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Objectives. We aim to identify the key biomarker of acute rejection (AR) after kidney transplantation via bioinformatics methods.
Methods. The gene expression data GSE75693 of 30 samples with stable kidney transplantation recipients and 15 AR samples were
downloaded and analyzed by the limma package to identify differentially expressed genes (DEGs). Then, Gene Ontology (GO)
functional enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were done to explore
the biological functions and potential important pathways of DEGs. Finally, protein-protein interactions (PPIs) and literature
mining were applied to construct the cocitation network and to select the hub protein. Results. A total of 437 upregulated genes
and 353 downregulated genes were selected according to P < 0 01 and log2 fold change > 1 0. DEGs of AR are mainly located
on membranes and impact the activation of receptors in immune responses. In the PPI network, Src kinase, lymphocyte kinase
(LCK), CD3G, B2M, interferon-γ, CD3D, tumor necrosis factor, VAV1, and CD3E in the T cell receptor signaling pathway were
selected as important factors, and LCK was identified as the hub protein. Conclusion. LCK, via acting on T-cell receptor, might
be a potential therapeutic target for AR after kidney transplantation.

1. Introduction

Kidney transplantation is widely accepted as a standard
life-saving therapy for end-stage chronic kidney disease [1].
Frequently as the last resort, kidney transplantation may
prolong patients’ survival and improve their life quality [2].
Immunosuppressants are routinely prescribed to recipients
to promote graft survival after transplantation [3]. Despite
the standard use of immunosuppressants, however, acute
rejection (AR) is sometimes inevitable, which usually occurs
days to months after transplantation [4]. The short- and
long-term impacts of AR on graft loss and even morbidity
have been extensively studied [5].

According to the distinct key players in the pathogenesis,
AR is classified into two types, i.e., acute T cell-mediated
rejection (TCMR) and acute antibody-mediated rejection
(AMR). Although the precise mechanism of TCMR is still
unclear, cell-mediated cytotoxicity of parenchymal cells and

local cytokine release are two possible causes [6]. By contrast,
AMR is caused by circulating antibodies of recipients, which
are mainly antibodies against donor human leukocyte
antigen (HLA). Then T helper (Th) cell and macrophages
participate in the immune response to clear allogenic cells
and to assist differentiation of B cells [7]. Thus, T cells
play important roles in both TCMR and AMR.

Once AR occurs, a short course of intensive immunomo-
dulation is needed. Pulse steroid therapy, alteration of immu-
nosuppressants, monoclonal antibodies and combinations
thereof are common therapies for AR [8]. Among others, a
high dose of steroids and immunosuppressants might lead
to a high risk of infection and other side effects [9]. In recent
decades, monoclonal antibodies, such as antilymphocyte
globulin, antithymocyte globulin, and T10B9, an monoclonal
antibody against the T cell receptor (TCR) [10], have been
applied to deal with AR [9]. However, side effects such as
infection and tumorigenesis may still occur occasionally
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[11]. Webster et al. compared the efficacy between monoclo-
nal antibodies and steroids; they found that monoclonal anti-
bodies appeared better than steroids for reversing first acute
cellular rejection and preventing graft loss, but there was little
or no difference in subsequent rejection and the survival rate
[9]. Thus, further insight into the mechanism of AR and
identification of the key step in the pathogenesis may shed
light on the discovery of therapeutic targets for AR [12].

Gene expression analysis by bioinformatics methods has
been widely used in genomics and biomedical studies, which
helps clarify the molecular events underlying human biology
and diseases [13]. Data mining of the available microarray
could help narrow down the study scope so as to find
research gaps [14]. In this study, we analyzed the public
microarray data by using bioinformatics methods, including
differentially expressed genes (DEGs) analysis, gene enrich-
ment methods, protein-protein interaction (PPI) analysis,
and literature miming, in order to identify the key factors
of AR in kidney transplantation recipients and to provide
new insights into the treatment of AR.

2. Materials and Methods

2.1. Affymetrix Microarray Data and Sample Selection. First,
we downloaded the microarray dataset GSE75693 from the
public Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/). The dataset GSE75693 consists
of the gene expression information of kidney biopsies from
30 stable renal allograft recipients, 15 patients with AR, 15
with BK virus nephropathy, and 12 with chronic allograft
nephropathy. All subjects were pediatric and young adult
recipients who received transplantation between 2000 and
2011 at the Lucile Packard Children’s Hospital of Stanford
University [15]. AR was defined at minimum, as per Banff
schema, a tubulitis score ≥ 1 accompanied with an interstitial
inflammation score ≥ 1. Normal allografts were considered
as an absence of significant injury pathology of Banff schema
[15]. Data of the 30 stable renal allograft recipients and the 15
patients with AR were used to investigate the potential mech-
anism of AR. In the original study, AR patients were diag-
nosed by professional pathologists and scored by the Banff
and Chronic Allograft Damage Index as acute cellular or
humoral rejection with clinical graft dysfunction and tubuli-
tis and/or vasculitis on histology [15]. Stable renal transplant
recipients were diagnosed as stable without histological or
clinical graft injury [15].

The array data were based on the platform of GPL570
Affymetrix Human Gene U133 Plus 2.0 Array (Affymetrix
Inc., Santa Clara, CA, USA). The raw data were preprocessed
by Robust Multiarray Average [16] algorithmin affy package
of Bioconductor (http://www.bioconductor.org/), including
background correction, normalization, and calculation of
gene expressions.

2.2. DEG Analysis. We used the limma package of Biocon-
ductor to analyze DEGs between BKVN and nonallograft
injury patients in R project (Supplementary 1). Linear
models were constructed for gene expression data of AR
and stable renal allograft samples, respectively. The contrast

model was used to compare gene expression differences
between the two groups. P values were calculated by the
Bayesian t-test and adjusted by false discovery rate. DEGs
were selected based on the threshold P < 0 01 and log2
fold change > 1 0 [17]. The P value herein was used to
test if the gene was differentially expressed between the AR
and the stable groups with the fold change > 2 0.

2.3. Enrichment Analysis of DEGs. By Gene Ontology (GO)
and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
in DEG enrichment analysis, we further investigated the
potential mechanisms of AR. GO annotated genes by a
defined, structured, and controlled vocabulary [18], including
molecular function (MF), biological process (BP), and
cellular components (CC), while KEGG assigns DEGs to
specific pathways [19]. GO and KEGG can be performed in
website of Database for Annotation, Visualization and Inte-
grated Discovery (DAVID, http://david.abcc.ncifcrf.gov/).
The potential GO annotation and pathways were selected
based on P < 0 01 and count ≥ 5 [20].

2.4. PPI Network Construction. Connections and interaction
networks of DEGs mean PPI. We uploaded the DEGs into
the website of STRING (Search Tool for the Retrieval of Inter-
actingGenes/Proteins, http://string-db.org/), which is theweb
source of biological database. According to the official expla-
nation of STRING, the confidence score is the approximate
probability that a predicted link exists between two proteins
in the same metabolic map in the KEGG database (Getting
Started in https://string-db.org/cgi/help.pl). Thus, PPIs of
DEGs were selected with the threshold of score high con
f idence > 0 7 [20]. Then the analysis results were down-
loaded and modified by Cytoscape (http://www.cytoscape.
org/). The proteins with higher degrees of interaction were
considered as hub proteins [19].

2.5. Literature Mining. According to the analysis of STRING,
hot proteins in the PPI were put into GenCLiP 2.0 (http://ci.
smu.edu.cn/GenCLiP2.0/confirm_keywords.php), which is
an online tool for literature mining of gene functions. In
the website, biological keywords of hot proteins in previous
literature database were analyzed by Gene Cluster with the
Literature Profiles module with the threshold of P ≤ 1 ×
10−6 and hits ≥ 6 [19]. And the Literature Mining Gene
Networks module was used to show the cocitation network
of hot proteins. After combining the results of literature
mining and KEGG analysis, the primary pathways in AR
were determined.

2.6. Hub Protein Selection by CytoNCA. In Cytoscape, the
separated proteins from the network were removed. All
nodes in PPIs were analyzed by CytoNCA. According to
degree centrality, betweenness centrality, and subgraph cen-
trality [16], the hub protein, which interacts most frequently
with other proteins and works like a hub in the network, was
selected. Finally, proteins associated with hub proteins at de
gree ≥ 20 were selected to construct the significant network
about the mechanism of AR [21].
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3. Results

3.1. Seven Hundred and Ninety DEGsWere Identified.Micro-
array data in the GSE75693 dataset were downloaded for
further analysis. DEGs of AR were identified by the limma
package following the process of linear model, contrast
model, and DEGs selection. Compared with no-allograft
injury patients, 790 genes are expressed differentially in
AR patients based on the criteria of P < 0 01 and log2 fold
change > 1 0, including 437 upregulated genes and 353

downregulated genes. The hierarchical cluster analysis was
done to show the distribution of DEGs (Figure 1).

3.2. DEGs of AR Mainly Enriched in the Cell Receptor
Functions. For further analyzing biological functions of
DEGs, we uploaded DEGs in DAVID. GO and pathway
terms were selected. In MF ontology, DEGs mainly enriched
in 27 categories (Supplementary 2, Figure 2(a)) including the
protein homodimerization activity (53 genes), receptor bind-
ing (26 genes), and receptor activity (26 genes). In BP
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Figure 1: Heat map of differentially expressed genes. The row means a gene, and the column means a sample. Samples of stable allograft
recipient are presented as the yellow bar, and samples of acute rejection (AR) patients are presented as the blue bar. Downregulated
genes are shown in color green, while upregulated ones are in red. No difference expressed genes between AR and stable allograft
patients are in black.
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ontology, 94 terms were identified, and the majority of
enriched categories are the immune response (83 genes), sig-
nal transduction (81 genes), and the inflammatory response
(57 genes), which focused on the immune process (Supple-
mentary 3, Figure 2(b)). Distribution of DEGs on cells was
shown in CC ontology. Proteins of DEGs were mostly located
on membranes of cell or organelles, including integral com-
ponent of membranes (275 genes) and plasma membranes
(263 genes) (Supplementary 4, Figure 2(c)). Other important
CC categories are the extracellular exosome (182 genes),
extracellular region (102 genes), and the extracellular space
(83 genes). In KEGG analysis, 23 potential pathways in AR
are shown in Supplementary 5 and Figure 2(d). DEGs clus-
tered in pathways of cytokine-cytokine receptor interaction
(43 genes), chemokine signaling (31 genes), cell adhesion
molecules (25 genes), and natural killer cell-mediated cyto-
toxicity (25 genes).

Enrichment analysis gives us a hint to infer the potential
biological functions, locations, and participated pathways of

DEGs. The presenting data demonstrate that DEGs of AR
are most likely to be receptors or molecules interacting with
receptors on the membrane to participate in a variety of
immune responses.

3.3. TCR Signaling Transduction Is the Main Pathway in the
Pathogenesis of AR. At first, 790 DEGs were uploaded in
STRING website. Then 254 genes with score > 0 7 (high con-
fidence) were selected to construct the PPI network by Cytos-
cape (Figure 3). Top eight hot genes, including LCK, CD3G,
B2M, IFNG, CD3D, TNF, VAV1, and CD3E, were put into
GenCLiP 2.0 for analysis of Gene Cluster with Literature Pro-
files and Literature Mining Gene Networks. Results of gene
clustering indicated that keywords of hot genes reported in
literature were immune response, cell activation, cell differ-
entiation, cell surface, T-cell activation, signal transduction,
and plasma membrane (Figure 4(a)). Information of the
cocitation network was shown in Figure 4(b) and Table 1.
LCK and VAV1 work as links between CD3E and IFNG.
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Figure 2: Bubble charts of top 15 gene enrichment results in each category. Gene counts and P values of top 15 enrichment terms inmolecular
function (MF), biological process (BP), cellular component (CC), and pathway analysis were shown in bubble charts. Gene counts in each
term were displayed as the size of bubbles. Larger in size means larger numbers of genes in this term. The gradual color from red to green
shows the changes of P values from low to high. (a) Results of MF analysis. Most of DEGs clustered in protein homodimerization activity,
while the antigen binding has the greatest statistical significance. (b) Results of BP analysis. The immune response presented the less P
value and the maximum of genes. (c) Results of CC analysis. Most of DEGs located on integral component of membrane, while the
external side of plasma membrane showed the greatest significance in statistics. (d) Results of pathway analysis. Both the maximum of
gene counts and lowest P value appeared in the category of cytokine-cytokine receptor interaction.
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Combined with pathway analyses, 7 hot genes, except for
B2M, participate in the TCR signaling pathway, and LCK,
VAV1, IFNG, and TNF participate in the natural killer cell-
mediated cytotoxicity pathway.

3.4. LCK Is the Key Factor in AR. Each DEG was evaluated
according to degree centrality, betweenness centrality, and
subgraph centrality, respectively, in CytoNCA (Table 2).
LCK ranked top 5 in all centralities indicating the important
role of LCK in the pathogenesis of AR. The other hub

proteins are CD3G and IFNG. Hub nodes and proteins
directly associated with hubs constructed an interaction
network (Figure 5), including 27 upregulated and 1 down-
regulated proteins. EGF is the only downregulated protein
in the final network.

4. Discussion

In the present study, we aimed at investigating potential
therapeutic targets for AR after kidney transplantation. First,

Figure 3: Protein-protein interaction network constructed with differentially expressed genes. Upregulated genes in AR were colored in red,
while downregulated genes were in blue. A total of 254 DEGs were selected in the protein-protein interaction network, and DEGs were mainly
focused on immune process.
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437 upregulated genes and 353 downregulated genes were
selected as DEGs of AR compared with nonrejection recipi-
ents. According to gene enrichment, DEGs of AR are mainly
located on membranes and participate in the TCR signaling
pathway. We identified LCK as the potential key factor in
the pathogenesis of AR.

By GO annotation in DAVID, we further explored the
biological functions of DEGs. The results of functional anno-
tations helped us infer the possible effects of DEGs on how
AR occurs. According to results of BP, CC, and MF ontol-
ogies, the majority of DEGs were enriched in functions of
membrane receptors in the immune process. AR in kidney
transplantation is generally considered as an alloimmune
response process involving networks of interacting cells
throughout the body [22]. Our BP analysis showed that the

mechanism of AR was primarily focused on immune process,
and this finding is consistent with previous studies [6, 23].
Then the CC ontology indicated that most of DEGs were
membrane structures, such as proteins on integral compo-
nent of membrane and plasma membrane. Based on previous
studies, AR may be mediated by cellular and/or humoral
mechanisms [7]. Approximately 90% of AR is TCMR, which
involves CD4+ and CD8+ T cells by activating perforin/gran-
zyme degranulation pathways [24]. Regardless of the recog-
nition of antigens in TCMR and AMR or the release of
accessory molecules, such as cytokines, signaling molecules,
and adhesion molecules, receptors onmembrane play impor-
tant roles [25]. Meanwhile, we also found that a majority of
DEGs were involved in protein homodimerization in MF
ontology. This indicated that protein homodimerization
activity is the main structure transformation and activation
of receptors [26] implicated in the antigen recognition and
signaling transduction pathway in AR.

In the cocitation network, CD3D, CD3E, and CD3G,
which are compositions of CD3 complex of TCR, interacted
with each other to affect the assembly of TCR membrane
complex and disturb T-cell responsiveness [27], especially
CD3E [28]. After TCR engagement, the phosphorylation of
CD3 immunoreceptor tyrosine-based activation motifs of
CD3E in CD3 complex is combined with activated LCK,
which is also called Src kinase lymphocyte kinase [29]. LCK
is a member of protein tyrosine kinase involved in TCR sig-
nal transduction [30]. In TCR stimulation process, LCK can
activate VAV GTPase to control the status of ezrin and
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Figure 4: Literature mining results of top 8 differentially expressed proteins in degree. (a) Clustering analysis of LCK, CD3G, B2M, IFNG,
CD3D, TNF, VAV1, and CD3E in previous studies. In the heat map, each row represents a gene, and each column represents a biological
keyword. The color black means that the keyword has not been reported in this gene, and the color light green means that this keyword is
related to this gene. Hot genes are mainly clustered in immune response, cell activation, cell differentiation, cell surface, T-cell activation,
signal transduction, and plasma membrane. (b) Cocitation network of hot genes. In the cocitation network, all of the 8 genes were closely
interacted. The numbers noted on the line indicate the number of studies cocited.

Table 1: Hub genes identified by literature mining.

Gene Cogenes (n) Cocitations (n) Total (n)

IFNG 3 13,563 68,347

CD3E 3 141 745

VAV1 2 52 822

LCK 2 68 2195

CD3G 2 145 327

CD3D 2 151 278

TNF 1 13,490 91,108

B2M 1 81 6479
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moesin cytoskeletal protein phosphorylation, which regu-
lates a series of protein translocation events [31, 32]. A
previous study demonstrated that both AMR and TCMR
manifested strong expressions of IFNG [33]. In AR, IFNG
cooperated with TNF to increase antigen availability in
rejection by enhancing HLA expression [34]. However, the
relationship between VAV1 and IFNG has not been reported
in the pathogenesis of AR, which could be further verified in
animal and cellular experiments. Finally, via the PPI network
analysis, we revealed that LCK in the TCR signaling pathway
is the hub protein in the interaction network of DEGs, which
underlies the notion that LCK might be a key link between
antigen recognition and cytotoxicity.

The strength of our study is the combined use of several
bioinformatics methods including DEG analysis, GO, KEGG,
literature mining, STRING, and the PPI analysis. These data
mining methods may corroborate each other and make the
results reliable. However, our study has limitations. The
sample size is relatively small. Different from conventional
method, however, the limma method is proven effective in

microarray analysis [35], even for a small sample size (2–5
cases) [36]. Nevertheless, the statistical power cannot be
calculated in that the limma method comprises multistep
data processing including both linear models and contrast
models, as well as Bayesian analysis [37]. The data were
downloaded from one dataset, and the sample size in
GSE75693 was relatively small. The detailed demographic
features of the cohort were unavailable in the published
article. Due to the retrospective and bioinformatics nature
of our study, further laboratory investigations on the cellular
and animal levels are necessary to elucidate the pathogenesis
of AR and to find potential therapeutic targets.

5. Conclusions

In summary, we revealed the potential important role of LCK
in the pathogenesis of AR. LCK interacts with other 27
proteins and is actively involved in TCR pathway to activate
the T cells in AR. LCK might be a potential therapeutic target
for AR.

Table 2: Top 5 genes evaluated by degree centrality, betweenness centrality, and subgraph centrality in the protein-protein interaction
network.

Protein Degree centrality Protein Betweenness centrality Protein Subgraph centrality

LCK 41.75 ACACB 20,963 LCK 4,376,067.5

CD3G 39.52 TNF 16,189 CXCR4 4,266,117

B2M 36.80 LCK 15,414 CD3G 3,693,030

IFNG 36.38 EGF 15,044 GNG2 3,554,691.25

CD3D 35.03 PIK3CG 10,487 IFNG 3,534,239.5
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CXCL10

CXCR4

IL1B
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CD8A STAT1 IL2RB IL12B
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CD3E
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Figure 5: Protein-protein interaction (PPI) network of important proteins. Upregulated proteins are in red, and downregulated ones are in
blue. The PPI network consists of 27 upregulated proteins including LCK, CD3G, CD3E, CD3D, IFNG, VAV1, TNF, B2M, CXCR3, CCR5,
CCL5, CXCL9, CXCL10, CXCR4, GNG2, IL1B, IL12B, IL2RB, IL2RA, IL2RG, STAT1, CD8A, CD86, PTPRC, PIK2CG, CD44, and HLA-
DPA1 and 1 downregulated protein EGF. LCK, CD3G, and IFNG are identified as hub proteins.
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