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Effect size refers to the assessment of the extent of differences between two groups of samples on a single measurement. Assessing
effect size in medical research is typically accomplished with Cohen’s d statistic. Cohen’s d statistic assumes that average values are
good estimators of the position of a distribution of numbers and also assumes Gaussian (or bell-shaped) underlying data
distributions. In this paper, we present an alternative evaluative statistic that can quantify differences between two data
distributions in a manner that is similar to traditional effect size calculations; however, the proposed approach avoids making
assumptions regarding the shape of the underlying data distribution. The proposed sorting statistic is compared with Cohen’s d
statistic and is demonstrated to be capable of identifying feature measurements of potential interest for which Cohen’s d statistic
implies the measurement would be of little use. This proposed sorting statistic has been evaluated on a large clinical autism
dataset from Boston Children’s Hospital, Harvard Medical School, demonstrating that it can potentially play a constructive role
in future healthcare technologies.

1. Introduction

Cohen’s d statistic was introduced to address a shortage of
appropriate statistical metrics for use in the behavioral sci-
ences [1], where it was shown that the d statistic is capable
of quantifying a range of small, medium, and large effect sizes
representing the extent of group-wise differences observed in
a given experiment. While the approach simplified compar-
ing results in psychological/behavioral analysis and is a
strong indicator of statistical significance, it is not without
shortcomings. The d statistic assumes the underlying data
distribution is bell-shaped or Gaussian [2] and the average
(or mean) positional markers of the distributions are known
to drift in the presence of outliers and when the underlying

distributions are skewed. When applying Cohen’s d statistic,
discrepancies between the assumed bell-shaped distribution
and the actual distribution can lead to erroneous findings.
Demonstrating an effect where one is not present in the
underlying data or showing no effect when group-wise differ-
ences are present can lead to inaccurate analyses.

Statistics based on sorting or ranking measurements have
been proposed previously, such as the Wilcoxon rank sum
method, a nonparametric test [3]. The Wilcoxon rank sum
test acts as an alternative to Student’s t-test [4], which are
methods used for computing probabilities (p values) and per-
forming hypothesis testing, not for assessing effect size or
group-wise differences between two distributions of mea-
sured values. The Wilcoxon rank sum test does not assume
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the underlying distribution is normal or bell-shaped, provid-
ing a major advantage over Student’s t-test which assumes
the existence of an underlying Gaussian distribution. This is
a significant advantage because it reduces the possibility of
producing erroneous findings while remaining nearly as effi-
cient as the t-test [5]. However, the Wilcoxon rank sum
method is a hypothesis test and not an effect size estimator
similar to Cohen’s d. In this paper, we present a nonparamet-
ric statistic that can assess group-wise differences between
two distributions producing similar results to Cohen’s d
statistic while avoiding making assumptions about the
underlying shape of the distribution of the data by employ-
ing sorting statistics, similar to what was accomplished with
the Wilcoxon sign-rank test.

This article demonstrates the use of statistical analysis
metrics on an autism dataset from Boston Children’s Hospital
(BCH), Harvard Medical School. Autism is characterized by
repetitive, stereotyped behavior, impaired social communica-
tion, and deficits in social reciprocity [6, 7]. Evidence of neu-
roanatomical differences between autistic patients and
healthy controls comes from postmortem and neuroimaging
studies [8, 9]. Magnetic resonance imaging (MRI) provides
physiological and anatomical measurements of a patient’s
brain, information that has the potential to assist in health-
care technologies and basic research. The most commonly
used MRI method provides clinically useful soft tissue
contrast. In the brain, MRI can differentiate between gray
matter, white matter, and cerebrospinal fluid, which forms
the basis for automated pattern recognition technology,
which extracts measurements such as white matter volumes,
cortical thicknesses, cortical curvature and measurements
[10]. The analysis of autistic patients who have undergone
MRI examinations has been the subject of many studies in
the literature [11–25] that have incorporated distributed
quantification of volumes, cortical thickness, surface areas,
and so on [10].

Major structural changes occur between children and
adults [26–32], making analysis of pediatric populations
extra challenging. Distributed patterns of brain activity and
structure provide important brain function information
[33–36], and identifying these patterns is particularly chal-
lenging in a preadult population, because of a rapidly chang-
ing anatomy and physiology, small brain sizes, participant
motion, a high degree of brain plasticity, and an incomplete
understanding of brain development.

In this paper, we demonstrate a novel sorting statistic as a
method for assisting in the analysis of group-wise differences
in the neurological presentation of healthy and autistic
children who received MRI examinations at BCH at 3 Tesla
producing volumetric T1 examinations compatible with the
automated extraction of distributed measurements [10].

2. Materials and Methods

2.1. Participants. Following approval by the Institutional
Review Board at BCH, the clinical imaging electronic data-
base at BCH was reviewed and participants for whom autism
was indicated in their electronic medical records were
included for further analysis. Examinations deemed to be of

low quality (excessive participant motion etc.), and those that
were inaccessible for technical reasons were excluded from
the study, yielding 1003 examinations from 781 autistic par-
ticipants. Healthy participants were assembled retrospec-
tively in a previous analysis [37] by selecting individuals
with a normal MRI examination assessed by a BCH neurora-
diologist and whose medical records provided no indication
of neurological problems. The exclusion criteria applied to
the autistic population were also applied to the healthy par-
ticipants. This yielded 993 examinations from 988 healthy
participants for inclusion in this analysis. This population
represents a demographic of participants imaged as part of
routine clinical imaging (ages 0 to 32 years).

2.2. MRI Data Acquisition and Preprocessing. Participants
were imaged with clinical 3 Tesla MRI scanners (Skyra,
Siemens Medical Systems, Erlangen, Germany) at BCH. This
produced T1 structural volumetric images accessed with the
Children’s Research and Integration System [38]. Motion
correction was not performed; however, based on visual
assessment, examinations with substantial motion artifacts
were carefully excluded. T1 volumetric examinations were
analyzed with FreeSurfer [10], which provides regions-of-
interest across a participant’s brain along with a variety
of localized measurements therein. The extracted measure-
ments are all structural and based on the T1 volumetric
examination only. The results produced by FreeSurfer for
each examination were displayed with label map overlays
and visually inspected for quality of regional segmentation
results. If results were observed to substantially fail, they
were excluded.

2.3. Quantification and Statistical Analysis. This study
included the acquisition of 4788 regionally distributed
measurements per imaging examination, as extracted by
FreeSurfer’s recon-all command which processes the input
examination with all available neuroanatomical brain atlases
[10]. This provides a wide variety of measurements including
regional volumes, cortical thicknesses, and surface curvature.
For each acquired measurement, we compute Cohen’s d sta-
tistic (1), an established method for assessing effect size and
widely used in neuroimaging research to evaluate the amount
of group-wise separation between two distributions of sam-
ples [1]. Our data includes instances of our measurements
from 1003 autistic and 993 healthy participants.

d = x − y
σ

, 1

where the numerator represents the difference between
the mean values of the two distributions x (autism) and
y (healthy), and σ represents the standard deviation of the
joint distribution. Cohen’s d statistic assumes the underlying
data follows a bell-shaped (or Gaussian) distribution, by
employing the standard deviation spread measurement.
Cohen’s d statistic also assumes that average values are
reliable measures of the location/position of a distribution;
however, outliers can induce drift in these point estimators.

For each acquired measurement, we also compute our
proposed sorting statistic which has properties similar to a
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traditional effect size calculation but does not make assump-
tions about the shape of the underlying distribution. The pro-
posed sorting statistic is defined in

Ds =
x − y

Zx − Zy

, 2

where x and y are the two input distributions for which x > y
x is the median of the distribution x which has n samples. y is
the median of the distribution y which has m samples. Z is
the joint distribution [x,y] sorted in descending order
(highest to lowest). zx is the median of the first n samples
of the sorted joint distribution Z. zy is the median of the final
m samples of the sorted joint distribution Z.

The equation measures the simple distance between the
positional estimates of each distribution (the difference
between the medians), as the numerator. The denominator
represents a theoretical maximum possible distance between
the positional estimates of the two distributions, if we accept
the number of measurements provided in each distribution
as fixed and the values of those measurements as fixed but
allow class membership to vary. This normalization proce-
dure forces the resultant sorting statistic to take on values
ranging from 0 to 1, with high values representing pairs of
distributions that are more dissimilar to each other and
values near 0 representing pairs of distributions that are
nearly identical. Note that if the median of x is equal to the
median of y, then (2) returns a value of zero.

A correlation analysis comparing the relationship
between the proposed sorting statistic and the positively
valued Cohen’s d statistic was performed, along with a
correlation analysis comparing the proposed sorting statistic
with the negatively valued Cohen’s d statistic. All statistical
analyses were performed with Matlab (R2016a, Natick,
MA, USA).

3. Results

Each of the 4788 measurements acquired using FreeSurfer
was compared on a group-wise basis (autistic versus healthy)
using both Cohen’s d statistic and the proposed sorting
statistic. A plot of the relationship between Cohen’s d statistic
and the proposed sorting statistic across all measurements is
provided in Figure 1.

Note the strong positive correlation between the pro-
posed sorting statistic and the positively valued Cohen’s d
statistic (rho= 0.7648, p = 0) as well as the strong negative
correlation between the proposed sorting statistic and the
negatively valued Cohen’s d statistic (rho=−0.8314, p = 0).
The strong correlations form a clear V-like pattern, the arms
of the “V” representing a general agreement between the two
measurements in assessing differences between the autistic
and healthy populations, whereby increases in our proposed
sorting statistic are strongly associated with Cohen’s d statis-
tic moving further away from zero. The region in between the
two arms of the “V” (central regions of Figure 1) represents a
region of data space of particular interest. This represents
feature measurements for which the proposed sorting statis-
tic implies that there might be more group-wise differences

between the autistic and healthy groups than Cohen’s d sta-
tistic implies. One such example is the Gaussian curvature
of the surface of the superior temporal sulcus (Figure 2)
whose Cohen’s d statistic was merely 0.05, implying an unin-
teresting finding, but whose proposed sorting statistic yielded
0.4, implying that some separation between the two groups
has been quantified. The two distributions (healthy and
autistic) are highly overlapping and as you can see from their
histograms (Figure 3); these are skewed distributions that
deviate from normality. Skewed distributions are also known
to cause drift on mean-based positional estimates which
would affect Cohen’s d statistic. Results indicate that values
for the Gaussian curvature of the superior temporal sulcus
(GCSTS) above about 0.1 may have potential in helping char-
acterize autism as there are many more autistic samples with
elevated GCSTS values relative to the healthy participants,
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Figure 1: The relationship between the proposed sorting statistic
and Cohen’s d statistic for 4788 measurements extracted from
healthy clinical participants and those with autism.
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Figure 2: The Gaussian curvature of the surface of the superior
temporal sulcus. Autistic participants are provided with a red x,
healthy participants with a green o.
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despite the fact that low GCSTS values (~0.05) fall in a region
of high overlap between our two groups of interest.

4. Discussion

Figure 1 demonstrates that the proposed sorting statistic is
highly positively correlated with positive Cohen’s d statistic
(rho=0.7648, p = 0), as well as highly negatively correlated
with negative Cohen’s d values (rho=−0.8314, p = 0).
Measurements with an elevated sorting statistic and low
Cohen’s d (see central regions of Figure 1, raised from
the bottom of the plot) represent measurements for which
Cohen’s d implies little to no effect, but for which the sorting
statistic implies some separation of the two groups exists.
The Gaussian curvature of the superior temporal sulcus
(Figures 2 and 3) is one such example and can be found on
Figure 1 at d = 0 05, Ds = 0 4. Additionally, it should be
noted that the bottom left and bottom right of Figure 1
have no representative measurements falling in this zone.
This indicates that there were no measurements in our
dataset for which the proposed sorting statistic yielded a
low value (implying the measurement is not useful),
when Cohen’s d statistic was producing large effect
sizes. This implies that the proposed technique is not
overlooking important feature measurements emphasized
by Cohen’s d statistic and so represents a desirable
feature of the proposed sorting statistic.

Gaussian distributions are extremely common in real-
world data analysis, which has supported the widespread
use of Cohen’s d statistic as a measurement for assessing
group-wise differences and effect sizes. Unfortunately, natu-
rally occurring data is also capable of deviating from normal-
ity, with Figures 2 and 3 demonstrating a naturally occurring
data measurement that exhibits a skewed distribution. Addi-
tionally, it is known that in skewed distributions, the mean
positional marker tends to drift towards the skewed tail end
of the distribution, which may result in the average value
being inadequate as a potential distribution positional

marker. Figures 2 and 3 demonstrate an example where
Cohen’s d may mislead a reader towards interpreting a lack
of group-wise differences between the autistic and healthy
populations (d = 0 05). Although the distributions in
Figures 2 and 3 include many sample measurements close
to zero in either group, the autistic group clearly has more
samples exhibiting elevated curvature values, causing an
increase in the skew of the distribution relative to the
healthy controls. This difference in skew is associated with
a certain amount of potential from this variable to contrib-
ute to the characterization of autism, in particular, by
potentially using this measurement as part of a multivariate
machine learning technology.

The superior temporal region (Figures 2 and 3) is thought
to be important in determining where others’ emotions are
being directed [39]; it includes the primary and part of the
association auditory cortex [40], and it is thought to be
involved in the perception of emotions in facial stimuli
[41]. Thus, abnormalities of the superior temporal region
may be associated with known autistic abnormalities of emo-
tional processing, language processing, and visual/facial pro-
cessing. Future work will focus on a detailed investigation of
the curvature of the surface of a variety of neurological
regions (including the superior temporal sulcus) as poten-
tial mechanisms for characterizing autism. Although the
highlighted Gaussian curvature measurement only provides
a modest amount of separation between our healthy and
autistic populations, it does have some potential, which was
not adequately captured by Cohen’s d statistic because of
assumptions made about the underlying data distribution.
This helps demonstrate the proposed sorting statistical
metric’s potential to assist in the identification of feature
measurements that may contribute to the accurate prediction
of disease status in the context of a multivariate machine
learning technology responsible for combining a series of
measurements (each with some diagnostic potential) to form
a final prediction. Future work will assess this proposed
sorting statistic’s potential to play a role in assessing an
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Figure 3: Histograms of the Gaussian curvature of the superior temporal sulcus in the autistic population (a) and the healthy population (b),
demonstrating two naturally occurring skewed distributions in this dataset.

4 Journal of Healthcare Engineering



individual measurement’s potential to contribute to multi-
variate machine learning technologies for health care.

Cohen suggested that a d statistic of 0.2 corresponds to a
small effect size, 0.5 to a medium effect size, and 0.8 to a large
effect size. Based on our autism data and referring to a visual
inspection of Figure 1, we provide the roughly equivalent
values from our proposed sorting statistic for small effect
sizes (Ds = 0 2), medium effect sizes (Ds = 0 45), and large
effect sizes (Ds = 0 7). Note that these values are very close
to the equivalent values for Cohen’s d statistic, facilitating
interpretation of the results of the proposed sorting statis-
tic. It should also be noted that because of the sorting pro-
cedure, there is increased computational requirements for
the proposed sorting statistic relative to computing Cohen’s
d statistic.

It should also be noted that the proposed sorting statistic
has potential towards being applied to sortable categorical
variables, a data type for which standard mathematical anal-
ysis is not normally possible. To support assessment of
group-wise differences in sortable categorical variables, the
equation would need to be modified to replace the difference
(minus operation) with a distance metric compatible with
sortable categorical variables (e.g., the number of categories
separating the medians of the two distributions).
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