
RESEARCH ARTICLE

Predictive representations can link model-

based reinforcement learning to model-free

mechanisms

Evan M. Russek1☯*, Ida Momennejad2☯, Matthew M. Botvinick3, Samuel J. Gershman4,

Nathaniel D. Daw2

1 Center for Neural Science, New York University, New York, NY, United States of America, 2 Princeton

Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, United States of

America, 3 DeepMind, London, United Kingdom and Gatsby Computational Neuroscience Unit, University

College London, United Kingdom, 4 Department of Psychology and Center for Brain Science, Harvard

University, Cambridge, MA, United States of America

☯ These authors contributed equally to this work.

* emr443@nyu.edu

Abstract

Humans and animals are capable of evaluating actions by considering their long-run future

rewards through a process described using model-based reinforcement learning (RL) algo-

rithms. The mechanisms by which neural circuits perform the computations prescribed by

model-based RL remain largely unknown; however, multiple lines of evidence suggest that

neural circuits supporting model-based behavior are structurally homologous to and over-

lapping with those thought to carry out model-free temporal difference (TD) learning. Here,

we lay out a family of approaches by which model-based computation may be built upon a

core of TD learning. The foundation of this framework is the successor representation, a pre-

dictive state representation that, when combined with TD learning of value predictions, can

produce a subset of the behaviors associated with model-based learning, while requiring

less decision-time computation than dynamic programming. Using simulations, we delineate

the precise behavioral capabilities enabled by evaluating actions using this approach, and

compare them to those demonstrated by biological organisms. We then introduce two new

algorithms that build upon the successor representation while progressively mitigating its

limitations. Because this framework can account for the full range of observed putatively

model-based behaviors while still utilizing a core TD framework, we suggest that it repre-

sents a neurally plausible family of mechanisms for model-based evaluation.

Author summary

According to standard models, when confronted with a choice, animals and humans rely

on two separate, distinct processes to come to a decision. One process deliberatively evalu-

ates the consequences of each candidate action and is thought to underlie the ability to flex-

ibly come up with novel plans. The other process gradually increases the propensity to

perform behaviors that were previously successful and is thought to underlie automatically
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executed, habitual reflexes. Although computational principles and animal behavior sup-

port this dichotomy, at the neural level, there is little evidence supporting a clean segrega-

tion. For instance, although dopamine—famously implicated in drug addiction and

Parkinson’s disease—currently only has a well-defined role in the automatic process, evi-

dence suggests that it also plays a role in the deliberative process. In this work, we present a

computational framework for resolving this mismatch. We show that the types of behaviors

associated with either process could result from a common learning mechanism applied to

different strategies for how populations of neurons could represent candidate actions. In

addition to demonstrating that this account can produce the full range of flexible behavior

observed in the empirical literature, we suggest experiments that could detect the various

approaches within this framework.

Introduction

A key question in both neuroscience and psychology is how the brain evaluates candidate

actions in complex, sequential decision tasks. In principle, computing an action’s expected

long-run cumulative future reward (or value) requires averaging rewards over the many future

state trajectories that might follow the action. In practice, the exact computation of such expec-

tations by dynamic programming or tree search methods may be prohibitively expensive, and

it is widely believed that the brain simplifies the computations occurring at decision time, in

part by relying on “cached” (pre-computed) long-run value estimates [1].

Such caching of values is the hallmark of prominent temporal difference (TD) learning the-

ories, according to which prediction errors reported by phasic dopamine responses update

these cached variables [2–4]. This, in turn, provides a neuro-computational account of inflexi-

ble stimulus-response habits, due to the fact that TD learning cannot update cached values in

response to distal changes in reward (e.g., following reward devaluation). The computationally

cheap but inflexible “model-free” nature of TD learning, which relies only on trial-and-error

interactions with the environment, contrasts with the flexible but computationally expensive

“model-based” nature of dynamic programming and tree search methods, which rely on an

explicit internal model of the environment. Due to the complementary properties of model-

free and model-based value computation, it has been suggested that the brain makes use of

both in the form of parallel RL systems that compete for control of behavior [1].

Although flexible choice behavior seems to demonstrate that humans and animals may use

model-based evaluation in some circumstances, very little is known about how this is actually

implemented in the brain, or indeed to what extent the behavioral phenomena that have been

taken to suggest model-based learning might arise from some simpler approximation. In this

article, we explore a family of algorithms that capture a range of such approximations and, we

argue, provide a promising set of candidates for the neural foundations supporting such

learning.

Our proposals are motivated by multiple suggestive, but also somewhat counterintuitive,

lines of evidence, which suggest that the dopamine system and its key targets are implicated

not just in the model-free behaviors that theory endows them with, but also in the more flexi-

ble choice adjustments that seem to reflect model-based learning [5–11]. This is perplexing for

the standard account because typical model-based algorithms such as value iteration do not

make use of a TD prediction error for long-run reward of the sort associated with dopamine.

Instead, they store internal variables (specifically, predictions about immediate “one-step”

rather than long-run consequences of actions), which require different update rules and error
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signals [12, 13]. Additionally, at choice time, such algorithms require computations that are

structurally different than those typically prescribed to the dopaminergic-striatal circuitry

[14].

In this article, we revisit and extend the successor representation (SR) [15,16],(see also [17–

22]), a predictive state representation that can endow TD learning with some aspects of

model-based value computation, such as flexible adjustment following reward devaluation.

That the SR, when combined with TD learning, can produce such flexible behavior makes it a

promising candidate for a neural foundation for model-based learning, which (because it is

built on top of a TD foundation) can also explain dopaminergic involvement in model-based

learning. However, this approach, in its original form, results in behavioral inflexibilities that

could serve as empirical signatures of it, but also make it inadequate for fully explaining organ-

isms’ planning capacities. In particular, the SR simplifies planning by caching a set of interme-

diate quantities, expectations about cumulative future state occupancies. For this reason,

unlike model-based learning, it is incapable of solving many tasks that require adjusting to

changes in contingencies between actions and their long-run consequences (e.g. [23,24]).

In this article, we explore a family of algorithms based around the SR, and introduce two

new variants that mitigate its limitations. In particular, we examine algorithms in which the SR

is updated either by computation at choice time or off-line by replayed experience, both of

which help to ameliorate its problems with caching. These approaches can each account for

human and animal behavior in a wide range of planning tasks, suggest connections with other

models of learning and dopamine, and make empirically testable predictions. Overall, these

approaches represent a family of plausible and computationally efficient hypothetical mecha-

nisms for the full range of flexible behaviors associated with model-based learning, and could

provide a clear theoretical foundation for future experimental work.

The article is organized as follows. In the remainder of this introduction, we review the for-

malism of reinforcement learning in a Markov decision process (MDP) and use this frame-

work to delineate the problem of model-based flexibility arising from model-free circuitry and

elucidate how the SR offers a potential solution to this problem. In the results section, we use

simulations to demonstrate the precise behavioral limitations induced by computing values

using the SR, as originally described, and evaluate these limitations with respect to the behav-

ioral literature. We then introduce two new versions of the SR that progressively mitigate these

limitations, and again simulate their expected consequences in terms of flexible or inflexible

choice behavior.

Formalism: Model-based and model-free reinforcement learning

Here, we briefly review the formalism of reinforcement learning in a Markov decision process

(MDP), which provides the foundation for our simulations (see [25] or [26] for a fuller

presentation).

An MDP is defined by a set of states, a set of actions, a reward function R(s,a) over state/

action pairs, and a state transition distribution, P(s0|s,a), where a denotes the chosen action.

States and rewards occur sequentially according to these one-step functions, driven by a series

of actions; the goal is to learn to choose a probabilistic policy over actions, denoted by π, that

maximizes the value function, Vπ(s), defined as the expected cumulative discounted reward:

VpðsÞ ¼ Ep½
P1

k¼0
gkRtþk jSt ¼ s�:

Here, γ is a parameter controlling temporal discounting. The value function can also be

defined recursively as the sum of the immediate reward of the action chosen in that state, R(s,
a), and the value of its successor state s’, averaged over possible actions, a, and transitions that
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would occur if the agent chose according to π:

VpðsÞ ¼
P

apðajsÞ½Rðs; aÞ þ
P

s0Pðs
0js; aÞgVpðs0Þ� ð1Þ

The value function under the optimal policy is given by:

V�ðsÞ ¼ maxaE½
P1

k¼0
gkRtþkjSt ¼ s;At ¼ a�

¼ maxa½Rðs; aÞ þ
P

s0Pðs
0js; aÞgV�ðs0Þ�

ð2Þ

Knowledge of the value function can help to guide choices. For instance, we can define the

state-action value function as the value of choosing action a and following π thereafter:

Qpðs; aÞ ¼ Ep½
P1

k¼0
gkRtþkjSt ¼ s;At ¼ a�

¼ Rðs; aÞ þ
P

s0Pðs
0js; aÞgVpðs0Þ

ð3Þ

Then at any state one could choose the action that maximizes Qπ(s,a). (Formally this defines

a new policy, which is as good or better than the baseline policy π; analogously, Eq 2 can be

used to define the optimal state-action value function, the maximization of which selects opti-

mal actions.) Note that it is possible to write a recursive definition for Q in the same manner as

Eq 1, and work directly with the state-action values, rather than deriving them indirectly from

V.

For expositional simplicity, in this article, we work instead with V wherever possible

(mainly because this is easier to depict visually, and simplifies the notation), and accordingly

we assume in our simulations that the agent derives Q using Eq 3 for guiding choices. To be

concrete, in a spatial “gridworld” task of the sort we simulate, this amounts to computing a

value function V over locations s, and using it to derive Q (the value of actions a heading in

each of the four cardinal directions) by examining V for each adjacent state. Although this sim-

plifies bookkeeping for this class of tasks, this is not intended as a substantive claim. Indeed, the

last algorithm we propose will work directly with Q values, and the others can easily be re-

expressed in this form.

The problem of reinforcement learning is then reduced to learning to predict the value

function Vπ(s) or V
�

(s). There are two main families of approaches. Model-based algorithms

learn to estimate the one-step transition and reward functions, P(s0|s,a) and R(s,a), from which

it is possible to compute V
�

(or Q
�

) using Eq 2. This typically involves unrolling the recursion

in Eq 2 into a series of nested sums, an algorithm known as value iteration. The alternative,

model-free, approach exemplified by TD learning bypasses estimating the one-step model.

Instead, it directly updates a cached estimate of the value function itself. In particular, follow-

ing a transition s! s0 initiated by action a, a reward prediction error, δ, is calculated and used

to update V(s):

d ¼ Rðs; aÞ þ gVðs0Þ � VðsÞ ð4Þ

VðsÞ  VðsÞ þ aTDd

where αTD is a learning rate parameter.

The TD update rule is derived from the recursion in Eq 1: each step iteratively pushes the

left hand side of the equation, V(s), closer to R(s,a) + γV(s0), which is a one-sample estimate of

the right hand side.

Finally, analogous sample-based updates may also be conducted offline (e.g., between steps

of actual, “online” experience). This is a key insight of Sutton’s Dyna architecture [27] (see also

[28]). The approach, like TD, caches estimates of V(s). Here TD learning is supplemented by

The successor representation as a mechanism for model-based behavior
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additional offline updates. Specifically, samples consisting of a transition and reward triggered

by a state-action (s,a,r,s’) are generated either from a learned one-step model’s probability dis-

tributions P(s0|s,a) and R(s,a), or instead simply replayed, model-free, from stored episodes of

previously experienced transitions. For each sample, V(s) is then updated according to Eq (4).

Given sufficient iterations of sampling between steps of real experience, this approach can sub-

stitute for explicit value iteration and produce estimates at each step comparable to model-

based approaches that more directly solve Eqs 1 or 2.

A further distinction, which will become important later, is that between on-policymethods,

based on Eq 1, and off-policymethods, based on Eq 2. On-policy methods estimate a policy-

dependent value function Vπ(s), whereas off-policy methods directly estimate the optimal

value function V
�

(s). Typically, model-based methods are off-policy (since having learned a

one-step model it is possible to use Eq 2 to directly compute the optimal policy); whereas dif-

ferent TD learning variants can be either on- or off-policy.

Model-free learning in the brain

Due to the similarity between the phasic responses of midbrain dopamine neurons, and the

TD prediction error δ (Eq 4), it has long been suggested that this system implements TD learn-

ing [2,3]. More specifically (e.g. [4]; Fig 1A) it has been suggested that values V or Q are associ-

ated with the firing of medium spiny neurons in striatum [29,30], as a function of an input

state (or state-action) representation carried by their afferent neurons in frontal cortex, and

that learning of the value function is driven by dopamine-mediated adjustment of the cortico-

striatal synapses connecting these neurons. Selection among these striatal value representa-

tions would then drive action choice. Although not entirely uncontroversial, a great deal of evi-

dence about dopamine and its targets supports this hypothesis (see [26,31] for fuller reviews).

Such theories provide a neural implementation of Thorndike’s early law of effect, the rein-

forcement principle according to which rewarded actions (here, those paired with positive pre-

diction error) tend to be repeated [34]. However, the hypothesis that animals or humans rely

exclusively on this principle to make decisions has long been known to be false, as demon-

strated by a line of learning experiments whose basic logic traces to rodent spatial navigation

experiments by Tolman [23] (for modern variants, see [6,28,35–37]).

To facilitate simulation and analysis, we here frame the logic of these experiments in terms

of “grid-world” spatial MDPs. When viewed as MDPs, Tolman’s experiments can be divided

into two categories, which require subjects to adjust to either of two different sorts of local

changes in the underlying MDP. Experience with these changes is staged so as to reveal whether

they are relying on cached values or recomputing them from a representation of the full MDP.

Accordingly, revaluation tasks, such as latent learning, reward devaluation, and sensory

preconditioning, examine whether animals appropriately adjust behavior following changes in

R(s,a), such as a newly introduced reward (Fig 2A). Analogously, contingency change (e.g.,

detour or contingency degradation) tasks examine whether animals appropriately adjust

behavior following changes in P(s0|s,a), such as a blocked passageway (Fig 2B). Model-free RL

is insensitive to these manipulations because it caches cumulative expected rewards and

requires additional learning to update the stored V. Conversely, model-based RL, which uses

the one-step model directly to compute V at decision time, reacts immediately and flexibly to

any experience that affects it. Note that the difference in behavior on these types of tasks pre-

dicted by the algorithms is categorical, and not a question of degree or learning speed. In par-

ticular, because of the representations they learn and update, model-based algorithms can

make the correct choice following these manipulations without any further retraining (i.e. so

long as they learn locally about the new contingency or value, they can immediately make

The successor representation as a mechanism for model-based behavior
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appropriate choices in distal parts of the state space), whereas model-free algorithms cannot

(in general, they must first experience trajectories starting from the test state and leading to the

state with the changed value or transition contingency). Animals sometimes fail to correctly

update behavior following revaluations, consistent with inflexible, model-free caching schemes

[38]. However, findings that in other circumstances animals can indeed flexibly adapt their

behavior following such manipulations (without any further retraining–e.g. tested on the very

first trial, or without feedback) has long been interpreted as evidence for their use of internal

models, as in model-based RL or similar methods [1,23,39]. A key goal of this article is to inter-

rogate this assumption, and to consider neural mechanisms that, despite falling short of full

model-based RL, might support such behavioral flexibility.

The puzzle of model-based learning and its neural substrates

A further set of rodent lesion studies have used reward devaluation tasks to suggest that appar-

ently model-based and model-free behaviors (i.e., behavior that is either flexible or insensitive

Fig 1. Cortico-striatal loops and reinforcement learning. a) Canonical circuit for TD learning. A dopaminergic

prediction error, signaled in substantia nigra pars compacta and ventral tegmental area, updates the value of

cortically represented states and actions by modifying cortico-striatal synapses. Depending on their value,

represented in striatal medium spiny neurons (MSN), actions are passed through to basal-ganglia action systems.

b) Results of rodent lesion studies. Lesions to a cortico-striatal loop passing through dorsomedial (DM) striatum

prevent flexibly adjusting behavior following reward devaluation. This area receives input from ventromedial

prefrontal cortex and projects, via globus pallidus, to dorsomedial nucleus of the thalamus. This loop is generally

thought to implement model-based learning [32]. Lesions to cortico-striatal loop passing through dorsolateral (DL)

striatum cause animals to maintain ability to flexibly adjust behavior following devaluation, despite over-training.

This area receives input from sensory and motor areas of cortex and projects, via globus pallidus, to posterior

nucleus of the thalamus. This loop is generally thought to implement model-free learning [32]. In addition to

receiving similar dopaminergic innervation from substantia nigra pars compacta (SnC), such loops are famously

thought to be homologous to one another [33].

https://doi.org/10.1371/journal.pcbi.1005768.g001
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following reward devaluation) depend on dissociable sets of brain areas (e.g. [5,40]; Fig 1B).

This led to the hypothesis (e.g., [1,32,41]) that these two forms of reinforcement learning

depend on competing systems in the brain—the dopaminergic TD system previously

described, plus a second–less clearly understood–circuit supporting model-based behavior.

But how is this latter computation carried out in the brain?

A number of fairly abstract theories have been based around explicit computation of the

state-action value based on some form of Eq 3, e.g. by learning an estimate of the one-step

transition function, P(s’|s,a) and the immediate reward function R(s,a) and using them itera-

tively to compute the future value by tree search, value iteration, or Bayesian inference [1,41–

43]. These theories have not spoken in detail about the neural implementation of these compu-

tations, but an accompanying presumption has been that the model-based system does not

rely on a dopaminergic prediction error signal. This is because the TD prediction error of Eq 4

(for γ> 0, which is the parameter regime needed to explain phasic dopamine’s signature

responses to the anticipation as well as receipt of reward [44]) is specifically useful for directly

learning long-run cumulative values V. In contrast, the idea of model-based learning is to

derive these values iteratively by stringing together short-term predictions from a learned one-

step model [12,45]. Note that the prediction error normally thought to be reported by dopa-

mine neurons is not appropriate here: the prediction error signal for updating the immediate
reward model R(s,a) is like Eq 4 but with γ = 0, which is not consistent with anticipatory phasic

dopamine responses. (However, correlates of prediction errors for γ = 0 have been observed

using human fMRI [46]). Furthermore, the hypothesized process of adding these rewards up

over anticipated trajectories at choice time, such as by value iteration or tree search, has no

counterpart in model-free choice. Instead, learning from anticipatory TD errors stores com-

plete long-run values (e.g., in corticostriatal synapses), requiring no further computation at

choice time.

Fig 2. Grid-world representation of Tolman’s tasks. Dark grey positions represent maze boundaries. Light grey positions represent maze

hallways. a) Latent learning: following a period of randomly exploring the maze (starting from S) the agent is notified that reward has been

placed in position R. We examine whether the agent’s policy immediately updates to reflect the shortest path from S to R. b) Detour: after the

agent learns to use the shortest path to reach a reward state R from state S, a barrier is placed in state B. After the agent is notified that state

B is no longer accessible from its neighboring state, we examine whether its policy immediately updates to reflect the new shortest path to R

from S.

https://doi.org/10.1371/journal.pcbi.1005768.g002
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However, neither the rodent lesion data nor another body of work studying the neural cor-

relates of model-based learning in humans suggests such a clean differentiation between the

dopaminergic-striatal circuit (supposed to support TD) and some other presumably non-

dopaminergic substrate for model-based learning. Instead, lesions suggest each type of learn-

ing is supported by a different subregion of striatum, together with connected regions of cortex

(Fig 1B) and basal ganglia. This suggests that putatively model-based and model-free systems

may map onto adjacent but structurally parallel cortico-basal ganglionic loops [33], thus per-

haps involving analogous (striatal) computations operating over distinct (cortical) input repre-

sentations [47].

Also contrary to a strict division between systems, both dorsomedial and dorsolateral stria-

tal territories have similar interrelationships with dopamine [48], though the involvement of

their differential dopaminergic input in devaluation sensitivity has not been completely

assessed [49]. Research on humans’ learning in a two-step MDP (which has similar logic to

devaluation studies) supports the causal involvement of dopamine in model-based learning

[7–10]. Furthermore, dopaminergic recordings in rodents [11] (though see [37]), and neuro-

imaging of prediction error signals in human striatum [6] suggest that these signals integrate

model-based evaluations.

Altogether, the research reviewed here supports the idea that model-based evaluations are

at least partly supported by the same sort of dopaminergic-striatal circuit thought to support

TD learning, though perhaps operating in separate cortico-striatal loops. This suggestion, if

true, provides strong hints about the neural basis of model-based behavior. However, for the

reasons discussed above, this also seems puzzlingly inconsistent with the abstract, textbook

[50] picture of model-based learning by Eq 3.

Several more neurally explicit theories of some aspects of model-based computation have

been advanced, which go some way toward resolving this tension by incorporating a dopami-

nergic component. Doya [51] introduced a circuit by which projections via the cerebellum per-

form one step of forward state prediction, which activates a dopaminergic prediction error for

the anticipated state. The candidate action can then be accepted or rejected by thresholding

this anticipated prediction error against some aspiration level. It is unclear, however, how this

one-step, serial approach can be generalized to tasks involving stochastic state transitions,

direct comparison between multiple competing actions, or rewards accumulated over multiple

steps (as in tasks like [52]).

A similar idea has arisen from recordings in spatial tasks, where the firing of place cells

along trajectories ahead of the animal suggests a hippocampal basis for a similar (though

multi-step) state anticipation process, potentially driving evaluation of these candidate states

using learned reward values in ventral striatum [53]. It is, however, unclear how this activity

fits into a larger circuit for accumulation of these evaluations and comparison between

options.

Finally, another candidate approach is based on the Dyna framework discussed above. In

this case, model-generated experience can be played back “off-line,” e.g. between trials or dur-

ing rest. These ersatz experiences can, in turn, drive dopaminergic prediction errors and

updating of striatal Q values using the same mechanisms as real experience. As noted above,

given sufficient off-line replay, this can achieve the same effect as model-based planning; in

particular, it can update Q values following revaluation and other manipulations [28,54]. How-

ever, without a more traditional “on-line” planning component, this approach degrades (to

that of basic, model-free Q learning) when there is insufficient time or resources for off-line

replay, and when truly novel situations are encountered [28].

Here we propose and analyze a different family of approaches to these problems, which

relate to the above proposals in that they incorporate elements of upstream predictive input to
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ventral striatum, and also of a different and more-flexible approach to offline updates. The

proposed approach, based on the SR, builds even more directly on the standard TD learning

model of dopaminergic-striatal circuitry.

The successor representation

The research reviewed above suggests that flexible, seemingly model-based choices may be

accomplished using computations that are homologous to those used in model-free RL. How

can this be? In fact, it is known that evaluations with some features of model-based learning

can result from TD learning over a different input representation. As shown by Dayan [15], Eq

1 can reformulated as:

VpðsÞ ¼
P

s0M
pðs; s0Þ

P
apðajs

0ÞRðs0; aÞ ð5Þ

Here,Mπ is a matrix of expected cumulative discounted future state occupancies, measuring

the cumulative time expected to be spent in each future state s0, if one were to start in some

state s and follow policy π (Fig 3):

Mpðs; s0Þ ¼ E½
P1

t¼0
gtIðst ¼ s0Þ jS0 ¼ s�; ð6Þ

where Ið�Þ ¼ 1 if its argument is true and 0 otherwise. Thus, this form rearranges the expecta-

tion over future trajectories in Eq 1 by first computing expected occupancies for each state,

then summing rewards obtained, via actions, in each state over these.

Mπ can also be used as a set of basis functions for TD learning of values. Specifically, we rep-

resent each state using a vector of features given by the corresponding row ofM (Fig 3), i.e. by

the future occupancies expected for each state s0. Then we approximate Vπ(s) by some

weighted combination of these features:

VpðsÞ ¼
P

s0M
pðs; s0Þwðs0Þ ð7Þ

Comparing Eqs 5 and 7 demonstrates this approximation will be correct when the weight w
(s0) for each successor state corresponds to its one-step reward, averaged over actions in s0, ∑aπ
(a|s0)R(s0,a). One way to learn these weights is using standard TD learning (adapted for linear

function approximation rather than the special case of a punctate state representation). In par-

ticular, following a transition s! s0, each index i of w is updated:

wðiÞ  wðiÞ þ aTDdMpðs; iÞ ð8Þ

Here, δ is defined as in Eq 4. Note that in the algorithms discussed below, the agent must

estimate the successor matrix Mπ from experience. If the feature matrixMπ were known and

static, a simpler alternative to Eq (8) for w would be to learn the one-step rewards by a delta

rule on the immediate reward R. Since the successor representation is just a particular case of a

linear feature vector for TD learning, the advantage of learning weights by the TD rule of Eq 8

is that weights learned this way will estimate value Vπ for any feature matrixM, such as esti-

mates of the successor matrixMπ prior to convergence (S1 Fig).

Altogether, this algorithm suggests a strategy for providing different inputs into a common

dopaminergic/TD learning stage to produce different sorts of value predictions (see also [16]).

In particular, whereas model-free valuation may arise from TD mapping of a punctate repre-

sentation of the current state (Fig 3B) in sensory and motor cortex to values in dorsolateral

striatum (Fig 1B), at least some aspects of model-based valuation may arise by analogous TD

mapping of the successor representation (Fig 3C and 3D) in prefrontal cortex or hippocampus

to values in dorsomedial striatum (Fig 1B). This is possible because the successor matrixM has

The successor representation as a mechanism for model-based behavior
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a predictive aspect reflecting knowledge of the state transitions P(s0|s,a), at least in terms of

aggregate occupancy, separate from the state/action rewards R(s,a).

This approach may thus offer a solution to how flexible, seemingly model-based choices

can be implemented, and indeed can arise from the same dopaminergic-striatal circuitry that

carries out model-free TD learning. What remains to be shown is whether algorithms based

on this strategy–applying the SR as input to TD learning–can produce the full range of model-

based behaviors. In the remainder of this paper, we simulate the behavior of such algorithms

to explore this question.

To simulate learning using the SR, we need to also simulate how the successor matrixMπ is

itself produced from experience.Mπ can be defined through a recursive equation that is

directly analogous to Eqs 1 and 2:

Mpðs; :Þ ¼ 1s þ g
P

s0T
pðs; s0ÞMpðs0; :Þ; ð9Þ

where 1s is the vector of all zeros except for a 1 in the sth position and Tπ is the one-step state

transition matrix that is dependent on π, Tπ(s,s0) = ∑aπ(a|s) P(s0|s,a).

Similar to how approaches to estimating V are derived from Eqs 1 and 2, one could derive

analogous approaches to estimatingMπ from Eq 9. Specifically, one could utilize a “model-

based” approach that would learn Tπ and use it iteratively to derive a solution forMπ.

Fig 3. Example state representations. a) Agent position (rodent image) in a maze whose hallways are

indicated by grey. b) Punctate representation of the agent’s current state. Model-free behavior results from TD

computation applied to this representation c,d) Possible successor representations of agent’s state. Model-

based behavior may result from TD applied to this type of representation. The successor representation

depends on the action selection policy the agent is expected to follow in future states. The figures show the

representation of the current state under a random policy (c) versus a policy favoring rightward moves (d).

https://doi.org/10.1371/journal.pcbi.1005768.g003
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Alternatively, a TD learning approach could be taken to learnMπ directly, without use of a

one-step model Tπ. (This approach is analogous to model-free TD methods for learning V,

though it is arguably not really model-free sinceMπ is itself a sort of long-run transition

model.) This TD learning approach would cache rows of M and update them after transition-

ing from their corresponding states, by moving the cached row closer to a one-sample estimate

of the right hand side of Eq 9. Lastly, such TD updates could also occur offline, using simulated

or previously experienced samples. This approach for learningMπ would be comparable to the

Dyna approach for learning V. The three models we consider below correspond to these three

different possibilities.

Finally, note that SR-based algorithms have favorable computational properties; in particu-

lar, at choice time, givenMπ (e.g. if it is learned and cached rather than computed from a one-

step model), SR can compute values Vπ with a single dot product (e.g., a single layer of a linear

neural network, Eq 7), analogous to model-free TD algorithms. This is in contrast to the multi-

ple steps of iterative computation required at choice time for computing value via Eq 1 in stan-

dard model-based approaches. This comes at the cost of storing the successor matrixMπ: if S is

the number of states in the task, the SR matrix has a number of entries equal to S2. Such entries

ofMπ can be stored as the (all-to-all) set of weights from a single layer of a neural network

mapping input states to their successor representation.

Results

In the following sections, we explore the behavioral consequences of each of these strategies.

We structure the results as follows. For each learning method, we first present the algorithm.

Then we present the results of simulations using that algorithm. The purpose of simulations is

to verify our qualitative reasoning about the behavior of the algorithm and illustrate how the

algorithm’s behavior compares to that of model-based dynamic programming methods. These

simulations also suggest experiments that could be used to identify whether an animal or

human were planning using such a strategy. Each task that we simulate is designed to be a cate-

gorical test of the algorithm. Following some change in the task to which the agent must

respond, some of the algorithms can arrive at the correct decision without additional experi-

ence, but other algorithms cannot. Such failures are due to the computational properties of the

algorithms themselves and are thus parameter-independent. To ensure that this is the case, for

each simulation presented in the results, we have verified that the qualitative result can be

observed robustly under a wide range of parameter settings. In general, there are parameter

settings under which models, which are demonstrated below to succeed in a given task, can be

made to fail it. However, there are no parameter settings under which a model that is shown

below to fail a given task will pass it (S1 Table).

For each algorithm, we discuss its biological plausibility as well as how that algorithm’s per-

formance lines up with that of animals.

Algorithm 1: The original successor representation (SR-TD)

The original SR [15] (which we call SR-TD) constructs the future state occupancy predictions

Mπ using a TD learning approach. This approach caches rows ofMπ and incrementally

updates them after transitioning from their corresponding states. Specifically, following each

state transition s! s0 each element of row s is updated as follows:

Mpðs; :Þ  Mpðs; :Þ þ aSR½1s þ gMpðs0; :Þ � Mpðs; :Þ�; ð10Þ

where 1s is the vector of all zeros except for a 1 in the sth position.Mπ(s,:) is used as input to

another TD learning stage, this time to learn the weights w for predicting expected future
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value from the state occupancy vector. To simulate SR-TD, we have the agent learnMπ and w
in parallel, updating each (according to Eqs 10 and 8, respectively) at each transition; and sam-

ple actions according to an �-greedy policy (see Methods).

Simulation results

SR-TD can solve some reward revaluation tasks. SR-TD is able to produce behavior

analogous to model-based learning in some reward revaluation tasks that categorically defeat

simple TD learning. To demonstrate this, we simulated the behavior of SR-TD in a grid-world

version of Tolman’s latent learning task (Fig 2A). The agent first explores the grid-world ran-

domly, during which it learns the successor matrixMπ corresponding to a random policy.

Next, it learns that reward is available at position R (importantly, by being placed repeatedly at

R and receiving reward, but not experiencing trajectories leading there from any other loca-

tion). This experience induces prediction errors that cause the agent to update its weight vec-

tor, w in the position corresponding to the rewarded state. Finally, in a test probe, we allow the

agent to form values by multiplying its current version ofMπ with w, and measure whether

(immediately on the first test trial following reward training) those values would produce a

policy reflective of the shortest path from position S to R.

Fig 4B shows SR-TD performance on a latent learning task: SR-TD can, without further

learning, produce a new policy reflecting the shortest path to the rewarded location (Fig 2B).

As a comparison to SR-TD’s performance, we also simulated the behavior of a simpler foil

algorithm that represents model-free (or, actually, limited model-based) performance. This

algorithm applied TD learning updates to non-predictive, punctate, state representations to

estimate V. As with the SR, we permitted this algorithm to convert state values to state-action

values by using a single-step of model-based look-ahead. Although this algorithm’s perfor-

mance is representative of the failure of fully model-free algorithms at solving these revaluation

tasks, we designed it to go beyond a vanilla model-free TD algorithm by allowing a single-step

of model-based lookahead. This is analogous to a limited sort of model-based learning that has

been suggested previously to be implemented by the basal ganglia and cerebellum [51]. Fig 4A

shows that this algorithm cannot solve latent learning problems: it learns nothing about paths

around the maze from the reward training, and would have to discover the path to the new

reward from scratch by additional exploration.

SR-TD cannot solve transition revaluation tasks. However, SR-TD is limited in its abil-

ity to react correctly to other seemingly similar manipulations. BecauseMπ reflects long-run

cumulative state occupancies, rather than the individual one-step transition distribution, P(s’|
s,a), SR-TD cannot adjust its valuations to local changes in the transitions without first updat-

ingMπ at different locations. This inflexibility prevents SR-TD from flexibly adjusting value

estimates after learning about changes in transition structure (“transition revaluation”; Fig

4B). Consider a grid-world version of Tolman’s detour task (Figs 2B and 4D). Here, following

an exploration period during which the agent is able to form an estimate ofMπ under a ran-

dom policy, the agent is trained to seek reward at R, starting from S. Later, a blockade is intro-

duced at B. Again, the agent is allowed to experience this change only locally, by repeatedly

being dropped in the state next to the barrier, attempting the action that leads to it and learn-

ing that the states to the right are no longer accessible from this state. This experience causes

the agent to updateMπ for the state immediately next to the barrier. However, despite this

update, the rows ofMπ corresponding to the states that lie along a path between the start state

and the state next to the barrier remain unchanged. From Eq 10, it can be seen that these

updates can only occur from direct experience, i.e., a series of new trajectories starting at these

states that encounter the barricade. SR-TD fails to reduce the value of these states (Fig 4D),
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and thus would approach the barricade rather than taking a detour on the first visit back to S.

As shown in supplemental materials, the depth-limited model-free algorithm also fails this test

(S1 Table). A fully model-based algorithm (not shown) does make the correct choice in this

case.

Interim discussion

Biological plausibility. The reward learning stage of this rule (learning weights w to map

Mπ(s,:) to Vπ(s)) is the standard dopaminergic TD rule, Eqs 4 and 8, operating over a new

Fig 4. Behavior of SR-TD. a) One-step of model-based lookahead combined with TD learning applied to punctate representations

cannot solve the latent learning task. Median value function (grayscale) and implied policy (arrows) are shown immediately after the

agent learns about reward in latent learning task. b) SR-TD can solve the latent learning task. Median value function (grayscale) and

implied policy (arrows) are shown immediately after the agent learns about reward in latent learning task. c) SR-TD can only update

predicted future state occupancies following direct experience with states and their multi-step successors. For instance, if SR-TD

were to learn that s” no longer follows s’, it would not be able to infer that state s” no longer follows state s. Whether animals make

this sort of inference is tested in the detour task. d) SR-TD cannot solve detour problems. Median value function (grayscale) and

implied policy (arrows) are shown after SR-TD encounters barrier in detour task. SR-TD fails to update decision policy to reflect the

new shortest path.

https://doi.org/10.1371/journal.pcbi.1005768.g004
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input. The update rule for that input,Mπ(s,:), is also based on a TD learning rule, but here

applied to learning to predict cumulative future state occupancies. This uses a vector-valued

error signal to update an entire row ofMπ at each step. Crucially, despite the functional simi-

larity between this rule and the TD update prescribed to dopamine, we do not suggest that

dopamine carries this second error signal. Neurally, this sort of learning might, instead, be

implemented using Hebbian associative learning between adjacent consecutive states [55],

with decaying eligibility traces (like TD(1)) to capture longer-run dependencies. Lastly,

although we have defined the successor representation over tabular representations of states, is

also possible to combine the SR with function approximation and distributed representations

in order to reduce its dimensionality [21,56].

Behavioral adequacy. SR-TD is capable of solving some reward revaluation experiments.

For similar reasons, SR-TD can solve sensory preconditioning (e.g. [37]) and reward devalua-

tion tasks (e.g. [6,28,35,36]), both of which turn on an analogous ability to update behavior

when state transition probabilities are held constant but reward values are changed. Evidence

for model-based behavior in animals and humans has typically come from these types of tasks,

suggesting that SR-TD could underlie a good proportion of behavior considered to be model-

based. However, SR-TD is incapable of solving seemingly analogous tasks that require replan-

ning under a transition rather than a reward change. Because there is at least some evidence

from the early literature [57] that animals can adapt correctly to such detour situations, we

suggest that this inflexibility prevents SR-TD, on its own, from being a plausible mechanism

for the full repertoire of model-based behavior.

Algorithm 2: Dynamic recomputation of the successor representation

(SR-MB)

Here, we explore a novel “model-based” approach, SR-MB, for constructing the expected state

occupancy vectorMπ(s,:). SR-MB learns a one-step transition model, Tπ and uses it, at decision

time, to derive a solution to Eq 9. One key constraint on a model-based implementation sug-

gested by the data is that the computation should be staged in a way consistent with the archi-

tecture suggested by Fig 1A. Specifically, the TD architecture in Fig 1A suggests that, because

the states are represented in cortex (or hippocampus) and weights (which capture information

about rewards) and value are represented in downstream cortico-striatal synapses and medium

spiny striatal neurons, information about R(s,a) and V(s) should not be used in the online con-

struction of states. For the SR approach, this implies thatM be constructed without using direct

knowledge of R(s,a) or V(s). As we see below, this serial architecture–a cortical state-prediction

stage providing input for a subcortical reward-prediction stage–if true, would impose interest-

ing limitations on the resulting behavior.

To constructMπ(s,:), SR-MB first learns the one-step state transition matrix Tπ, imple-

mented in our simulations through separate learning of P(s0|s,a) as well as π(a|s), the agent’s

previously expressed decision policy (see Methods). Prior to each decision, Tπ is used to com-

pute a solution to Eq 9. This solution can be expressed in either of two forms. A given row, s,
ofM can be computed individually as the sum of n-step transition probabilities starting from

state s:

Mpðs; :Þ ¼ 1T
s þ gTpðs; :Þ þ g2Tp2

ðs; :Þ þ g3Tp3

ðs; :Þ . . . ¼
P1

n¼0
gnTpnðs; :Þ ð11Þ

Alternatively, matrix inversion can be used to solve for the entire successor matrix at once:

Mp ¼ ðI � gTpÞ
� 1

ð12Þ
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To implement SR-MB, we use Eq 12. However, this is not a mechanistic commitment of the

model, since Eq 11 is equivalent.

GivenMπ, SR-MB learns the reward prediction weights w and forms V and Q values in the

same way as SR-TD.

Note finally that this scheme is similar to solving Eq 1 for on-policy values Vπ by value itera-

tion, except that the sums are rearranged to put state prediction upstream of reward predic-

tion, as per Eq 7 and in line with the neural architecture of Fig 1A. The max operator in Eq 2

prevents a similar rearrangement that would allow this scheme to be used for off-policy opti-

mal values V
�

(Eq 2), as discussed below. The restriction to on-policy values Vπ is the major

empirical signature of this version of the model.

Simulation results

SR-MB can solve transition revaluation tasks. Using an updated Tπ to recomputeMπ at

decision time ensures that behavior is sensitive to changes in the transition structure. We dem-

onstrate this by showing that unlike SR-TD, SR-MB successfully solves Tolman’s detour task

in addition to latent learning. In the detour task, after being dropped in the state next to the

barrier, SR-MB updates its estimate of P(s’|sa) for the sa leading into the barrier. This new P(s’|
sa) is then combined with the estimate of π(s,a) (learned through prior experience including

initial random exploration of the maze and then trials starting in S and ending in R) to com-

pute Tπ. The row of Tπ corresponding to the state next to the barrier at this point now no lon-

ger predicts transitioning into the barrier state. When the agent then recomputesMπ by Eq 12,

using the updated Tπ, rows ofMπ corresponding to the path between the start state and the

barrier no longer predict future occupancy of states on the other side of the barrier. WhenMπ

is then used to compute Vπ, the values immediately (on the first test trial after the barrier is

encountered) result in a policy reflective of the new shortest path (Fig 5A.)

SR-MB is limited by policy dependence. SR-MB is able to solve both tasks that have been

used as examples of planning in animals and humans. We thus sought to determine whether

there were any tasks, perhaps not yet explored in the empirical literature, that could differenti-

ate it from approaches that utilize “full” model-based value iteration. A key feature of SR-MB,

as well as SR-TD, is that it computesMπ with respect to a policy π. For SR-MB, Tπ is computed

using π(a|s), which is learned through observation of previous actions. BecauseMπ is policy

dependent, so are the value estimates that it produces. SR-TD and SR-MB are thus “on-policy”

methods–their estimates of Vπ can be compared to the estimates of a traditional model-based

approach used to solve Eq 1. A key limitation of “on-policy” methods is that their value esti-

mates are made with respect to the policy under which learning occurred. This is an important

limitation, as we will see below, because new learning about parts of the MDP can moot the

previously learned policy π (and hence invalidate the associated successor matrix and values).

For the successor representation strategy, this limitation could be bypassed if we could

computeM
�

–an “off-policy” successor matrix based on the successor states expected under the

optimal policy–which would, in turn provide the state input for solving for V
�

, the optimal

long-run values. However, given the architectural constraints we have suggested, computing

M
�

is not straightforward. In particular, defining Eq 9 with respect to the optimal policy would

require replacing Tπ with T�: the one-step transition matrix corresponding to the optimal pol-

icy, T
�

(s,s’) = P(s’|s,a
�

), where a
�

is the action in state s that maximizes future rewards. Comput-

ing a
�

online, however, would require access to R(s,a), which would violate the suggested serial

staging of the computation, thatM be constructed without using reward information. Policy

dependence of value predictions thus defines both the major limitation as well as the empirical

signature of SR-MB.
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SR-MB cannot solve novel policy revaluation tasks. What are the behavioral implica-

tions of SR-MB estimating values using the policy that was expressed during learning? Con-

sider a situation where state s’ can be reached from state s using action a, but SR-MB learned

from past behavior that π(a|s) is near 0 (Fig 5B). Then it will not include rewards at s’ in the

value of s, even if separately learning (say, by visiting s’ but not in a trajectory starting from s)

Fig 5. Behavior of SR-MB. a) SR-MB can solve the detour task. Median value function (grayscale) and implied policy (arrows) after SR-MB encounters

barrier. b) SR-MB determines successor states relative to a cached policy. If SR-MB learned from previous behavior that it will always select action a1, the

value of s would become insensitive to changes in reward at s2’. C) Novel “policy” revaluation task. After a phase of random exploration, we place a

reward in location R1. The agent completes a series of trials that alternatively start from locations S1 and S2 and end when R1 is reached. We then place

a larger reward in location R2 and record the agent’s value function and implied policy upon encountering it. d) SR-MB cannot solve the novel “policy”

revaluation task. Median value function and implied policy recorded immediately after SR-MB learns about reward placed in location R2. Notice that if the

agent were to start from location S1, its policy would suboptimally lead it to the smaller reward at R1.

https://doi.org/10.1371/journal.pcbi.1005768.g005
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that s’ is the most rewarding state reachable from s. In other words, caching of the policy at s
blinds the agent (without further exploration and relearning) to changes in the reward func-

tion that should change that policy. Value iteration based on Eq 2 does not have this limitation

because the max operation would look ahead to the reward at s’ to determine whether it should

be included.

These considerations suggest a novel revaluation task (Fig 5C). Here, SR-MB first performs

many trials where R1 is rewarded, starting from both S1 as well as a new start position, S2.

This experience causes the agent to learn a policy π(s,a) that reflects moves away from the bot-

tom right corner of the maze. Next, a larger reward is introduced at R2. Despite having learned

about this reward (by starting at R2 and updating w at the state corresponding to this location),

because computation ofMπ utilizes Tπ, which reflects moves away from the bottom right cor-

ner of the maze,Mπ does not predict the future occupancy of state R2 from any state along a

path starting at S1. Because of this, the values of these states do not update to include the newly

updated parts of the weight vector corresponding to position R2. Thus, despite the higher

reward in R2, the agent would choose to head toward R1 from S1, due to caching of the incor-

rect policy in Tπ (Fig 5D). Thus, this task defeats SR-MB (as well as, shown in supplemental

materials, the depth limited model-free planners and SR-TD; see also [22]), though it can be

solved by standard model-based learning using Eq 2.

Interim discussion

Biological plausibility. SR-MB requires the brain to computeMπ(s,:) from Tπ(s,:) for a

particular state s under evaluation. Although in our simulations, we used Eq 12 to compute

the entire successor matrix at once, this is not a mechanistic commitment of the model. For

instance, recurrent neural networks offer a simple way to computeMπ(s,:) based on spreading

activation implementing Eq 11. Consider a network with one node for each state and the

weight between node s and node s’ set to γTπ(s,s0). If node s is activated, then at each successive

time step, the network activity will represent each successive component of the sum. Indeed,

this model arose in the early connectionist literature [17].

Alternatively, it is also well established that recurrent neural networks can perform matrix

inversion by relaxing to an attractor [58], making a computation based on Eq 12 plausible as

well.

A final mechanism for computingM from Twould involve sampling transitions from T off-

line and using them to iteratively updateM according to Eq 10, the SR-TD update. In the fol-

lowing section, we explore how an approach based on this idea, when carried out over state-

actions, can be used to solve the “off-policy” planning problem as well.

Behavioral adequacy. SR-MB produces the two behaviors that are considered signatures

of planning in the empirical literature: immediate adjustment of decision policy following

learned changes in either reward structure (latent learning) or transition structure (detour

problem). The novel policy revaluation task demonstrates that SR-MB still produces errors

that could in principle be behaviorally detectable, but have not been exercised by standard

experimental tasks [59].

Algorithm 3: Off-policy experience resampling (SR-Dyna)

Here we introduce a third approach towards solving Eq 9, SR-Dyna, which can be compared

to Sutton’s Dyna approach [27] for solving Eqs 1 and 2. Akin to how Dyna replays experienced

transitions offline to update estimates of V(s), SR-Dyna replays experienced transitions to

update the successor matrix. When this approach is combined with an ‘off-policy’ update rule,

similar to Q learning, to update the successor matrix offline, it is capable of solving the off-
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policy planning problem. Utilizing this type of update, however, requires us to work with a

state-action version of the successor representation, H, which can be used directly to form Q
values [60,61]. The key idea here is to define future occupancy not over states but over state/

action pairs, sa. Analogous to Eq 5, Qπ can then be expressed:

QpðsaÞ ¼
P

s0a0Hðsa; s
0a0ÞRðs0a0Þ; ð13Þ

H is a matrix of expected cumulative discounted future state-action visitations, i.e. given

that you are starting with state s and action a, the cumulative (discounted) expected number of

times you will encounter each other state/action pair:

Hðsa; s0a0Þ ¼ E½
P1

t¼0
gtIðsat ¼ s0a0Þjsa0 ¼ sa�: ð14Þ

H can then be used as a linear basis for learning Q(s,a), using the SARSA TD algorithm to

learn a weight for each column ofH. In particular, when state-action s’a’ is performed after

state action sa, a prediction error is calculated and used to update w:

d ¼ RðsaÞ þ gQðs0a0Þ � QðsaÞ ð15Þ

wðiÞ  wðiÞ þ aTDdHðsa; iÞ; for all i

LikeM,H can be defined recursively:

Hðs; :Þ ¼ 1sa þ g
P

s0T
pðsa; s0a0ÞHðs0a0; :Þ ð16Þ

where Tπ is the one-step state-action transition matrix, Tpðsa; s0a0Þ ¼
P

s0
P

a0Pðs
0js; aÞpða0js0Þ.

As with SR-TD, this recursion can be used to derive a TD-like update rule by which an esti-

mate ofH can be iteratively updated:

Hðsa; �Þ  Hðsa; �Þ þ aSR½1sa þ gHðs0a0; �Þ � Hðsa; �Þ� ð17Þ

As with SR-MB, it is also possible to deriveH from Tπ(sa,s0a0) using an explicit “model-

based” solution analogous to Eq 9. However, here, we investigate the approach of updating H
off-line (e.g., between trials or during rest periods) using replay of experienced trajectories

(e.g. [62]). The key assumption we make is that this off-line replay can sequentially activate

both the state and reward (cortical and basal ganglia) stages of Fig 1A, giving rise to an off-pol-

icy update ofH with respect to the policy π
�

that is optimal given the current rewards. By com-

parison, as articulated above, we assumed such policy maximization was not possible when

computing the successor representation M on-line for SR-MB, since this entire computation

was supposed to happen in cortex at decision time, upstream of the striatal reward learning

stage.

Following each transition, SR-Dyna stores the sample (s,a,s’). Then in between decisions,

SR-Dyna randomly selects (with a recency weighted bias) k samples (with replacement). For

each sample, it updates H as follows:

Hðsa; �Þ  Hðsa; �Þ þ aSR½1sa þ gHðs0a0�; �Þ � Hðsa; �Þ� ð18Þ

where

a0� ¼ argmaxa0
X

s00a00
Hðs0a0; s00a00Þwðs00a00Þ

That is, whenH updates from previously experienced samples, it performs an off-policy

update using the best action it could have chosen, rather than the one it actually chose.
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Simulation results

SR-Dyna can solve policy revaluation tasks. Given sufficient sampling (large enough k),

this off-policy updating not only permits SR-Dyna to solve the detour task, but also to solve

the novel policy revaluation task (Fig 6A). In the policy revaluation task, after the agent is

introduced to the new reward in R2, and updates w, we permit it to draw 10,000 random

Fig 6. Comparison of SR-Dyna and Dyna-Q. Median value function (grayscale) and implied policy after each algorithm (row)

learns about relevant change in each of the 3 tasks (column). Both SR-Dyna (a) and Dyna-Q (b) can solve all 3 tasks when a

sufficient number of samples backed up. c) Without a sufficient number of samples, SR-Dyna can still solve the latent learning task.

d) Without a sufficient number of samples, Dyna-Q cannot solve any of the 3 tasks.

https://doi.org/10.1371/journal.pcbi.1005768.g006
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samples from memory and perform an update for each. With each sample drawn, SR-Dyna

partially adjusts the predictions of future state occupancies from a given state action sa, so that

they become closer to the predictions of future state occupancies from s’a
�

, where a
�

is chosen

with consideration of the newly updated w. Such updates thus allow SR-Dyna to re-learn a

new version ofHπ, corresponding to the policy that would result from repeated choices under

the updated w. Once updated,Hπ comes to reflect prediction of future states reflective of a pol-

icy that moves towards the new highest reward in the bottom right of the maze. When the

updatedHπ is then used to compute new values (on the first test trial following the policy

retraining), those values result in a policy that would bring the agent from S to the new highest

reward in R2 along the shortest path. This simulation demonstrates that SR-Dyna can thus

produce behavior identical to “full” model-based value iteration in this task (as well as the

other revaluation tasks previously simulated, as shown in Fig 6). However, it has the potential

advantage that updating can take place fully off-line and thus offload computation to situations

that may be ecologically convenient such as sleep or wakeful rest.

Time constraints can distinguish SR-Dyna from Dyna-Q. SR-Dyna is capable of behav-

ing equivalently to dynamic programming and tree-search in that it can solve transition and

policy revaluation tasks. We were thus interested in how it could be differentiated experimen-

tally. Sutton’s original Dyna algorithm (Dyna-Q) differs from value iteration and tree search in

that its ability to pass revaluation experiments is dependent on having enough time offline to

perform sufficient number of sample backups. Given enough time between decisions, suffi-

cient replay can occur and Dyna-Q can pass any type of revaluation task (Fig 6B). In contrast,

without sufficient offline replay, Dyna-Q degrades to a model-free agent and it cannot pass

any revaluation task (Fig 6D). SR-Dyna is similarly differentiated from tree-search and value

iteration in that its flexibility depends on completing a sufficient number of sample backups

offline. As demonstrated above, given a sufficient number of backups, SR-Dyna can pass any

type of revaluation (Fig 6A). Without sufficient replay, its performance degrades to that of

SR-TD–it can pass reward revaluation but fails transition and policy revaluation (Fig 6C).

SR-Dyna is thus differentiated from Dyna-Q in that, unlike Dyna-Q, without sufficient replay,

it can still pass reward revaluation; that is, it retains a certain degree of “model-based” flexibil-

ity even in the degraded case. These predictions could be tested with experimental designs

aimed at preventing replay by manipulating the length of rest periods or the difficulty of dis-

tractor tasks [27].

Time constraints or distractor tasks at decision time can also disambiguate the different

algorithms. Tree-search and value iteration take time and effort at decision time, whereas

SR-Dyna can support rapid action selection by inspecting its lookup table.

Interim discussion

Biological plausibility. Following real experience, SR-Dyna uses a similar update rule as

SR-TD, yet uses it to operate over state-actions rather than states. This is plausible given that

the same Hebbian learning principles could operate over cortical or hippocampal representa-

tions of state/action conjunctions just as well as they could over states.

As with Dyna-Q, SR-Dyna dovetails nicely with neural evidence about memory replay.

Specifically, the widely demonstrated phenomenon of reactivation during rest or sleep of

sequences of hippocampal activity seen during prior experiences [63,64], seems well suited to

support the sort of off-line updates imagined by both Dyna approaches. (Although we have

not simulated realistic hippocampal replay dynamics here, the Dyna approaches can learn

from experiences replayed in arbitrary order.) The successor matrix updated by SR-Dyna

might itself exist in the recurrent connections of hippocampal neurons [18], though another
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intriguing possibility is that it is instead stored in prefrontal cortex (as in Fig 1B). This second

possibility lines up neatly with complementary system theories in the memory literature,

according to which such hippocampal replay plays a role in post-encoding consolidation of

memories by restructuring how information is represented across neocortical networks

[65,66]. Such a connection should be explored in future research.

Behavioral adequacy. Given sufficient replay, SR-Dyna is capable of producing behavior

as flexible as that of full model-based value iteration. As with Dyna-Q, practical applications of

SR-Dyna in larger environments will require developing sophisticated methods for selecting

which samples to replay (e.g. [67]). We intend to develop such methods in future work.

Discussion

Despite evidence that animals engage in flexible behaviors suggestive of model-based planning,

we have little knowledge of how these computations are actually performed in the brain. Indeed,

what evidence we have–particularly concerning the involvement of dopamine in these compu-

tations–seems difficult to reconcile with the standard abstract computational picture of plan-

ning by tree search using a learned model. We have here proposed variants of the SR that can

address this question, serving as empirically consistent mechanisms for some or indeed all of

the behaviors associated with model-based learning. Moreover, these are each built as utilizing a

common TD learning stage for reward expectancies, allowing them to fit within the systems-

level picture suggested by rodent lesion studies, and also explaining the involvement of dopa-

mine in model-based valuation. In particular, they each envision how model-based learning

could arise from the same dopaminergic TD learning associated with simple model-free learn-

ing, operating over a different and more elaborated cortical input representation.

Accounting for TD circuitry in apparently model-based behavior

More specifically, our motivation to develop this approach was based on three related sets of

findings in the empirical literature. The first are that lesions to dorsomedial striatum prevent

animals from adjusting preferences following reward revaluation [5]. In contrast, lesions to

neighboring dorsolateral striatum cause rats to maintain devaluation sensitivity, even follow-

ing overtraining [40]. In the framework presented here, neurons in dorsomedial striatum

could represent values derived by applying TD learning to the successor representation and

neurons in dorsolateral striatum could represent values derived by applying TD to tabular rep-

resentations. Lesions to dorsomedial striatum would thus force the animal to work with values

in dorsolateral striatum, derived from tabular representations and thus not sensitive to devalu-

ation. In contrast, lesions to dorsolateral striatum would cause the brain to work with values

derived from the SR, which are devaluation-sensitive.

The second set of findings include several reports that the phasic DA response (or analo-

gous prediction error related BOLD signals in humans) tracks apparently model-based infor-

mation [6,11]. We have focused our simulations on choice behavior, and have not presented

our theories’ analogous predictions about the responses of neurons, such as DA cells, thought

to signal decision variables. However, whenever the SR algorithms’ expectations about action

values incorporate "model-based" information (such as latent learning, Fig 4A) neural signals

related to those predictions and to prediction errors would be similarly informed. Thus the

theories predict systematic expectancy-related effects in the modeled dopamine response,

tracking the differences in choice preference relative to the standard “model-free” accounts,

which are blind to reward contingencies in these tasks.

A third distinct set of findings also speaks to a relationship between dopamine and model-

based learning. These are reports that several measures of dopaminergic efficiency (both causal
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and correlational) track the degree to which human subjects engage in model-based decision

strategies in both multistep reward revaluation tasks and multiplayer games [7–10,68]. One

possibility is that these effects reflect strengthened vs. weakened phasic dopaminergic signal-

ing, which in our model controls reward learning for SR-based “model-based” estimates in

dorsomedial striatum. However, this account does not explain the specificity of these effects to

measures of putative model-based (vs. model-free) learning. These effects may instead be

related to functions of dopamine other than prediction error signaling, such as tonic dopa-

mine’s involvement supporting working memory [69] or its hypothesized role controlling the

allocation of cognitive effort [41,70,71].

Other potential explanations

The framework outlined in this paper is not the only direction toward a neurobiologically

explicit theory of putatively model-based behavior, nor even the only suggestion explaining

the involvement of dopamine. As discussed above and pointed out in [28], Sutton’s original

Dyna algorithm–in which experience replayed offline is used to update action values V or Q
directly–offers another avenue by which seemingly model-based flexibility can be built on the

foundation of the standard prediction error model of dopamine. This is a promising piece of

the puzzle, but exclusive reliance on replay to underpin all behavioral flexibility seems unrealis-

tic. Among our innovations here is to suggest that replay can also be used to learn and update

a successor representation, which then confers many of the other advantages of model-based

learning (such as flexibility in the face of reward devaluation) without the dependence on fur-

ther replay to replan. Furthermore, the addition of SR to the Dyna framework explains a num-

ber of phenomena that replay, on its own, does not. For instance, given that Dyna-Q works

with a single set of cached Q values, updated through both experience and replay, it is not clear

how it could, on its own, explain the apparent segregation of revaluation sensitive and insensi-

tive value estimates in dorsomedial and dorsolateral striatum [5,40].

Another potential solution to some of the puzzles motivating this work is that dopamine

could have a role in action selection, as part of a circuit for partial model-based action evalua-

tion [47]. According to this idea, dopamine neurons could compute a prediction error measur-

ing the difference between the value of the current state and the future value of a predicted

successor state, caused by a given candidate action. The size of this prediction error could then

determine whether the action is performed. This mechanism would endow the brain with a

single step of model-based prediction. However, it is not straightforward how this sort of

approach could underlie model-based learning in tasks requiring more than a single step of

prediction, and accordingly our simulations (see Fig 4A and supplemental materials) show

that it cannot solve any of the revaluation tasks considered here, which all probe for deeper

search through the state space. A recent study provided convincing behavioral evidence that

humans sometimes simplify model-based action selection by combining just one step of state

prediction with cached successor state values [72]. Yet this same study along with others [52]

also provided evidence that humans can plan through more than one step and thus are not

confined to this approximation. It is also not straightforward how this sort of mechanism

could endow model-based predictions in cases where stochasticity requires consideration of

“trees” of possible future states.

Nevertheless, by elucidating a more general framework in which a predictive state represen-

tation may feed into downstream dopaminergic reward learning, we view our framework as

fleshing out the spirit of this suggestion while also addressing these issues. We similarly realize

other conceptual suggestions in the literature suggesting that more flexible model-based like

behavior may arise not through tree-search like planning, but rather by applying model-free
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RL to more sophisticated state representations [73]. A more specific application of this idea,

[74] demonstrated that a sophisticated representation that includes reward history can pro-

duce model-based like behavior in the two-step reward revaluation task. The successor repre-

sentation adds to this work by clarifying for any task’s transition structure, the precise

representation that can be used to generate model-based behavior.

Relatedly, because it places model-based state prediction in the input to a standard TD

learning circuit, our framework could easily be extended to include several modules with

inputs corresponding to several different types or granularities of models: for instance, varying

degrees of temporal abstraction corresponding to different time discount factors in Eq 6

[46,75]. This would parallel a number of other recent suggestions that different striatal loops

model the world at different levels of hierarchical abstraction [47,76], while also harmonizing

the somewhat underspecified model-based evaluation process these theories assume with the

predominant temporal difference account of striatal learning.

Multiplicity and arbitration

Although our presentation culminated with proposing an algorithm (SR-Dyna) that can in

principle perform equivalently to full model-based learning using value iteration, this need not

be the only goal and there need not be only a single answer. The behaviors associated with

model-based learning may not have unitary sources in the brain but may instead be multiply

determined. All of the algorithms we have considered are viable candidate pieces of a larger set

of decision systems. Notably, the experiments we have highlighted as suggesting striatal or

dopaminergic involvement in “model-based” learning and inspiring the present work all use

extremely shallow planning problems (e.g. operant lever pressing, two-stimulus Pavlovian

sequences, or two-step MDPs) together with reward revaluation designs. Even SR-TD is suffi-

cient to explain these. It may well be that planning in other tasks, like chess, or in spatial

mazes, is supported by entirely different circuits that really do implement something like tree

search; or that they differentially require replay, like SR-Dyna. Also, although replay-based

approaches go a long way, value computation at choice time using more traditional model-

based approaches is likely needed at the very least to explain the ability to evaluate truly novel

options (like the value of “tea jelly”; [77]) using semantic knowledge. Some evidence that

rodents may use more than just replay to compute values, even in spatial tasks, comes from

findings that the prevalence of sharp-wave-ripples, a putative sign of replay, is inversely related

to the prevalence of vicarious trial and error behaviors, a process thought to be involved in

decision-time value computation, potentially by standard MB dynamic programming or alter-

natively SR-MB [78].

Relatedly, if the brain might cache both endpoint decision variables like Q, or their precur-

sors likeM, update either or both with off-line replay, and optionally engage in further model-

based recomputation at choice time, then the arbitration or control question of how the brain

prioritizes all this computation to harvest rewards most effectively and efficiently becomes sub-

stantially more complicated than previously considered. The prioritization of replay–which

memories to replay when–becomes particularly important. The particular ordering and

dynamics of replay are also outside our modeling here: in order to focus our investigation on

the simplest behavioral predictions of SR-Dyna, we chose the simplest, naive sampling scheme

in which the agent replays a single state-action-state transition with uniformly random proba-

bility. This sampling strategy is not a mechanistic commitment (nor of course does it reflect

the dynamics of realistic hippocampal replay trajectories), and we expect that like Dyna-Q,

SR-Dyna would work even more efficiently given more sophisticated replay prioritization

schemes. In this regard, we expect that the prioritization of replay, like the arbitration between
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model-based vs model-free tradeoffs [1,41,79], might operate according to the principles of

efficient cost-benefit management. We expect that in addition to more typical observed pat-

terns of replay, such a scheme may be able to explain cases where the replayed sequences are

not a simple reflection of the animal’s current policy [80]. The current model is robust to dif-

ferences in replay but would need to be extended with a more principled and detailed replay

model to address these questions.

Future experimental work

With simulations, we have presented experiments that could be used to elicit recognizable

behavior form the different algorithms proposed here. Although we ruled out the simplest

approach, SR-TD, due to its inflexibility, it is worth more carefully considering the evidence

against it. The main counterexamples to SR-TD are transition revaluation and detour tasks.

Apart from the classic work of Tolman and Honzik [57], the original results of which are actu-

ally quite mixed (see [81]), there is surprisingly little evidence to go on. A number of different

studies have shown that healthy animals will normally choose the shortest alternative route

after learning about a blockade preventing a previously preferred route (e.g. [82–84]). How-

ever, in these studies, the animal learns about the blockade after starting from the maze starting

location. Thus, unlike in our simulations in which the animal learns about the blockade in iso-

lation, animals in these tasks would have the opportunity to learn from direct experience that

maze locations leading up to the blockade are no longer followed by maze locations further

along the previously preferred path. Such tasks could thus potentially be solved by SR-TD.

Studies that show that animals will take a shortcut to a goal that is discovered along a preferred

path present a somewhat cleaner test for SR-TD [85,86]; however it is often difficult to inter-

pret a potential role of exploration or visual (rather than cognitive map) guidance in the result-

ing behavior. Work in humans, however, seems to more clearly suggest an ability to solve

detour tasks without re-learning [87]. Simon and Daw [24] for instance directly assessed

SR-TD’s fit to human subjects’ choice adjustments in a changing spatial maze, and found it fit

poorly relative to traditional model-based learning.

Overall, additional careful work that measures how animals respond to transition changes,

learned in isolation, is needed. Whereas Tolman’s other early reward revaluation experiments

(latent learning) have been conceptually replicated in many modern, non-spatial tasks like

instrumental reward devaluation and sensory preconditioning, the same is not true of detours.

Indeed, the modern operant task that is often presented as analogous to detours, so-called

instrumental contingency degradation (e.g., [88]), is not functionally equivalent. In such tasks,

the association between an action and its outcome is degraded through introduction of back-

ground rewards. However, because the information about the changed contingency is not pre-

sented separately from the rest of the experience about actions and their rewards, unlike all the

other tests discussed here, contingency degradation as it has been studied in instrumental con-

ditioning can actually be solved by a simple model-free learner that re-learns the new action

values. The puzzle here is actually not how animals can solve the task, but why they should

ever fail to solve it. This has thus led to a critique not of model-based but of model-free learn-

ing theories [47].

In any case, the modeling considerations proposed here suggest that more careful labora-

tory work on “transition revaluation” type changes to detect use of SR-TD, is warranted. Simi-

larly, “policy revaluations” along the lines of that in Fig 5 would be useful to detect to what

extent planning along the lines of SR-MB is contributing. Finally, although SR-Dyna in princi-

ple can perform model-based value computation, this depends on sufficient replay. The

SR-Dyna hypothesis suggests the testable prediction that behavior should degrade to SR-TD
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under conditions when replay can contribute less. A number of experiments in the rodent lit-

erature have explored the behavioral deficits that result from interrupting sharp-wave ripples

(events in which hippocampal replay is known to occur). Such manipulations have been

shown to produce behavioral deficits that are consistent with the SR-Dyna hypothesis, yet not

exclusively predicted by it. For instance, two studies found that suppression of hippocampal

sharp-wave ripples during rest slows down acquisition of the correct behavioral policy in spa-

tial learning tasks in which the task environment is static [89,90]. These results are consistent

with the notion that the purpose of replay is to provide additional experience, which is used to

update some representation relevant to learning. However, these results are not specifically

diagnostic of the successor matrix. For instance, preventing replay would slow down policy

acquisition for Dyna-Q as well as SR-Dyna (S2 Fig).

Another study found a more specific effect of suppressing hippocampal sharp wave ripples

during performance of a task. Here, the manipulation caused learning deficits selective for a

subset of trials in which animals faced a hidden-state problem. In particular, these were trials

in which animals had to choose which direction to turn depending on the events of the previ-

ous trial [91]. Such tasks constitute hidden-state problems, in that the “state” required to make

the correct choice cannot be deduced entirely from an animal’s immediate sensory experience.

In RL terms, to solve these problems, the animals must construct an augmented internal state,

distinct from a simple representation of the immediate sensory situation [92]. One interpreta-

tion of the experimental result is that blocking replay interfered with this internal state con-

struction process.

This result resonates with our SR-Dyna proposal, which also posits that replay is involved

in constructing the mapping between the sensory state and a different, augmented internal

representation of it: the SR. However, our model as currently specified augments the state

space with predictive features to support model-based flexibility, and does not currently

address other sorts of elaborations of the state input that have been used in other work to facili-

tate learning in situations with hidden state or other uncertain sensory input [93–95]. Fully

understanding these results therefore requires augmenting our model to address hidden state

as well as state prediction. In fact, these two functions may be closely related: a number of

approaches to the hidden state problem in the computational RL literature address it using

predictive representations that are related to the SR [96,97].

In human studies, factors like the duration of off-task rest periods and presence of distrac-

tor tasks during such periods have been manipulated to extend, limit, or interfere with replay.

Some evidence suggests that distractor tasks at decision time have no effect on reward revalua-

tion [27], consistent with SR-Dyna. Other recent work has demonstrated that humans benefit

from additional pre-decision time in revaluation tasks that closely resemble “policy revalua-

tion” [98] and that this benefit recruits a network including the prefrontal cortex and basal

ganglia. Such work is consistent with the predictions of both Dyna-Q as well as SR-Dyna

accounts of value updating presented here.

Overall, future work will need to combine such manipulations of replay, with the three

revaluation tasks imagined in this paper and demonstrate differences in the effects of manipu-

lations on reward versus transition and policy revaluations. We have recently demonstrated,

though without attempting to manipulate replay, that humans are worse at adjusting behavior

following transition and policy revaluations compared to reward revaluations, suggesting that

they may at least partially use either an SR-TD or SR-Dyna (with limited sample backups)

strategy for evaluation [59].
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Neural substrate of the successor representation

We have suggested, on the basis of rodent lesion studies, that the SR may be encoded in parts

of prefrontal cortex that project to dorosomedial striatum. However, we should note that

recent work has also implicated the hippocampus as a potential site of the SR. Specifically, a

state-state version of the SR can explain some properties of hippocampal place cells [18,99] as

well as fMRI measures of the representation of visual stimuli in tasks where such stimuli are

presented sequentially [100,101]. This work has largely built on ideas of the hippocampus in

general as a site of cognitive map [102] as well as prior suggestions that hippocampal place

cells may in fact encode the transition structure of the environment [103] and that such transi-

tion information may make them ideal basis functions for TD learning [104] If a state version

of the SR exists in the hippocampus, we think it is reasonable that value weights would be

leaned by neurons connecting the hippocampus to ventral striatum, in the same TD manner

discussed in this paper.

However, we also think a case can be made for the prefrontal cortex as another candidate

basis for an SR. In addition to the rodent lesion evidence reviewed in the introduction of this

paper, the prefrontal cortex shares many cognitive-map properties observed in the hippocam-

pus [105] and has been suggested to be the basis of state representations for reinforcement

learning [93,106]. A number of human studies have demonstrated the PFC’s role in the repre-

sentation of prospective goals [107,108]. Furthermore, unlike the hippocampus, parts of the

PFC appear to be involved in action representation in addition to state representation [109],

thus making it a candidate to hold a potential state-action version of the successor matrix.

Importantly, these proposals are in no way mutually exclusive. For instance, recent work has

demonstrated that hippocampal output is necessary for preserving PFC representations of task

structure [110]. Overall, further experimental work will be required to determine whether

either or indeed both these areas serves as the basis for the successor representation, and what

specific roles they play in learning and representation.

Connection to other cognitive processes

Finally, the SR may contribute to a number of other cognitive processes. Above we noted that

there is evidence that areas of medial temporal lobe seem to encode predictive representations.

In line with this, it has been noted that there is a close correspondence between the update rule

used by SR-TD and update rules in the temporal context model of memory [19]. Also, recent

approaches to reinforcement learning in the brain have advocated for a hierarchical approach

in which punctate actions are supplemented by temporally abstract policies [111]. In this con-

text, it has been suggested that the SR may be useful for discovering useful temporal abstrac-

tions by identifying bottlenecks in the state space that can then be used to organize states and

action into a hierarchy [18,112]. The efficacy of the SR for model-based RL opens the possibil-

ity that the brain accomplishes planning, action chunking, and grouping episodic memories

using a common mechanism.

Overall, this article has laid out a family of candidate mechanistic hypotheses for explaining

the full range of behaviors typically associated with model-based learning, while connecting

them with the circuitry for model-free learning as currently understood. In addition to the

transition and policy revaluation behavioral experiments suggested above, future neuroimag-

ing work could seek evidence for these hypotheses. Specifically, failures to flexibly update deci-

sion policies that are caused by caching of either the successor representation (as in SR-TD or

SR-Dyna with insufficient replay) or a decision policy (as in SR-MB) should be accompanied

by neural markers of non-updated future state occupancy predictions. Such neural markers

could be identified using representational similarity analysis (e.g. [113]), cross-stimulus
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suppression (e.g. [114]) or through use of category specific, decodable, visual stimuli (e.g.

[115]). Similar work in experimental animals such as rodents (e.g. [116]) could use the full

range of invasive tools to trace the inputs to dorsomedial vs. dorsolateral striatum, so as to

examine the information represented there and how it changes following the various sorts of

revaluation manipulations discussed here. As has been the case for model-free learning, the

emergence of an increasingly clear and quantitative taxonomy of different candidate algo-

rithms is likely to guide this work and help to elucidate the neural basis of model-based

learning.

Methods

General simulation methods

All simulations were carried out in 10x10 (N = 100 states) grid-worlds in which the agent

could move in any of the four cardinal directions, unless a wall blocked such a movement.

States with rewards contained a single action. Upon selecting that action, the agent received

the reward and was taken to a terminal state. Each task was simulated with each algorithm 500

times. For each simulation, we recorded the agent’s value function at certain points. For

SR-Dyna, which worked with action values rather than state values, the state value function

was computed as the max action value available in that state. Figures display the median value,

for each state, over the 500 runs. To determine the implied policy for the median value func-

tion, we computed, for each state, which accessible successor state had the maximum median

value.

Specific task procedures

Latent learning task. The latent learning task was simulated in the grid-world environ-

ment shown in Fig 2A. Starting from position S, the agent first took 25000 steps exploring the

maze. After exploration, the reward in position R1 was raised to 10. To learn about the reward,

the agent completed a single step, starting from position R1, 20 times. We then recorded the

state value function.

Detour task. The detour task was simulated using the grid-world environment shown in

Fig 2B. Starting from position S, the agent first took 10000 steps exploring the maze. The

reward in position R was then increased to 10. The agent then completed 5 trials, starting from

position S that ended when the reward was reached. A wall was then added to in position B.

To learn about the wall, the agent completed a single step, starting from the position immedi-

ately left of the wall, 40 times. We then recorded the state value function.

Novel revaluation task. The novel revaluation task was simulated using the environment

in Fig 5C. The agent first completed the entire latent learning task. After successfully reaching

position R1 from position S, the agent then completed 20 trials. Each trial alternately started at

S1 or S2 and ended when the agent reached position R1. We then set the reward in position R2

to 20. To learn about the new reward, the agent completed one step, starting from position R2,

20 times. We then recorded the state value function.

Additional details on algorithms

One-step look-ahead. The one-step look-ahead model stored an estimate of state-value

function Vπ(s). At the beginning of each simulation Vπ was initilzled to 0. Following each tran-

sition Vπ was updated according to Eq 4. Prior to each choice, Q-values for each action a in

state s were then computed as Qπ(s,a) = Vπ(s’) where s’ is the state that deterministically follows

action a in state s. Note that leaving R(s,a) out of this equation works because rewards are
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paired exclusively with actions in terminal states (and thus R(s,a) for non-terminal actions

is 0).

Original successor representation (SR-TD). SR-TD computed Vπ(s) using two struc-

tures: the successor matrix,Mπ(s,s’) and a weight vector, w(s). At the beginning of each simula-

tion,Mπ was initialized as an identity matrix; however, rows corresponding to terminal states

were set to 0. The weight vector was initialized as w = 0. Following each transition,M and w
were updated using Eqs (8) and (10). In implementing the update in Eq 8, each element of the

feature vector,M(s,:), was scaled byM(s,:) � M(s,:)T. This scaling permits the weight learning

rate parameter to maintain a consistent interpretation as proportional step-size. Prior to each

choice, V was computed using Eq (7). Q-values for each action were computed the same as for

the one-step look-ahead model.

Recomputation of the successor matrix (SR-MB). This algorithm starts each task with a

basic knowledge of the ‘physics’ of grid-world: which successor state, s’, would follow each

action sa in a situation in which sa is available (e.g. not blocked by a wall). It also stores and

updates, for each state s, As, the set of actions currently available in state s as well as a policy π
(a|s), which stores the probability of selecting action a in state s (as learned from the agent’s

own previous choices). As was initialized to reflect all four cardinal actions being available in

each state. Each row π were initialized as a uniform distribution over state-actions, π(a|s) =

0.25.

After performing action a in state s and transitioning to state s’, As’ was updated to reflect

which actions are available in state s’ and π is updated using a delta rule:

pð: jsÞ  ap1a þ ð1 � apÞpð: jsÞ

where απ is a free parameter.

Prior to each choice, the model computed each row, s, of one-step transition matrix Tπ as

follows:

Tp s; :ð Þ ¼
P

a2AS
pðajsÞ1s0

P
a2AS

pðajsÞ

where 1s0 is a vector zeros of length S with a 1 in position corresponding to state s’ and s’ is the

state to which action a in state s deterministically leads. Tπ was then used to compute M using

Eq 12. Computation of V and Q was then the same as in SR-TD.

Episodic replay algorithm (SR-Dyna). This algorithm computed Q(sa) using two struc-

tures: a state-action successor matrix,H(sa,s’a’) and weight vector w(sa). At the beginning of

each simulation, the successor matrixH was initialized to an identity matrix; however rows

corresponding to terminal states were set to 0. The weight vector was initialized to w = 0. The

algorithm also stored every sample (s,a,s’). After performing action a in state s and transition-

ing to state s’ the sample (s’,a’,s’) was stored, andH and w were updated according to Eqs (15)

and (17). Following each step, we also selected 10 one-step samples (according to recency

weighted probabilities with replacement) from the stored history, and replayed each to update

H according to Eq 18. Following transitions in which a learned change occurred to either the

reward function or available actions, k one-step samples were selected and used to update the

model, where k was set to 10 in the insufficient replay condition and to 10000 in the sufficient

replay condition. Samples were drawn by first selecting a state-action, sa, from a uniform dis-

tribution. A sample then drawn from the set of experienced samples, initiated in sa, according

to an in, initiated from sa was then selected according to an exponential distribution with λ =

1/5.
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Dyna-Q: This algorithm stored Q(sa). At the beginning of each simulation, Q was initial-

ized to 0. The algorithm also stored every experienced sample (s,a,r,s’). After performing action

a in state s, experiencing reward r, and transitioning to state s’ the sample (s’,a’,r,s’) was stored

and Q was updated according to the Q-learning prediction error:

d ¼ RðsaÞ þ g maxa0�Qðs
0a0�Þ � QðsaÞ

QðsaÞ  QðsaÞ þ aQd

Following each step, as with SR-Dya, we also selected 10 one-step samples (according to

recency weighted probabilities with replacement) from the stored history, and replayed each

to update Q according to equation the update above. Following transitions in which a learned

change occurred to either the reward function or available actions, k one-step samples were

selected and used to update the model, where k was set to 10 in the insufficient replay condi-

tion and to 10000 in the sufficient replay condition. Samples were drawn the same way as in

SR-Dyna.

Parameters. All algorithms converted Q-values to actions using an �-greedy policy which

selects the highest-valued action with probability 1 – �, and chooses randomly with probability

�. Parameters for all models and each simulation were varied and we observed that the qualita-

tive results can be observed under a wide range of parameter settings (S1 Table). For the fig-

ures in the results section, the following parameters were used. For all models, � was set to 0.1.

In addition, all models used a discount parameter γ = 0.95. The three SR models used a weight

learning rate parameter αw = 0.3. Model Dyna-Q used a learning rate αQ = 0.3. In addition to

these parameters, SR-TD and SR-Dyna used a successor-matrix learning rate of αsr = 0.3 and

SR-MB used a policy learning rate of απ = 0.1.

Supporting information

S1 Fig. Advantage of TD learning over direct reward learning of weights. a) Task environ-

ment. On each trial, the agent was placed in state S. Trials ended when the agent reached state

R, which contained a reward value of 10. Unlike the latent learning task in the main text, this

task did not contain an exploratory period enabling the agent to learn the successor matrix

prior to the introduction of reward. b) Number of steps on each trial for an agent learning

weights using TD learning and an agent learning weights applying delta rule to the reward

function. Plotted lines show average over 500 runs. 95% confidence intervals are contained

within line thickness. Parameters for each of the two algorithms were set to those that mini-

mized the average number of total steps over 80 trials. Such parameters were found by grid

search over αsr 2 [.1,.3,.5,.7,.9], � 2 [0.1,0.3,0.5] and αw 2 [.1,.3,.5,.7,.9]. Both algorithms

learned the SR using the SR-TD update. The “TD Learning” algorithm updated weights using

TD learning. The “Reward Learning” algorithm updated weights by delta-rule learning on the

immediate reward function. Specifically, after performing action a in state s and receiving

reward r, the following update was performed: w(s) w(s) + αw(r − w(s)).”
(TIF)

S2 Fig. Preventing replay slows acquisition for both SR-Dyna and Dyna-Q. Both algorithms

under the two sampling settings were simulated on the task displayed in S1 Fig. a) Results of

simulations with SR-Dyna. b) Results of simulations with Dyna-Q. Both a) and b) show num-

ber of steps on each trial for agent permitted to replay 20 samples between each decision and

an agent not permitted to replay any samples. Plotted lines show average over 500 runs. 95%

confidence intervals are contained within shaded region around lines. For each algorithm and
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sample setting, we chose parameters that minimized average total number of steps over 80 tri-

als by a grid search in the following range: αsr 2 [.1,.3,.5,.7,.9], � 2 [0.1,0.3,0.5], αw 2
[.1,.3,.5,.7,.9], and αQ 2 [.1,.3,.5,.7,.9].

(TIF)

S1 Table. Robustness of simulation results to varying parameters. Here, we display the

results of simulating each task, using each algorithm under a wide variety of parameter set-

tings. Each table below corresponds to a particular algorithm simulating a particular task. For

a given parameter setting, the algorithm was simulated 500 times. A check indicates that the

500 run median value function produced by that parameter setting results in the optimal policy

for the task. A cross indicates that it does not result in the optimal policy.
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