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Objectives: Chronic low back pain (CLBP) is the most prevalent of the painful musculoskeletal conditions. CLBP is a heteroge-

neous condition with many causes and diagnoses, but there are few established therapies with strong evidence of effectiveness

(or cost effectiveness). CLBP for which it is not possible to identify any specific cause is often referred to as non-specific chronic

LBP (NSCLBP). One type of NSCLBP is continuing and recurrent primarily nociceptive CLBP due to vertebral joint overload subse-

quent to functional instability of the lumbar spine. This condition may occur due to disruption of the motor control system to the

key stabilizing muscles in the lumbar spine, particularly the lumbar multifidus muscle (MF).

Methods: This review presents the evidence for MF involvement in CLBP, mechanisms of action of disruption of control of the

MF, and options for restoring control of the MF as a treatment for NSCLBP.

Results: Imaging assessment of motor control dysfunction of the MF in individual patients is fraught with difficulty. MRI or ultra-

sound imaging techniques, while reliable, have limited diagnostic or predictive utility. For some patients, restoration of motor

control to the MF with specific exercises can be effective, but population results are not persuasive since most patients are unable

to voluntarily contract the MF and may be inhibited from doing so due to arthrogenic muscle inhibition.

Conclusions: Targeting MF control with restorative neurostimulation promises a new treatment option.
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INTRODUCTION

Low back pain (LBP) is usually defined as pain and discomfort,

localized below the costal margin and above the inferior gluteal

fold, with or without referred leg pain (1,2). The NIH Task Force on

Research Standards for Chronic LBP (CLBP) recommended (3) that

CLBP be defined as a back pain problem that has persisted for at

least three months and has resulted in pain on at least half the days

in the past 6 months.
The World Health Organization reports that “Low back pain is the

most prevalent of musculoskeletal conditions; it affects nearly every-

one at some point in time and about 4–33% of the population at

any given point” (2). LBP is now the leading cause of disability glob-

ally (4,5) There are many publications on the epidemiology (6) of

back pain including its prevalence (7–9), natural history, demo-

graphics, and country by country variability.
There are many causes for CLBP, and the differential diagnosis can

be challenging (10). Specific causes for LBP are uncommon (<15%

of all back pain) (1,11). Specific LBP is defined as symptoms caused

by a specific pathophysiologic mechanism, such as herniated nuclei

pulposus, infection, osteoporosis, rheumatoid arthritis, fracture, or
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tumor (12). The remaining patients, who comprise the majority of
patients, are commonly referred to as having “non-specific LBP”
(NSLBP) or “axial LBP” (ALBP) or “Mechanical LBP.” These terms can
have different meanings to different audiences of clinicians and
researchers.

LBP presents on a spectrum between primarily neuropathic pain

and primarily nociceptive pain, and guidelines (13) and tools exist

for clinical classification (14,15). Inconsistent nomenclature compli-

cates a review, for example merely describing CLBP as “axial” does

not help with understanding if the described therapy is for predomi-

nantly neuropathic or predominantly nociceptive CLBP, as axial LBP

is a syndrome that may have both nociceptive and neuropathic

components (16). This review will concentrate on primarily nocicep-

tive CLBP, which is poorly served with most of today’s treatments. In

many cases, the therapy of last resort is opioids.

Clinical Instability and CLBP
Panjabi (17,18) described the stabilizing system of the spine as

divided into three subsystems: 1) the spinal column; 2) the spinal

muscles; and 3) the neural control unit; spine stability depends on

the complex interplay of these three systems. This is illustrated con-

ceptually in Figure 1 (after Panjabi). Disturbances in one or more of

these three stabilizing mechanisms leads to spinal segments moving

outside of their normal range of motion (the so-called neutral zone),

causing tissue injury and initiating LBP. If, for instance, the muscle

control system exerts suboptimal stabilizing forces on the spinal col-

umn, overload of the joints and soft tissues surrounding the joints is

more likely to occur, leading to primarily nociceptive pain. This lesser

muscular control could be caused by decreased neural drive from or

feedback to the neurologic structures controlling the muscles and

the joints (19).
When looking into muscular stabilization of the lumbar spine, the

role of the lumbar multifidus (MF) becomes immediately apparent.

The anatomic architecture of the MF is shown in Figure 2 (reproduced

from Rosatelli (20) with permission). The deep fascicles of the multifi-

dus generally span a single segment, and are “strategically positioned

to provide proprioceptive feedback from the lumbar spine.” In con-

trast, the intermediate fascicles may have a role in controlling interseg-

mental movement, whereas the superficial fascicles are capable of

providing significant torque in a cranio-caudal direction.
The MF is the strongest stabilizer of the lumbar spine (21), and

the combined actions of the bilateral multifidi account for more

than two thirds of the stiffness of the spine when in the neutral

zone (22). Changes in MF are strongly evident in people with cLBP

(23), and many patients with LBP exhibit atrophy of the MF within
days of new back pain (24,25). This atrophy can be seen easily and
reliably (26) on MRI. Atrophy may be seen unilaterally or bilaterally,
and bilateral atrophy is frequently seen in patients who complain of
unilateral pain (25,27). MF changes are apparent in chronic LBP
(28,29), in proportion to the duration of symptoms (30), and are not
due to a change in muscle fiber type (31). The radiology literature
(32) reports that fat infiltration of the MF is apparent in chronic LBP
(33,34), and there is evidence that the non-contractile tissue seen on
MRI is, indeed, fat (35). Fat infiltration and tissue remodeling may be
independent of atrophy (36). Examples of fat infiltration in the MF
are shown in Figure 3, with a three level classification system (37). A
systematic review (38) provided evidence for the presence of macro-
scopic changes in lumbar muscle structures of CLBP: “especially a
loss of muscle size is seen in the lower lumbar levels, but not in the
more cranial lumbar levels.”

Acute LBP usually resolves within weeks in most patients (39),
although a meta-analysis with a more stringent definition of acute
NSLBP suggests that the majority of patients still experience pain
one year from the onset of symptoms (40). MF atrophy, on the other
hand, typically persists after resolution of pain (41) in patients with
CLBP. This persistent defect in the key local stabilizer muscle could
explain why many patients with back pain suffer from recurrences
or a waxing and waning course after the initial episode (42).

The mechanism leading to MF atrophy in LBP is probably closely
related to arthrogenic muscle inhibition (43). This phenomenon can
be readily observed in the quadriceps muscle after traumatic and
experimental knee injury (44), and is also encountered in the calf
muscles after ankle injury (45). It refers to a mechanism by which
pain in a skeletal joint leads to reduced neural drive to the muscle(s)
that move or stabilize that joint.

Arthrogenic inhibition is thought to be caused by a change in the
discharge of articular sensory receptors due to factors such as swell-
ing, inflammation, joint laxity, and damage to joint afferents. Spinal
reflex pathways likely contribute to arthrogenic inhibition, as can be
measured by changes in reflex activity in experimentally induced
cases (44) and evidence suggests that supra-spinal pathways may
also play an important role (44,46,47). Interestingly, arthrogenic inhi-
bition in peripheral joint pathology may involve both type I and
type II muscle fibers selectively or both together (48).

Arthrogenic muscle inhibition can occur in the spine consequent
to an episode of LBP. Electromyogram (EMG) evidence of reduced
neural drive to the MF in back pain patients includes diminished
EMG activity (49,50), and alterations in the timing of the recruitment
of the short (deep) fascicles of the MF in response to perturbations
(29). Pain alters the magnitude of activation of deep MF during cer-
tain types of activity (51). Ultrasound imaging evidence of reduced
neural drive in back pain patients includes reduced muscle thickness
changes with contraction (52–55), reduced ability to cause a muscle
thickness change on command (56), and altered contraction pat-
terns with changes in posture (57).

There is evidence from humans and animal models, including ovine
(58), porcine (59,60), and feline (61) that induced local injury compro-
mises neural drive to the MF, seen as changes in electrical activity on
MF electromyography. Experimentally induced intervertebral disc
degeneration in the cat induces pathophysiologic changes to the MF
(62). In a rabbit model, the MF becomes stiffer, both in individual fibers
and in fiber bundles, in response to experimentally induced interverte-
bral disc degeneration, and a stiffer muscle can alter the biomechani-
cal properties of the spine stabilizing system (62).

Injury to the spine structures (e.g., joints, ligaments, disc) can
disrupt one or more of the spine stability sub-systems (19,63–65).

Figure 1. Model of spine stability.
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Induced pain studies in humans confirm that local pain of the spi-
nal column leads to reduction of neural drive to the adjacent MF,
apparent on functional MRI (66) and ultrasound (67,68). EMG stud-
ies of populations of patients with acute or chronic LBP show
altered recruitment of the MF (69,70) due to pain, pain avoidance,
and deconditioning. Pain has been experimentally shown to
reduce neural drive not only to the MF, but also the lumbar erec-
tor spinae muscles in both healthy volunteers and back pain
patients (71).

Figure 4 shows a representation of compromised spine stability as
a result of arthrogenic inhibition. Nociceptive signals (pain) from the
spine inhibit the neuromuscular control system (in the brain and spi-
nal cord) which results in reduced neural drive to the muscles which
compromises stability and movement. Disrupted neural drive also
alters the proprioceptive feedback from the muscles themselves.

Cortical changes in the brain are associated with chronic LBP (72).
Impaired motor control of the MF in patients with CLBP is associated
with changes in cortical representation of the multifidus and subse-
quent ability to exert voluntary control (73) and there is evidence of
reorganization of trunk muscle representation at the motor cortex in
individuals with recurrent LBP. This reorganization is associated with
deficits in postural control (74). Individual fascicles of MF are

activated by different regions in the motor cortex (75), and motor

control training for back pain patients can reverse the cortical reor-

ganization (76). Evidence of cortical remodeling may be assessed

with research techniques of brain mapping using transcranial mag-

netic stimulation (TMS) and surface EMG recorded at the L3 level,

and magnitude of cortical remodeling is associated with severity

and location of LBP (77). There is evidence that motor training can

reverse pathologic reorganization of neuronal networks of the

motor cortex in people with recurrent pain, at least for motor train-

ing that focuses on the transverse abdominus (76). Reduction in

back pain as a result of facet joint injections or spine surgery has

also been shown to be associated with restoration of normal brain

anatomy and function (78).
In summary

• The spine stabilization system consists of the spine, the muscles,

and the neural control system.
• Arthrogenic muscle inhibition can disrupt control to the key seg-

mental stabilizing muscle of the spine—the lumbar multifidus.
• Disrupted muscle control can lead to compromised clinical stabil-

ity of the spine, allowing joint overload and consequent persistent
and recurrent pain.

Figure 2. Dissection, digitization, and three-dimensional modeling of lumbar multifidus, lateral views. a. Dissection of superficial (red), intermediate (yellow), and deep
(purple) regions. b–f. Segments of the superficial region attaching to L1–L5 spinous processes. g. Three dimensional reconstruction of the digital specimen shown in a.
h. Segments of the intermediate region attaching to the L1–L4 spinous processes. Note that there is no intermediate fascicle of the MF attaching to the spinous process
at L5. i. Segments of the deep region attaching to the L1–L5 laminae. j. Regions of the LMT attaching to the L5 spinous process. LMT, lumbar multifidus; sp, spinous pro-
cess; mp, mammillary process; tp, transverse process; PSIS, posterior superior iliac spine; L, lumbar. Reproduced from Rosatelli (20) with permission.
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• Back pain due to disrupted muscle control is associated with neu-

roplastic changes in the motor cortex, which can be reversed with

elimination of back pain.

DIAGNOSTIC TESTS FOR MOTOR CONTROL
DYSFUNCTION

Since disruption of the MF is clearly associated with CLBP in many

cases, it is logical to examine diagnostic tools that can identify

patients with this particular pathology.

Imaging Assessment of Motor Control Dysfunction
Changes to the MF apparent with MRI imaging are strongly asso-

ciated with back pain, but the diagnostic value in individual patients

of such changes is limited, since back pain of any cause can lead to

changes of the MF cross sectional area and amount of fat infiltration

(79). Prolonged bed rest in the absence of back pain can also lead to

atrophy of the MF seen on imaging (80) and the atrophy can be

reversed with appropriate exercises (81). There appears to be no

relationship between MF function and amount of fat infiltration (82).

There is some evidence (83) that the severity of fat infiltration corre-

lates with decreased range of motion in flexion, and that the

amount of fat infiltration may be a predictor for continued CLBP

(84), but the diagnostic utility of these observations is unclear.
Ultrasound imaging has been used to document reduced MF

muscle mass, a consequence of reduced neural drive, which in back

pain patients includes diminished thickness change with activation

(52,53) and reduced ability to cause a muscle thickness change on

command (56). Although the measurement techniques have been

validated and are reliable, the diagnostic utility is unclear, and ultra-

sound measured MF activation does not appear to be predictive of

which CLBP patients will benefit from stabilization exercises (85). A

review (86) states there is “a convincing body of evidence [that] sug-

gests that US imaging is a reliable and valid tool for differentiating

LBP patients from normal subjects and monitoring rehabilitation out-

come measures.” A later systematic review (87) found “conflicting

evidence for a relation between baseline percent thickness change

of lumbar multifidus during contraction and the clinical outcomes of

patients after various conservative treatments.”

EMG Assessment of Motor Control Dysfunction
EMG evidence has been used to show changes in MF recruitment

in populations of patients with CLBP, but has not been shown to be

useful as a tool for diagnosis or monitoring therapy in individual

patients. Surface EMG cannot be used to accurately record from the

MF (88) so fine wire or needle electrodes are more commonly used,

but there is no easy way to isolate the EMG signals from the deeper

multifidus layers from the surrounding muscles. Even with needle or

wire EMG, some far field potentials originating in co-contracting

muscles are seen, making it difficult to correctly identify the onset of

muscle activity in the multifidus. European Guidelines on NSLBP (1)

state the EMG procedures “have no clear relevance to clinical diag-

nostics although they may still be useful in experimental studies

and/or in the rehabilitation environment for examining mechanisms

of back muscle function/dysfunction.”

Figure 4. Compromised spine stability.

Figure 3. Examples of T1 weighted MRI images of lumbar spine at L3 show-
ing mild (<10%), moderate (10–50%) and severe (>50%) fat infiltration of the
lumbar multifidus muscle (images from subjects enrolled in the ReActiv8-B
Clinical Trial with permission).
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Physical Diagnostic Tests for Motor Control Dysfunction
Several tests have been investigated to diagnose patients with

CLBP due to motor control impairment including the standing back
extension test (89), the prone instability test (PIT) (90), and the multi-
fidus lift test (MLT) (91). The standing back extension test has reliabil-
ity reported as a Kappa of 0.87, but, the test was validated against
the function of deep abdominal muscles only to determine if motor
control deficit of the spine were present.

The PIT has adequate interrater reliability (92) (reported as
K 5 0.87) (93) and good face validity. A positive PIT was one of the
four variables shown to be predictive of success with a stabiliza-
tion exercise program for patients with sub-acute LBP (a sample of
40 subjects with an average duration of 75 days) that included
exercises designed to reactivate the LM (94). In another study (95),
subjects with LBP (a sample of 105 with an average duration of 65
days) who had a positive PIT in conjunction with aberrant move-
ment patterns were shown to have reduced disability and pain fol-
lowing a course of motor control re-training exercises when
compared to those subjects who did not have these clinically
findings.

The PIT is performed with the patient prone in a relaxed and neu-
tral spine posture (Fig. 5). The tester applies posterior to anterior
glides (pressure) over each lumbar segment. If one or more glides
produces pain, the glides are repeated when the subject’s posterior
spinal muscles are activated (extending the hips by lifting the feet
off the floor, Fig. 6). If the pain is significantly diminished when the
glides are performed during muscle activation, the test is considered
positive and suggestive of the presence of a motor control deficit,
including MF dysfunction.

Hebert et al. reported the reliability of the MLT, a palpation tech-
nique designed to test for MF function. This study used the MLT pro-
cedure and compared the results of palpation for the determination
of diminished compared to normal multifidus contraction to the
measurement of MF muscle thickness change via sonography in 32
subjects with LBP (91). “During the arm lift, the examiner made a qual-
itative judgment as to whether the participant demonstrated a normal
or abnormal lumbar multifidus contraction. This judgment was based
on the degree of contraction as determined by muscle palpation. We
operationally defined a normal contraction as one in which a robust
and obvious muscle contraction could be palpated during the arm lift.
We operationally defined an abnormal contraction as occurring when
there was little or no palpable contraction of the muscle during the
arm lift.”

Inter-tester reliability of the MLT at the L4–L5 was reported to
be K 5 0.75 with 86% agreement and at the L5–S1 level demon-
strated a K 5 0.81 with 91% agreement. To establish validity of the
test, they assessed the correlation between outcome of the MLT
and the ultrasound measure of thickness change. The correlation
coefficients demonstrated a consistent relationship (0.59–0.73,
p< 0.01) between the MLT findings and the ultrasound measures
of lumbar multifidus function at L4–L5 and at L5–S1. They
reported one examiner that was significant and one was not with
a p value 5 0.056.

While the PIT has not been specifically validated for LM function,
there are data suggesting a relationship between a positive PIT and
MF dysfunction. MF reduced thickness change, measured with ultra-
sound, has been shown to be associated with those who do
respond well to a stabilization exercise program (94). Additionally,
subjects that were more likely to respond well to the stabilization
exercise program had reduced LM thickness change during the MLT.
Finally, Herbert et al. demonstrated that subjects who had a positive
PIT also had reduced LM thickness change (8.5%) when compared
with subjects who had a negative PIT (14.9%). These findings collec-
tively suggest that subjects who test positive on the PIT, may have
associated MF dysfunction.

In summary:

• Imaging (x-ray, MRI, ultrasound) diagnostic tests for CLBP due to
motor control dysfunction have limited value in individual
patients.

• EMG has little value as a diagnostic tool for individual patients
with CLBP.

• Physical movement tests (in particular the prone instability test)
may be useful to identify patients with CLBP who will benefit for
therapies to address motor control dysfunction.

THERAPIES FOR PATIENTS WITH CLBP DUE TO
MF DISRUPTION
Exercise Intervention for Restoration of Muscle Control to
the MF

The “core stabilizing muscles” of the trunk consists of the erector
spinae (ES), transverse abdominus (TrA), and MF, which is the only

Figure 5. Positioning for starting the Prone Instability Test. We obtained
consent for inclusion of the photo from the patient.

Figure 6. Activation condition for the PIT (note feet are lifted slightly off the
floor). We obtained consent for inclusion of the photo from the patient.
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muscle in this group that provides segmental stability. Many exer-
cise programs for LBP have focused on “core stabilization exercises”
which include the MF. The concept of core stability has both its pro-
ponents (96) and its critics (85,97) with strongly held views on both
sides and much controversy (98).

There have been many studies on core stabilization exercises to
improve back pain associated with spine instability (99–101). Several
terms are used with approximately the same meaning including
“motor control exercises” (MCE), “spine stabilization exercises,”
“lumbar stabilization exercises” and “core strengthening.” There
have also been many reviews and meta-analyses of the value of
core stabilization exercises (102–108), and the conclusions range
between great value and no additional value over normal exercises.
Unfortunately, there are no “standards” for core stabilization exer-
cises, so comparison of clinical studies is challenging at best. Fur-
thermore, most studies make no attempt to use diagnostic tests to
identify in advance those patients likely to benefit from restoration
of MCE, hence any true effect is buried in the noise.

There are few published studies of exercise programs that focus
on just the multifidus. Interestingly, “generalized” core stabilization
exercises have quite mixed results, whereas exercises that target the
MF alone or in combination with another muscle generally have
more positive clinical results (109,110).

Specific MCE targeting the atrophied MF in some cLBP patients
can override the normally involuntary motor control system, restore
neural drive to the MF, and lead to recovery from back pain. Ultra-
sound image guided biofeedback (86) of the MF can help the
patient learn to voluntarily contract a muscle not normally subject
to voluntary control (111).

This therapy can result in improvements in pain and function in
people with CLBP (112–115) including athletes (116,117), and
chronic back pain related to spondylosis and spondylolisthesis (118).
In addition to reducing symptoms in chronic pain, targeted motor
control training can reduce long-term recurrence of back pain in
patients with MF atrophy, and reduce the severity of recurrences
that do occur (42). The presence of reduced MF activation is a strong
predictor (and may be the only useful predictor) of the success of
specific targeted training exercises (94).

Unfortunately, targeted MF exercises are difficult to perform and
teach, and many patients are simply unable to voluntarily contract a
muscle group not normally amenable to voluntary control. In addi-
tion, back pain induced arthrogenic muscle inhibition of the
spine stabilizing muscles may prohibit any voluntary contraction of
the MF.

Neuromuscular Electrical Stimulation (NMES) to Restore
Motor Control

In a similar situation, many patients find it difficult or impossible
to perform quadriceps strengthening exercises following knee sur-
gery as a result of persistent arthrogenic muscle inhibition. Transcu-
taneous neuromuscular electrical stimulation (NMES) to cause
episodic contraction of the quadriceps alone has been used to
restore motor control to allow voluntary contractions and hence
facilitate rehabilitation (119,120) following total knee arthroplasty
(121) or other surgical procedures (122,123). This treatment has
been analyzed in a systematic review (124). Painful knee osteoarthri-
tis can be treated without surgery but may also lead to pain medi-
ated inhibition of neural drive to the quadriceps, which can be
treated with NMES (125). It is clear that NMES can restore motor con-
trol in some circumstances, and in fact can do so prior to improve-
ments in strength of the quadriceps (126,127). NMES has also been
used to restore motor control for swallowing (128).

NMES of the spine stabilizing muscles has not been well
researched.1 Transcutaneous NMES cannot selectively activate deep
muscles without also activating the overlying muscles. For example,
NMES over the lumbar spine can cause contractions of the superfi-
cial fascicles of the MF, but also causes contractions of the transverse
abdominus and obliquis internus (129). Transcutaneous NMES over
the multifidus has been shown to have no effect (130).

In summary

• A program of biofeedback guided motor control exercise of the
MF can restore disrupted motor control to the MF.

• Motor control exercises of the MF may be impossible in the con-
text of arthrogenic inhibition of the MF due to CLBP.

• In the situation of disrupted motor control of the quadriceps from
arthrogenic inhibition due to knee pain, transcutaneous neuro-
muscular electrical stimulation has been shown to restore motor
control of the quadriceps.

• Transcutaneous NMES is not suitable for the MF, because the mus-
cle is deep, diffuse, and has extensive overlying muscles.

Restorative Neurostimulation for CLBP
In the same way that electrical stimulation to cause episodic

quadriceps contraction can restore neuromuscular control following
knee surgery, it was hypothesized that targeted electrical stimula-
tion to cause episodic contraction of the MF alone could lead to res-
toration of neuromuscular control of the MF, leading to improved
functional stability of the lumbar spine and resolution of CLBP.
Whereas transcutaneous stimulation to elicit selective MF contrac-
tions is not feasible, stimulation of electrodes placed adjacent to the
nerve supply to the MF can cause MF only contractions. Direct stim-
ulation of motor nerves to elicit muscle contraction requires two
orders of magnitude lower energy than direct stimulation of the
muscle mass. Furthermore, direct electrical stimulation of the motor
nerves supplying the MF will lead to contraction of the whole mus-
cle innervated by the motor nerve, and not just the region of muscle
in the vicinity of the electrodes used for direct muscle stimulation.

A feasibility study to explore this concept using “off the shelf”
neurostimulation hardware showed encouraging results (131). Based
on the results of this study, a custom implantable neurostimulator
was developed and subjected to a single arm clinical trial, which
subsequently led to CE Mark approval of the device (see https://
clinicaltrials.gov/ct2/show/NCT01985230). Results of this trial are
presented in this issue of Neuromodulation (132).

An international, multi-center, prospective randomized trial with
sham control and triple blinding is under way to gather data for a
potential submission to the FDA for a Pre-Market Approval (see
https://clinicaltrials.gov/show/NCT02577354).

CONCLUSION

A significant number of people with primarily nociceptive CLBP
have impaired neuromuscular control of the key stabilizing muscles
of the lumbar spine as the root cause of their pain, especially
impaired control of the lumbar multifidus. These people are gener-
ally not candidates for surgery, and are poorly served by existing

1Note that NMES differs from Transcutaneous Electrical Stimulation (TENS)

used as a pain therapy. There are different electrical parameters of stimu-

lation, different proposed mechanisms of action and different modes of

use. There is no evidence that TENS is effective for treatment of CLBP

(133).
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therapies. Exercise therapy targeting restoration of neuromuscular

control of the MF has been shown to be effective in some cases, but

most people find it difficult or impossible to voluntarily contract the

MF. The application of exercise therapy to the MF is limited by the

fact that the MF is not normally amenable to voluntary control and

may also be subject to arthrogenic muscle inhibition.
Electrical stimulation to restore neuromuscular control of the

quadriceps following knee injury or knee surgery has been shown to

be effective. The same approach has not been systematically applied

to the lumbar spine. Restorative neurostimulation of the MF to

mimic the effects of targeted exercise therapy of the MF has been

explored in two single-arm clinical trials with encouraging results,

and a prospective sham-controlled RCT is under way.
Restorative neurostimulation to cause contraction of the lumbar

multifidus holds promise as a new and different approach to treat-

ing primarily nociceptive mechanical chronic LBP.
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COMMENT
I congratulate the authors on a comprehensive and yet succinct

review of the existing body of knowledge regarding multifidus motor
control and chronic low back pain. Have they identified the nociceptive
elephant in the neuromodulation room of low back pain treatment? Is
there causation buried in the correlation? Has it been this small muscle,
which has frustrated so many neuromodulators, patients and possibly
insurers? Physical therapists and chiropractors have for decades dis-
sented our penchant for ablative destruction of the medial branch of
the dorsal primary ramus arguing we should be rather be applauding
and emboldening the multifidus. Clearly there exists an association
between multifidus malfunction and CLBP, and motor dysfunction has
been clearly linked to multiple other painful maladies in other regions of
the body (many of which also respond to peripheral, direct NMES or
upstream NMES). The sibling article published alongside this one reveals
the precocious efforts to provide implantable NMES to this formerly
challenging neural target. Time will tell. My suspicion: the success of
peripheral neuromodulation which serves to specifically rehabilitate and
ameliorate downstream muscle dysfunction will eclipse sensory only
peripheral nerve stimulation efforts. Formerly shunned mixed or motor
nerves may have very specific orthodromic value when, possibly even
central, pain relates to downstream motor dysfunction.

W. Porter McRoberts, MD
Fort Lauderdale, FL, USA
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