and western blotting revealed that FTD

had no effects on EGFR tyrosine phosphorylation sta-

tus. Instead, FTD induced EGFR serine/threonine

phosphorylation, which was reversed by combination
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Fig. 5. Combination treatment of FTD with MEK inhibitors shows

additive antiproliferative effects in LIM1215 cells. The viability of

LIM1215 cells was determined after cotreatment with FTD and

U0126 (A) or FTD and trametinib (B) for 72 h.
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treatment with panitumumab, erlotinib, or the MEK

inhibitor U0126. Therefore, we proposed a model in

which the basal activity of EGFR tyrosine kinase is

required for FTD-induced ERK/AKT/STAT3 phos-

phorylation, and in which EGFR serine/threonine

phosphorylation is a downstream event of MEK/ERK

signaling. This model is also supported by kinase–
substrate connected network analysis based on phos-

phoproteomics data, which indicates an important

contribution of ERK1/2 to FTD-induced EGFR ser-

ine/threonine phosphorylation. Consistent with these

data, prior studies have implicated threonine 669 of

EGFR as an ERK phosphorylation site (Li et al.,

2008; Takishima et al., 1991; Northwood et al., 1991).

The significance of FTD-induced EGFR serine/thre-

onine phosphorylation, however, remains to be eluci-

dated. Nishimura et al. (Nishimura et al., 2009)

showed that tumor necrosis factor alpha (TNF-a)-
induced EGFR phosphorylation at T669 and S1046/

1047 stimulated EGFR endocytosis, leading to the sur-

vival of cells exposed to TNF-a receptor death signal.

Further, Winograd-Katz and Levitzki (Winograd-Katz

and Levitzki, 2006) proposed that cisplatin-induced

EGFR T669 phosphorylation similarly increased

EGFR endocytosis, which might switch signaling path-

ways from proliferation to survival. Thus, it is of inter-

est to further investigate whether FTD-induced EGFR

serine/threonine phosphorylation mediates similar pro-

survival signaling through EGFR endocytosis in colon

cancer cells. One possible approach is to introduce

mutations that prevent phosphorylation by substitu-

tion of serine/threonine residues of EGFR and evalu-

ate FTD sensitivity of the cells with these mutant

EGFRs.

We also observed that FTD treatment induced phos-

phorylation of p38 MAPK. p38 MAPK phosphoryla-

tion is induced by a diverse set of intra- and

extracellular stimuli, including genotoxic stress caused

by chemotherapeutics such as cisplatin mediating

prosurvival signaling (Winograd-Katz and Levitzki,

2006). Unlike ERK/AKT/STAT3 phosphorylation,

FTD-induced p38 MAPK phosphorylation was not

significantly affected by panitumumab or erlotinib,

suggesting that p38 MAPK phosphorylation was inde-

pendent of EGFR tyrosine kinase activity. However,

pharmacological inhibition of p38 MAPK decreased

FTD-induced AKT, STAT3, and EGFR S1046/1047

phosphorylation. These results suggest that there is a

crosstalk between p38 MAPK and EGFR/AKT/

STAT3 signaling. Accordingly, we proposed a model

in which FTD-induced p38 MAPK activation and

EGFR-dependent ERK/AKT/STAT3 activation coop-

eratively promote prosurvival signaling (Fig. 6).

In conclusion, we demonstrated that cotreatment

with panitumumab and TAS-102 had significant

in vitro and in vivo anticancer effects in different colon

cancer models. We also showed that panitumumab

suppressed FTD-induced ERK/AKT/STAT3 activa-

tion, which we believe is the mechanism underlying the

combinatorial effects of panitumumab and FTD.

These preclinical findings provide a compelling ratio-

nale for evaluating the efficacy of panitumumab in

combination with TAS-102 in a clinical setting. Cur-

rently, a phase I/II APOLLON study is under evalua-

tion, which is designed to investigate the safety and

efficacy of panitumumab in combination with TAS-

102 in patients with wild-type RAS mCRC, who are

refractory to standard chemotherapy (https://clinicaltri

als.gov/ct2/show/NCT02613221).
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Fig. S1. Cotreatment with cetuximab and FTD inhibits

proliferation of LIM1215 cells but not WiDr cells.

Fig. S2. Panitumumab interacts with FTD to inhibit

the clonogenic growth of colon cancer cells.

Fig. S3. FTD inhibits cell proliferation of various

colon cancer cell lines, irrespective of the KRAS and

BRAF mutation statuses.

Fig. S4. Body weight change in tumor-bearing mice.

Fig. S5. Immunohistochemical staining for FTD incor-

porated into DNA in the LIM1215 tumor xenograft

model.

Fig. S6. FTD-induced phosphorylation of AKT,

ERK1/2, and STAT3 in SW48 and LIM1215 cells.

Fig. S7. Time dependency of FTD-induced AKT/

ERK/STAT3 and EGFR serine/threonine phosphory-

lation.

Fig. S8. Concentration dependency of FTD-induced

AKT, ERK1/2, and EGFR serine/threonine phospho-

rylation.

Fig. S9. A highly connected subnetwork within EGFR

and first neighbors.

Appendix S1. Supplementary materials and methods.

Table S1. List of genes from the KEGG pathways

identified by phosphoproteomic analysis, showing the

effects of FTD versus control in LIM1215 cells.

Table S2. List of genes from theKEGGpathways identi-

fied by phosphoproteomic analysis, showing the effects

of panitumumab versus control in LIM1215 cells.

Table S3. A complete list of phosphopeptides in SILAC-

based phosphoproteomics analysis.
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