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IntroductIon

In recent decades, the incidence of renal cell carcinoma (RCC) 
has increased almost thirty‑fold and a more dramatic increase 
is expected by 2030, related to obesity and hypertension, but 
also partly due to the increased use of medical imaging systems 
such as computed tomography, ultrasound scan, and magnetic 
resonance imaging for unrelated conditions.[1‑4] A significant 
part of this increase may be the result of more use of imaging 
which detects earlier, pre‑symptomatic renal masses, whose 
prognosis may be uncertain.[4] Around 70% of newly diagnosed 

RCC cases are discovered when initially localized to the kidney, 
while the remaining RCC cases are locally advanced or have 
primary metastatic disease.[3] Renal masses may be removed by 
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nephrectomy, but increasingly small masses may be removed 
by nephron‑sparing partial nephrectomy.[5] Ablative therapy 
and active surveillance are also options, particularly for small 
masses detected incidentally and these can also benefit elderly 
patients who are too infirm to undergo surgery.[3,6,7] However, 
approximately 30%–40% of localized RCC patients (stage I to III) 
experience disease recurrence within 5 years after nephrectomy.
[8‑11] This establishes that surgical intervention is not sufficient 
for treating all localized RCC patients. Improved management 
may include neoadjuvant or adjuvant therapy, although no such 
treatments have yet been proven to be efficacious.[12,13]

A number of different integrated staging systems such as 
Mayo clinic stage, size, grade, and necrosis (SSIGN) scoring 
algorithm, University of California‑Los Angeles integrated 
staging system (UISS), and Leibovich score (LS) have 
been developed and utilized to improve the prognosis of 
RCC patients.[9,14,15] In particular, they have been utilized 
as an enrolment criterion. For example, Phase III, SORCE 
trial (NCT00492258), scrutinizing the benefit of 1 or 3 years 
of sorafenib in the intermediate‑ and high‑risk group of 
RCC patients, calculated the risk of recurrence using LS, 
whereas Phase III, S‑TRACT (NCT00375674) trial which 
investigated sunitinib’s effect as an adjuvant treatment in high 
risk group utilized a modified‑UISS score.[16] It is important 
to accurately stratify the high or low risk of recurrence after 
surgical management. There is a 3‑25% chance of the low 
and intermediate recurring: these patients may not have had 
potentially beneficial adjuvant therapy. By contrast 30% of 
the high risk group may never recur and therefore may have 
received unnecessary treatment.[9,16] Therefore, it is clinically 
important to develop a more precise stratification tool predicting 
recurrence in nonmetastatic clear cell RCC (ccRCC). This 
will require different parameters, as current prognostic and 
predictive models based entirely on standard clinical and 
pathological factors have a limited potential for improvement.

In order to investigate the utility of objective pathological 
assessment using centralized, digital pathology, with image 
analysis and machine learning, we investigated the contribution 
of nuclear grade to LS.

Subjective nuclear or nucleolar grading contributes to 
integrated staging systems such as SSIGN, UISS, and LS as a 
part of prognostic tool, but there are drawbacks.[17‑21]

Interobserver variation is also a significant issue.[22] There 
may be heterogeneity in nuclear size, shape, and nucleolar 
features in different parts of the tumor, which results in lack 
of concordance between pathologists.[18,22‑24] Computer‑aided 
image analysis offers more consistency as well as the ability 
to quantify heterogeneity.[25‑27]

Automated whole‑slide image (WSI) acquisition system has 
developed rapidly in terms of the resolution, speed, affordability, 
and functional versatility.[28] In addition, many computational 
image analysis platforms have enabled pathologists to obtain 
more biological information by transforming pixels to 

numbers, which can measure a number of various intriguing 
features such as size, shape, and intensity within not only tumor 
cells but also in the tumor microenvironment.[25,28‑31]

Therefore, we sought to explore the ability to predict 
recurrence‑free survival in localized ccRCC by modifying 
original LS with more precise and accurate measurement of 
ccRCC nuclear morphological features. This was achieved 
by utilizing a binomial regression framework with spatially 
adaptive smoothing to evaluate the usefulness of the 
morphological features in predicting disease recurrence.

MaterIals and Methods

Training set patient cohort
A consecutive cohort of 120 ccRCC patients with TNM8 
UICC pathological stage pT1–3 disease, having extirpative 
surgery between 2007 and 2010, were identified from the 
Scottish Collaboration on Translational Research into Renal 
Cell Carcinoma (SCOTRRCC) study (South East Scotland 
Research Ethics Committee 02: 10/S1102/68).[32] Approval 
for tissue and clinical data usage was achieved by NHS 
Lothian SCOTRRCC tissue bank (approval number‑RR011, 
RR012, and TGU‑LAB‑504). Patient clinicopathological 
characteristics are shown in Table 1.

Validation set patient cohort
A consecutive cohort of 217 ccRCC patients with TNM8 UICC 
pathological stage pT1‑3 disease, having extirpative surgery 
between 2000 and 2012, were selected for the validation set 
from the tissue bank of Singaporean cancer research [Table 2].

Representative sample collection and image acquisition
Archived hematoxylin and eosin (H&E)‑stained slides from 
the training set were reviewed by authors (MO’D) and a slide 
with adequate ccRCC was selected (authors DJH, IHU). The 
representative tumor blocks were selected on the basis of 
having sufficient tumor present, thus excluding small blocks 
for resection margins. No formal record of heterogeneity of 
manual grading was made. The assessment mirrored clinical 
practice. Both the training and validation cohorts were 
retrospective cases between 2000 and 2012 to ensure that 
adequate follow‑up was available. Fuhrman nuclear grade 
had been utilized in these cases which preceded the update 
to ISUP (International Society of Urological pathology) 
nucleolar grade in 2013.[24,33] We found that image analysis on 
H and E was not efficient at classifying nucleoli, and so, for the 
purposes of this study, Fuhrman grade was used to contribute 
to LS. The SCOTRRCC cohort WSIs were acquired in Zeiss 
Axio Z1 scanner with objective 20x magnification. H and E 
WSIs from the validation set were digitized using Leica SCN 
scanner at 20x magnification, carried out in Singapore. In this 
way, we sought to explore how interoperable any algorithm 
would be when using images obtained from different scanners.

Image analysis‑ccRCC nuclear morphology analysis
CZI and SVS formatted H and E digitized images were imported 
into Definiens Tissue studio® (Definiens GmbH, Munich, 
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Table 1: Training set of clear cell renal cell carcinoma 
patient clinicopathological characteristics (n=120)

Characteristics Number of 
patients/Variable

%

Gender Female 56 47
Male 64 53

Age (years) Median 65 NA
Range 31‑90

pT stage I 54 45
II 14 12
III 52 43

Nuclear grade 1 9 8
2 72 60
3 25 21
4 14 12

Leibovich risk Low (0‑2) 47 39
Intermediate (3‑5) 51 43
High(>6) 22 18

Tumor size Mean (cm) 6.3 NA
Disease 
recurrence

No 93 78
Yes 27 22

Table 2: Validation set clear cell renal cell carcinoma 
patient clinicopathological characteristics (n=217)

Characteristics Number of 
patients/Variable

%

Gender Female 69 32
Male 148 68

Age (years) Median 56.57 NA
Range 30‑91

pT stage I 125 58
II 26 12
III 66 30

Nuclear grade 1 27 12
2 114 53
3 58 27
4 18 8

Leibovich risk Low (0‑2) 95 44
Intermediate (3‑5) 84 39
High(>6) 38 17

Tumor size Mean (cm) 5.8 NA
Disease 
recurrence

No 150 69
Yes 67 31

Germany), then ccRCC tumor area was chosen as a region of 
interest, followed by classification of ccRCC cells from non‑
ccRCC such as stromal cells, immune cells, necrotic cells, and 
hemorrhage area via their distinct shapes and sizes. ccRCC 
tumor nuclei were then segmented by hematoxylin intensity on 
the individual level. In this step immune cells were excluded 
on the basis of size, being smaller than tumour cell nuclei. 
Fibroblasts and other stromal cells were automatically excluded 
on the basis of length to width ratio being greater than 2:1.  Then, 
the pixels of ccRCC tumor nuclear morphometric features, such 
as area (µm2), roundness, shape index, length, width, the ratio of 
length to width, elliptic fit, circularity, ellipticity, and perimeter, 
were calculated to a numeric dataset [Figure 1].[34]

Data collection
The primary end clinical point was disease recurrence‑free 
status. If the patient had a disease recurrence by imaging or a 
biopsy either locally or remotely at the time of data collection, 
it was deemed to be a recurrence; otherwise, the patient 
was censored as non‑recurrence. LSs were recalculated as a 
part of quality control in data collection on the basis of the 
pathology reports, related to tumor, node, metastasis (TNM) 
staging, tumor size, pathologist‑assessed nuclear grade, and 
necrosis [Table 3].[9,24,33,35] The image analysis data from 
individual nuclei were averaged over the whole section and 
standard deviation was used to record variance in feature 
measurement [Figure 2] as the data were distributed as a 
continuous variable. Both mean and standard deviation of the 
ten different nuclear morphological features detailed above 
were regarded as individual attributes for statistical analysis.

Statistical analysis
Statistical models were fitted to the dataset from the Scottish 
training cohort using a binomial generalized linear model 

framework. The response variable was a binary indicator of 
recurrence (1) or non‑recurrence (0). Two initial models were 
constructed, (i) using LS only and (ii) with a partial LS that 
excluded nuclear grade. The first model acted as a comparative 
tool for the second one. In addition to the partial LS, model (ii) 
allowed for the inclusion of the nuclear morphological features 
as replacement for the excluded nuclear grade. The features 
were added in turn to the partial LS model to formulate a 
modified Leibovich model.

Model selection was done using forward selection with 
the addition of a covariate only permitted if it was not 
highly correlated with one already chosen. Colinearity was 
determined by a variance inflation factor score of < 5. At 
each stage, the flexibility of each covariate was assessed 
for being a smooth or linear term. Smooth terms were 
fitted using quadratic B‑splines with flexibility permitted 
between 1 (linear) and 8 degrees of freedom. Flexibility 
was chosen using a spatially adaptive local smoothing 
algorithm (SALSA).[36]

Model fit and covariate flexibility were determined using 5‑fold 
cross‑validation (CV) with a partial area under the curve (AUCp) 
score as the cost function. The AUCp score was calculated as 
the area under the receiver operating characteristic (ROC) 
where specificity (true negativity – prediction of “No disease 
recurrence”) was between 0.8 and 1. The larger the AUCp, the 
better the model fit.

Once the best model was chosen, a ROC curve was used 
to determine the threshold to convert the proportion‑based 
predictions back onto the 0/1 scale.

The Singapore dataset was used for validation purposes. 
Predictions were made using the best modified Leibovich 
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prediction error for “No recurrence.” The Figure 3  shows that 
most of the patients incorrectly predicted as “No recurrence,” 
were found in LS 5 and 6 categories supporting the previous 
study performed by Leibovich et al.[9] In particular, 14 cases 
of LS 5 were “No recurrence,” but all were predicted as 
“Recurrence,” giving a specificity of zero. Similarly, LS 6 
showed specificity 0 for five patients.

Replacement of manual nuclear grade with computational 
image analysis measurements in clear cell renal cell 
carcinoma nuclei improved the specificity of Leibovich 
score (model ii)
The variable “mean perimeter” was the only variable 
selected for model (ii), and so the best prediction of disease 
recurrence included this value together with the partial LS. 
This was termed the “modified Leibovich algorithm.  The 
modified Leibovich algorithm improved the specificity by 
86% compared to the original LS (model (i) specificity 76%) 
in this training cohort.

In particular, modified Leibovich algorithm predicted 
8 cases out of 14 of LS 5 as “No recurrence” correctly, 
which improved the specificity from 0% to 57%. Similarly, 

algorithm (result of model ii) and converted using the estimated 
threshold from the same model.

All analyses were undertaken in R and using the packages 
MRSea, pROC, and caret.[37‑40] Plotting was done using the 
ggplot2 package.[41]

results

Leibovich score is good at predicting the risk of disease 
recurrence especially in low‑ and high‑risk groups (model i)
In the training cohort, 93 cases (78%) out of 120 ccRCC had no 
recurrence at the time of data collection, with 50.5 months median 
recurrence‑free survival, whereas 27 cases (22%) had either local 
or distant recurrence. LS (model i) predicted “No recurrence” 
with 76% of specificity (that is, a true negative rate = 71 out 
of 93 cases) and recurrence with 74% of sensitivity (that is, a 
true positive rate = 20 out of 27 cases) [Table 4]. This was seen 
similar in Pichler et al. who tested LS in an external cohort and 
showed concordance index, 0.778.[42]

Figure 3 shows how the prediction accuracy varies across 
different LSs. A blue triangle shows a correct prediction of 
“No recurrence” or “Recurrence” and a red dot to indicate a 

Table 3: Leibovich score table. Nuclear grade used was pre‑2013. International Society of Urological pathology nucleolar 
grade replaced Fuhrman nuclear grade in 2013

Features Score
T stage

T1a Tumour 4 cm or less 0
T1b Tumour more than 4 cm but not more than 7 cm 2
T2a Tumour more than 7 cm but not more than 10 cm 3
T2b Tumour more than 10 cm, limited to the kidney 3
T3a Tumour grossly extends into the renal vein or its segmental (muscle containing) branches, or tumour invades 

perirenal and/or renal sinus fat (peripelvic) fat but not beyond Gerota fascia
4

T3b Tumour grossly extends into vena cava below diaphragm 4
T3c Tumour grossly extends into vena cava above the diaphragm or invades the wall of the vena cava 4
T4 Tumour invades beyond Gerota fascia (including contiguous extension into the ipsilateral adrenal gland) 4

N stage
pNX Regional lymph nodes cannot be assessed 0
pN0 No regional lymph node metastasis 0
pN1, 2 Metastasis in regional lymph node(s) 2

Tumour size (cm)
< 10 cm 0
>= 10 cm 1

Nuclear grade
Fuhrman 1 size <10µm, round, regular, uniform shape, invisible nucleoli 0

2 size,15 µm, round, slightly irregular shape, small nucleoli, not visible at 10x object magnification 0
3 size, 20µm, oval or irregular outlined shape, prominent nucleoli, visible at 10x object magnification 1
4 size >20µm, pleomorphic shape, macro nucleoli 3

ISUP 1 Invisible nucleoli or small and basophilic nucleoli at 40x object magnification 0
2 Conspicuous nucleoli at 40x object magnification but inconspicuous at 10x object magnification 0
3 Eosinophilic nucleoli clearly visible at 10x magnification 1
4 Extremely pleomorphic shape and/or presence of Sarcomatoid and/or rhabdoid dedifferentiation 3

Necrosis
Absent 0
Present 1
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the specificity of the LS 6 was improved from 0% to 
40% [Figure 4].

Validation of the modified Leibovich algorithm’s “No 
recurrence” prediction in the Singaporean cohort
Of 217 ccRCC cases, 150 patients (69%) were designated 
as “No recurrence” at the time of data collection with 96.2 
months of the median recurrence‑free survival. Sixty‑seven 
patients (31%) were classed as “Recurrence.”

Application of the modified Leibovich algorithm increased 
specificity from 84% to 94%, equivalent to correctly classifying 
and reassuring 15 more patients that their disease was unlikely to 
recur within 5 years. In particular, the modified Leibovich algorithm 
predicted 11 out of 12 cases of LS 5 as “No recurrence” correctly, 
which improved the specificity from 0% to 92% [Figure 5].

Table 4: Prediction of Leibovich score in training cohort 
(n=120) using Model I

Predicted Observed

No recurrence (0) Recurred (0)
No recurrence (0) 59.2% (71) 5.7% (7)
Recurred (1) 18.3% (22) 16.7% (20)
Numbers in brackets are the observed patient numbers in each category. 
Leibovich score predicted 71 cases correctly for “no recurrence” and 20 
cases for “recurrence”

Figure 1: Schematic diagram of ccRCC nuclear morphology analysis workflow. (a) on H and E image of WSI, the regions of interest (ccRCC tumor 
area) is selected by outlining. (b) Within the region of interest area, ccRCC cells (blue) are separated from non‑ccRCC areas (orange). (c) Individual 
ccRCC cell nuclei were segmented. (d) ccRCC nuclear profile area was demonstrated in different sizes in color. (e) Numeric data from size and shape 
features from an individual level of nucleus was calculated from pixels of digitized images. ccRCC: Clear cell renal cell carcinoma, WSI: Whole‑slide 
image, H&E: Hematoxylin and eosin

dcb

a e

Figure 2: Heterogeneity of tumor cell nuclear morphology in H and E image. (a1) High grade of tumor cell nuclei with prominent nucleoli. (a2) Low 
grade of tumor cell nuclei with inconspicuous nucleoli. (b) Distribution of tumor cell nuclear size. (c) Distribution of tumor cell nuclear shape (e.g., 
ellipticity). H&E: Hematoxylin and eosin

a1 a2

cb



Figure 3: Plots of accuracy of prediction of “No recurrence” using 
Leibovich score. Blue triangles indicate the correct prediction of disease 
“No recurrence” and “Recurrence,” whereas red dots show mis‑predicted 
cases of “No recurrence.” The gray box shows the worst predicted 
Leibovich scores

Figure 4: Plots of correct or wrong prediction of disease “No recurrence” 
using Modified Leibovich algorithm. Blue triangles indicate the correct 
prediction of “No recurrence” and “Recurrence,” whereas red dots show 
mis‑predicted cases of “No recurrence.” In particular, there is a significant 
improvement in correctly predicting “No recurrence” in Leibovich score 
5 (57% increase) and 6 (40% increase)
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model can improve the specificity (correct prediction of “No 
recurrence”) of original LS in a proof of principle exercise. 
Replacement of manually assessed nuclear grade with mean 
perimeter, referred to as “Modified Leibovich algorithm 
differentiated ccRCC patients with no risk of disease recurrence 
for 5 years after surgery, particularly in the equivocal cases 
of LS 5 and 6. In the Scottish SCOTRRCC training cohort, 
the statistical model correctly predicted 9 more cases out of 
19 with no risk of disease recurrence. This finding was also 
confirmed in an external independent Singaporean validation 
set, which had 13 more cases out of 15 correctly predicted as 
non‑recurrence compared to LS prediction.

In this study, the number of nuclei assessed per section varied 
from 30,000 to more than 1000,000, depending on how much 
tumor was present in an individual block. ccRCC tumor nuclear 
profiles and sizes were measured in individual cells, which 
highlighted the variation of ccRCC at the level of morphology, 
as is well recognized at a genetic level.[43‑45] We were able to 
use knowledge of the distribution of features in our statistical 
model, rather than having to commit to a single number as is 
the case for Fuhrman or ISUP grading.[24,33,35]

Other efforts have been made to improve the stratification of 
the risk of disease recurrence in localized ccRCC patients. 
Rini et al. developed a recurrence score using gene expression 
analysis in RNAs extracted from in total 1568 (sum of 
developmental and validation cohort) localized ccRCC 
patients’ tissue blocks.[46] Out of 723 test genes, 11 cancer 
related genes were selected and used to calculate the recurrence 
score, which improved C statistics, an indicator of the 
prediction fitness for a binary outcome (e.g., “No recurrence” 
vs. “Recurrence”), up to 0.79 from 0.74 of LS alone.[46] 
Furthermore, when this recurrence score was combined with 
LS, its C statistics was increased to 0.81.[46] Brooks et al. also 
developed “ClearCode34” as a disease recurrence predictor in 
95 localized ccRCC patients using gene expression analysis 
in RNA samples.[47] “ClearCode34” model was applied to 
266 ccRCC patients genomic data from the Cancer Genome 
Atlas (TCGA) to predict the risk of disease recurrence 
and showed C‑index (equal to C statistics), 0.65 and 0.70 
when compared to UISS (0.575) and SSIGN score (0.625), 
respectively.[47] Our modified Leibovich algorithm compares 
favorably with these prediction scores and algorithms, and the 

conclusIons

We have investigated how digitization of slides using different 
scanners, computational image analysis and a statistical 

Figure 5: Comparison between Leibovich score prediction and Modified Leibovich algorithm prediction Modified Leibovich algorithm (b) significantly 
improved specificity compared to Leibovich score (a) in score 5

ba
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approach we have outlined could readily be applied to these 
previous studies to determine whether there is any additional 
benefit to prognostic accuracy.

H&E‑stained microscopic slides, routinely prepared in all 
histopathology laboratories for diagnosis, were used for 
computational image analysis. The H and E staining protocol, 
H and E reagents and scanners used in the test and validation 
cohorts were different but they showed consistent results, in 
part because we excluded features such as staining intensity 
that would be affected by different staining protocols between 
the Scottish training and Singaporean validation cohorts. 
Thus, computer‑aided image analysis could be deployed at 
a central site to objectively assess patients for inclusion into 
trials, and potentially to reduce numbers required because 
of more accurate prediction of disease recurrence, thereby 
increasing the statistical power to detect differences in response 
to experimental treatment.
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