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Abstract

The choice of crossover and mutation strategies plays a crucial role in the searchability, con-

vergence efficiency and precision of genetic algorithms. In this paper, a novel improved

genetic algorithm is proposed by improving the crossover and mutation operation of the sim-

ple genetic algorithm, and it is verified by 15 test functions. The qualitative results show that,

compared with three other mainstream swarm intelligence optimization algorithms, the algo-

rithm can not only improve the global search ability, convergence efficiency and precision,

but also increase the success rate of convergence to the optimal value under the same

experimental conditions. The quantitative results show that the algorithm performs superi-

orly in 13 of the 15 tested functions. The Wilcoxon rank-sum test was used for statistical

evaluation, showing the significant advantage of the algorithm at 95% confidence intervals.

Finally, the algorithm is applied to neural network adversarial attacks. The applied results

show that the method does not need the structure and parameter information inside the neu-

ral network model, and it can obtain the adversarial samples with high confidence in a brief

time just by the classification and confidence information output from the neural network.

1 Introduction

In real life, optimization problems such as shortest path, path planning, task scheduling,

parameter tuning, etc. are becoming more and more complex and have complex features such

as nonlinear, multi-constrained, high-dimensional, and discontinuous [1]. Although a series

of artificial intelligence algorithms represented by deep learning can solve some optimization

problems, they lack mathematical interpretability due to the existence of a large number of

nonlinear functions and parameters inside their models, so they are difficult to be widely used

in the field of information security. Traditional optimization algorithms and artificial intelli-

gence algorithms can hardly solve complex optimization problems with high dimensionality

and nonlinearity in the field of information security.

Therefore, it is necessary to find an effective optimization algorithm to solve such problems.

In this background, various swarm intelligence optimization algorithms have been proposed
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one after another, such as Particle Swarm Optimization(PSO) [2, 3], Grey Wolf Optimizer

(GWO) [4], etc. Subsequently, a variety of improved optimization algorithms also have been

proposed one after another. For example, the improved genetic algorithm for cloud environ-

ment task scheduling [5], the improved genetic algorithm for flexible job shop scheduling [6],

the improved genetic algorithm for green fresh food logistics [7], etc.

However, these improved optimization algorithms are improved for domain-specific opti-

mization problems and do not improve the accuracy, convergence efficiency and generaliza-

tion of the algorithms themselves. In this paper, the crossover operator and mutation operator

of the genetic algorithm are improved to improve the convergence efficiency and precision of

the algorithm without affecting the effectiveness of the improved genetic algorithm on most

optimization problems. The effectiveness of the improved genetic algorithm is also verified

through many comparison experiments and applications in the field of neural network adver-

sarial attacks.

The main contributions of this paper are as follows:

• By improving the single-point crossover link of SGA, the fitness function is used as an evalu-

ation index for selecting children after crossover, thus reducing the number of iterations and

accelerating the convergence speed.

• By improving the basic bitwise mutation of the SGA, traversing each gene of the offspring

and performing selective mutation on them, setting different mutation rates for two parts of

a chromosome, thus improving the global search in the stable case of local optimum.

• The improved genetic algorithm is applied to the field of neural network adversarial attack,

which increases the speed of adversarial sample generation and improves the robustness of

the neural network model.

2 Related works

2.1 Genetic algorithm

Genetic Algorithm is a series of simulation evolutionary algorithms proposed by Holland et al.

[8], and later summarized by DeJong, Goldberg and others. The general flowchart of the

Genetic Algorithm is shown in Fig 1. The Genetic Algorithm first encodes the problem, then

calculates the fitness, then selects the parent and the mother by roulette, and finally generates

the children with high fitness by crossover and mutation, and finally generates the individuals

with high fitness after many iterations, which is the satisfied solution or optimal solution of the

problem. Simple Genetic Algorithm (SGA) uses single-point crossover and simple mutation to

embody information exchange between individuals and local search, and does not rely on gra-

dient information, so SGA can find the global optimal solution.

2.2 Other meta-heuristic algorithms

The meta-heuristic algorithm is problem-independent, does not exploit the specificity of the

problem, and is a general solution. In general, it is not greedy, can explore more search space,

and tends to obtain the global optimum. To be more specific, meta-heuristic have one of the

most important ideas: a dynamic balance mechanism between diversification and

intensification.

The PSO [2, 3] algorithm is a swarm intelligence-based global stochastic search algorithm

inspired by the results of artificial life research and by simulating the migration and flocking

behavior of bird flocks during foraging, and its basic idea is inspired by the results of research

on modeling and simulation of birds flock behavior. The GWO algorithm is a swarm
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intelligence optimization algorithm proposed by Mirjalili et al. [4]. The algorithm is inspired

by the grey wolf prey hunting activity and developed as an optimization search algorithm,

which has strong convergence performance, few parameters, and easy implementation. The

Marine Predator Algorithm (MPA) [9] is mainly inspired by foraging strategies widely found

in marine predators, namely Lévy and Brownian motion, and optimal encounter rate strategies

in biological interactions between predators and prey. The Artificial Gorilla Troops Optimizer

(GTO) [10] was inspired by the gorilla group life behavior. The GTO is characterized by fast

search speed and high solution accuracy. The African Vulture Optimization Algorithm

(AVOA) [11] was inspired by the foraging and navigation behavior of African vultures. this

algorithm is fast and has high solution accuracy which is widely used in single-objective opti-

mization. The Remora Optimization Algorithm (ROA) [12] first proposed an intelligent opti-

mization algorithm inspired by the biological habits of the neutrals in nature, which has good

solution accuracy and high engineering practical value in both function seeking to solve

extreme values and typical engineering optimization problems.

2.3 Neural network adversarial attack

Szegedy et al. [13] first demonstrated that a highly accurate deep neural network can be misled

to make a misclassification by adding a slight perturbation to an image that is imperceptible to

the human eye, and also found that the robustness of deep neural networks can be improved

by adversarial training. Such phenomena are far-reaching and have attracted many researchers

in the area of adversarial attacks and deep learning security. Akhtar and Mian [14] surveyed 12

attack methods and 15 defense methods for neural networks adversarial attacks. The main

attack methods are finding the minimum loss function additive term [13], increasing the loss

function of the classifier [15], the method of limiting the l_0 norm [16], changing only one

pixel value [17], etc.

Nguyen et al. [18] continued to explore the question of “what differences remain between

computer and human vision” based on Szegedy et al. [13]. They used the Evolutionary Algo-

rithm to generate high-confidence adversarial images by iterating over direct-encoded images

and CPPN (Compositional Pattern-Producing Network) encoded images, respectively. They

Fig 1. Genetic algorithm flowchart.

https://doi.org/10.1371/journal.pone.0267970.g001
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obtained high-confidence adversarial samples (fooling images) using the Evolutionary Algo-

rithm on a LeNet model pre-trained on the MNIST dataset [19] and an AlexNet model pre-

trained on the ILSVRC 2012 ImageNet dataset [20, 21], respectively.

Neural network adversarial attacks are divided into black-box attacks and white-

box attacks. Black-box attacks do not require the internal structure and parameters of the neu-

ral network, and the adversarial samples can be generated with optimization algorithms as

long as the output classification and confidence information is known. The study of neural

network adversarial attacks not only helps to understand the working principle of neural net-

works but also increases the robustness of neural networks by training with adversarial

samples.

3 Approaches

This section improves the single-point crossover and simple mutation of SGA. The fitness

function is used as the evaluation index of the crossover link, and the crossover points of the

whole chromosome are traversed to improve the efficiency of the search for the best. A selec-

tive mutation is performed for each gene of the children’s chromosome, and the mutation rate

of the latter half of the chromosome is set to twice that of the first half to improve the global

search under the stable situation of local optimum.

3.1 Improved crossover operation

As shown in algorithm 1 is the Python pseudocode for the improved crossover algorithm. The

single-point crossover of SGA is to generate a random number within the parental chromo-

some length range, and then intercept the first half of the father’s chromosome and the second

half of the mother’s chromosome to cross-breed the children according to the generated ran-

dom number. In this paper, the algorithm is improved by trying to cross genes within the

parental chromosome length range one by one, calculating the fitness, and picking out the

highest fitness children individuals. Experimental data show that such an improvement can

reduce the number of iterations and speed up the convergence of fitness.

Algorithm 1 Crossover with fitness as evaluation.
Input: Father’s gene, mother’s gene, fitness function;
Output: Child’s gene;
1: function CROSSOVER(father, mother, fitness)
2: best_fitness = float.MIN_VALUE;
3: best_child = np.zeros(father.size);
4: for i = 0 ! father.size do
5: current_child = np.zeros(father.size);
6: current_child = np.append(father[0: i], mother[i :]);
7: current_fitness = fitness(current_child);
8: if current_fitness > best_fitness then
9: best_fitness = current_fitness;
10: best_child = current_child.copy();
11: end if
12: end for
13: return best_child
14: end function

3.2 Improved mutation operation

As shown in algorithm 2 is the pseudocode of the improved mutation algorithm. The simple

mutation of SGA sets a relatively large mutation rate, and mutates any one gene of the incom-

ing children’s chromosome when the generated random number is smaller than the mutation
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rate. In this paper, we improve the algorithm by setting a small mutation rate and then selec-

tively mutating each gene of the incoming children’s chromosome. That is, when the generated

random number is smaller than the mutation rate, the gene is mutated, and when the traversed

gene position is larger than half of the chromosome length, the mutation rate is set to twice the

original one (the second half of the gene has relatively less influence on the result). This

ensures that the first half of the gene and the second half of the gene have an equal chance of

mutation respectively, and can mutate at the same time. When the gene length is 784, the

mutation rate of the whole chromosome is 1 − (1 − 0.025)392 × (1 − 0.05)392, which greatly

improves the species diversity and at the same time ensures the stability of the species (in the

stable situation of the local optimum improves the global search ability), and experimental

data show that it can improve the search capability.

Algorithm 2 Mutate child with alter each gene if rand number less than mutate rate.
Input: Child’s gene;
Output: Mutated child’s gene;
1: function MUTATE(child)
2: mutate_rate = 0.025;
3: for i = 0 ! child.size do
4: if i > child.size//2 then
5: mutate_rate = 0.05;
6: end if
7: if random.random() < mutate_rate then
8: child[i] = !child[i];//child[i] equals 0 or 1
9: end if
10: end for
11: return child
12: end function

4 Numerical experiments and analysis

4.1 Test functions

In order to evaluate the optimization performance of the proposed improved genetic algo-

rithm, 15 representative test functions from AVOA paper of Abdollahzadeh et al. [11] and

Wikipedia [22] are selected in this paper. Since the proposed improved genetic algorithm is

mainly used for the neural network adversarial attack problem, and the neural network has

multi-dimensional parameters, the dimensions of the test functions will be tested on 30, 50,

and 100, respectively. The details of the formula, dimensions, range, and minimum of the 15

test functions are shown in Tables 1–3, where Table 1 are multi-dimensional test functions

with unimodal, Table 2 are multi-dimensional test functions with multi-modal, and Table 3

for fixed-dimensional test functions.

Table 1. Details of unimodal test functions.

No Function Dimensions Range Fmin

F1 f ðxÞ ¼
Pd

i¼1
x2
i

30,50,100 [−100, 100]d 0

F2 f ðxÞ ¼
Pd

i¼1
jxij þ

Qd
i¼1
jxij 30,50,100 [−10, 10]d 0

F3 f ðxÞ ¼
Pd

i¼1
ð
Pi

j¼1
xjÞ

2 30,50,100 [−100, 100]d 0

F4 f(x) = maxi {|xi|, 1� i� d} 30,50,100 [−100, 100]d 0

F5 f ðxÞ ¼
Pd� 1

i¼1
½100ðxiþ1 � x2

i Þ
2
þ ðxi � 1Þ

2
� 30,50,100 [−30, 30]d 0

F6 f ðxÞ ¼
Pd

i¼1
ðjxi þ 0:5jÞ

2 30,50,100 [−100, 100]d 0

F7 f ðxÞ ¼
Pd

i¼1
ix4

i þ random½0; 1Þ 30,50,100 [−128, 128]d 0

https://doi.org/10.1371/journal.pone.0267970.t001
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4.2 Experimental environment

The hardware environment of the experiment includes 8G of RAM, i7–4700MQ CPU; the

software environment includes Windows 10 system, and the version of Python is 3.8.8. In

order to compare the optimization performance of IGA, SGA (Simple Genetic Algorithm),

PSO (Particle Swarm Optimization) and GWO (Grey Wolf Optimizer) are selected as the

experimental objects for comparison experiments in this paper.

As shown in Fig 2, in order to determine the appropriate parameters for the IGA, this paper

combines different parameters of the IGA and then tests them several times on F1-F6. The

detailed parameters of the 4 optimization algorithms are shown in Table 4, and the population

size and the max iteration are kept the same for the convenience of comparison. The other

parameters of PSO are set to typical values: w = 1, c1 = c2 = 1.49445. The other parameters of

GWO are set to typical values: ~C ¼ Randð0; 2Þ,~a ¼ Randð� a; aÞ, a = 2! 0.

4.3 Experimental results and analysis

4.3.1 Qualitative result analysis. As shown in Figs 3–6, F12-F15 are used to evaluate the

qualitative results of the IGA. Each optimization algorithm was tested 10 times on F12-F15

Table 2. Details of multi-modal test functions.

No Function Dimensions Range Fmin

F8 f ðxÞ ¼ �
Pd

i¼1
ðxi sin ð

ffiffiffiffiffiffi
jxij

p
ÞÞ 30,50,100 [−500, 500]d −418:9829d

F9 f ðxÞ ¼ 10dþ
Pd

i¼1
½xdi � 10 cos ð2pxiÞ� 30,50,100 [−5.12, 5.12]d 0

F10
f ðxÞ ¼ � 20 exp � 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

d

Pd
i¼1

x2
i

q� �

� exp 1

d

Pd
i¼1

cos 2pxi
� �

þ 20þ e
30,50,100 [−32, 32]d 0

F11 f ðxÞ ¼ 1

4000

Pd
i¼1

x2
i �

Qd
i¼1

cos xiffi
i
p

� �
þ 1 30,50,100 [−600, 600]d 0

https://doi.org/10.1371/journal.pone.0267970.t002

Table 3. Details of fixed-dimension test functions.

No Function Dimensions Range Fmin

F12 f(x, y) = x2+ y2 2 [−5, 5]x,y 0

F13 f ðx; yÞ ¼ � 20 exp½� 0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ðx2 þ y2Þ

p
� � exp½0:5ðcos 2pxþ cos 2pyÞ� þ eþ 20 2 [−5, 5]x,y 0

F14 f(x, y) = (1.5 − x + xy)2 + (2.25 − x + xy2)2 + (2.625 − x + xy3)2 2 [−4.5, 4.5]x,y 0

F15 f ðx; yÞ ¼ � ðyþ 47Þ sin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j x

2
þ ðyþ 47Þj

p
� x sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx � ðyþ 47Þj

p
2 [−512, 512]x,y −959.6407

https://doi.org/10.1371/journal.pone.0267970.t003

Fig 2. IGA parameters selection. (a) Mutation rate. (b) Population size. (c) Max iteration.

https://doi.org/10.1371/journal.pone.0267970.g002
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under the same experimental conditions. Among them, “Population distribution” is the scatter

plot of the distribution of all individuals for each optimization algorithm in 10 experiments,

and the formula for the density is shown in Formula (1), population_size = 50. “Best record” is

the scatter plot of the distribution of the optimal individuals for each experiment, and the for-

mula for calculating the intensity is shown in Formula (2). From the figure, we can see that the

density of optimal individuals for each round of experimental IGA is better than the other

Table 4. The parameter settings.

Algorithm Iteration Population size Gene length Mutation rate

IGA 101 50 30 0.05

SGA 101 50 30 0.2

PSO 101 50 - -

GWO 101 50 - -

https://doi.org/10.1371/journal.pone.0267970.t004

Fig 3. Qualitative results for the F12 function. (a) Parameter space. (b) Population distribution. (c) Best record. (d) Convergence curve.

https://doi.org/10.1371/journal.pone.0267970.g003

Fig 4. Qualitative results for the F13 function. (a) Parameter space. (b) Population distribution. (c) Best record. (d) Convergence curve.

https://doi.org/10.1371/journal.pone.0267970.g004

Fig 5. Qualitative results for the F14 function. (a) Parameter space. (b) Population distribution. (c) Best record. (d) Convergence curve.

https://doi.org/10.1371/journal.pone.0267970.g005
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three optimization algorithms, and also retains a strong global search capability in the last iter-

ation. On the F15 test function, SGA, PSO and GWO fall into local optimum several times.

From the convergence curves, we can see that IGA is converged before the other three optimi-

zation algorithms, and the precision after convergence is better.

density ¼
1

population size

Xpopulation size

i¼1

dist ai; oð Þ ð1Þ

density ¼
1

test n

Xtest n

i¼1

dist abest; oð Þ ð2Þ

4.3.2 Quantitative result analysis. In order to make a quantitative comparison with the

other three mainstream optimization algorithms, the four optimization algorithms are per-

formed independently for 10 experiments on F1-F11 test functions in dimensions 30, 50, and

100, respectively. The purpose of performing the high-dimensional function test is to test the

convergence superiority of IGA on the high-dimensional space for application in the field of

neural network adversarial attack. Tables 5–7 are the test results of the test functions F1-F11 in

30, 50, and 100 dimensions, respectively. Table 8 shows the results of the four optimization

algorithms tested on the test functions F12-F15. The best result, worst result, mean, median,

standard deviation, and P-value are compared for 10 experiments. Where P-value is the result

of the Wilcoxon rank-sum statistical test and P-value below 5% is significant.

In Table 5, IGA achieves significantly superior performance in 9 test functions, PSO is bet-

ter in F3, and SGA is slightly better in F8. In Tables 6 and 7, IGA achieves significantly superior

performance in 10 test functions, PSO performs better in F3. It can be seen that the perfor-

mance loss of IGA with increasing dimensionality is not as large as the other three optimiza-

tion algorithms. In Table 8, IGA achieves significantly superior performance in 3 test

functions, and PSO performs slightly better in F14.

In general, IGA has better iteration efficiency, global search capability, and convergence

success rate than the other three optimization algorithms.

5 Application in neural network adversarial attack

5.1 MNST dataset

The MNST dataset (Mixed National Institute of Standards and Technology database) [19] is

one of the most well-known datasets in the field of machine learning and is used in applica-

tions from simple experiments to published paper research. It consists of handwritten digital

Fig 6. Qualitative results for the F15 function. (a) Parameter space. (b) Population distribution. (c) Best record. (d) Convergence curve.

https://doi.org/10.1371/journal.pone.0267970.g006
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Table 5. Results of test functions (F1-F11) with 30 dimensions.

Fun Alg Min Max Mean Median Std P-value

F1 SGA 5.60E+03 1.24E+04 8.29E+03 7.68E+03 2.44E+03 1.57E-04

PSO 2.14E+02 2.87E+02 2.48E+02 2.45E+02 2.65E+01 1.57E-04

GWO 2.64E-15 4.54E-14 1.81E-14 1.58E-14 1.56E-14 1.57E-04

IGA 1.75E-18 5.12E-16 7.44E-17 1.10E-17 1.60E-16 1.00E+00

F2 SGA 8.15E+01 1.44E+05 2.08E+04 9.32E+02 4.46E+04 1.57E-04

PSO 8.11E+01 8.77E+05 1.49E+05 1.45E+04 2.94E+05 1.57E-04

GWO 6.63E-12 7.78E-10 2.41E-10 8.51E-11 2.95E-10 3.81E-04

IGA 2.18E-12 1.05E-11 5.20E-12 4.92E-12 2.91E-12 1.00E+00

F3 SGA 2.72E+04 5.50E+04 4.09E+04 4.11E+04 8.25E+03 1.57E-04

PSO 1.92E+02 3.12E+02 2.33E+02 2.26E+02 3.46E+01 1.57E-04

GWO 7.20E+03 1.75E+04 1.14E+04 1.07E+04 3.89E+03 4.13E-02

IGA 3.07E+03 2.10E+04 8.39E+03 6.87E+03 5.11E+03 1.00E+00

F4 SGA 5.92E+01 7.54E+01 6.74E+01 6.65E+01 5.52E+00 1.57E-04

PSO 5.00E+00 5.00E+00 5.00E+00 5.00E+00 0.00E+00 1.57E-04

GWO 1.62E-02 1.13E+00 3.15E-01 1.58E-01 4.04E-01 1.57E-04

IGA 1.18E-05 9.82E-05 3.94E-05 2.64E-05 2.68E-05 1.00E+00

F5 SGA 9.92E+06 2.47E+07 1.65E+07 1.46E+07 5.43E+06 1.57E-04

PSO 3.02E+05 4.82E+05 3.94E+05 3.95E+05 5.53E+04 1.57E-04

GWO 2.88E+01 2.88E+01 2.88E+01 2.88E+01 1.10E-02 1.57E-04

IGA 2.80E+01 2.88E+01 2.87E+01 2.87E+01 2.23E-01 1.00E+00

F6 SGA 4.22E+03 1.38E+04 9.91E+03 9.68E+03 3.22E+03 1.57E-04

PSO 1.88E+02 2.76E+02 2.41E+02 2.40E+02 2.70E+01 1.57E-04

GWO 9.70E-01 3.24E+00 2.26E+00 2.47E+00 7.05E-01 1.50E-03

IGA 6.69E-01 1.53E+00 1.05E+00 1.02E+00 2.93E-01 1.00E+00

F7 SGA 3.60E+08 1.09E+09 7.13E+08 6.67E+08 2.27E+08 1.57E-04

PSO 3.51E+04 5.59E+04 4.70E+04 4.68E+04 7.23E+03 1.57E-04

GWO 8.06E-04 4.88E-02 1.51E-02 7.92E-03 1.71E-02 6.50E-03

IGA 3.45E-04 8.24E-03 2.20E-03 1.53E-03 2.39E-03 1.00E+00

F8 SGA -9.28E+03 -7.16E+03 -8.68E+03 -8.94E+03 6.92E+02 7.05E-01

PSO -1.18E+02 -8.65E+01 -1.04E+02 -1.02E+02 8.93E+00 1.57E-04

GWO -9.11E+03 -6.76E+03 -8.50E+03 -8.70E+03 7.20E+02 1.51E-01

IGA -9.02E+03 -8.60E+03 -8.90E+03 -9.01E+03 1.67E+02 1.00E+00

F9 SGA 3.65E+13 5.31E+17 7.97E+16 5.50E+15 1.66E+17 1.57E-04

PSO 1.33E+21 3.50E+21 2.47E+21 2.42E+21 7.43E+20 1.57E-04

GWO 1.14E-13 2.22E+02 3.48E+01 8.81E-13 7.67E+01 1.83E-04

IGA 0.00E+00 1.14E-13 2.27E-14 0.00E+00 3.97E-14 1.00E+00

F10 SGA 1.32E+01 1.63E+01 1.49E+01 1.52E+01 1.11E+00 1.57E-04

PSO 9.51E+00 1.08E+01 1.02E+01 1.03E+01 4.61E-01 1.57E-04

GWO 2.62E-08 5.37E-07 1.88E-07 1.21E-07 1.78E-07 1.57E-04

IGA 5.71E-11 4.23E-09 9.95E-10 5.75E-10 1.27E-09 1.00E+00

F11 SGA 5.66E+01 1.35E+02 9.91E+01 1.01E+02 2.20E+01 1.57E-04

PSO 1.05E+00 1.07E+00 1.06E+00 1.06E+00 4.80E-03 1.57E-04

GWO 4.22E-15 2.88E-08 2.88E-09 1.08E-12 9.10E-09 1.57E-04

IGA 0.00E+00 1.33E-15 2.22E-16 1.11E-16 4.05E-16 1.00E+00

https://doi.org/10.1371/journal.pone.0267970.t005
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Table 6. Results of test functions (F1-F11) with 50 dimensions.

Fun Alg Min Max Mean Median Std P-value

F1 SGA 1.54E+04 3.39E+04 2.69E+04 2.86E+04 5.70E+03 1.57E-04

PSO 4.92E+02 5.53E+02 5.22E+02 5.25E+02 2.26E+01 1.57E-04

GWO 6.08E-16 8.65E-11 9.74E-12 1.14E-12 2.70E-11 1.57E-04

IGA 3.91E-18 3.10E-16 8.88E-17 6.02E-17 1.03E-16 1.00E+00

F2 SGA 3.12E+09 8.84E+15 1.78E+15 7.55E+12 3.45E+15 1.57E-04

PSO 4.25E+10 1.11E+14 1.64E+13 4.80E+12 3.37E+13 1.57E-04

GWO 1.54E-11 1.71E-09 8.26E-10 8.72E-10 5.82E-10 8.81E-04

IGA 2.57E-12 1.03E-10 3.02E-11 2.04E-11 3.19E-11 1.00E+00

F3 SGA 7.50E+04 1.50E+05 1.14E+05 1.17E+05 2.34E+04 1.57E-04

PSO 4.45E+02 7.54E+02 5.70E+02 5.49E+02 1.00E+02 1.57E-04

GWO 1.90E+04 6.22E+04 4.07E+04 4.01E+04 1.26E+04 1.74E-01

IGA 1.34E+04 4.91E+04 3.15E+04 3.20E+04 1.16E+04 1.00E+00

F4 SGA 6.64E+01 8.39E+01 7.60E+01 7.58E+01 5.34E+00 1.57E-04

PSO 5.00E+00 5.00E+00 5.00E+00 5.00E+00 0.00E+00 1.57E-04

GWO 9.01E-03 3.25E+01 4.85E+00 1.66E+00 9.96E+00 1.57E-04

IGA 3.86E-06 1.92E-04 7.04E-05 6.60E-05 5.94E-05 1.00E+00

F5 SGA 3.98E+07 8.59E+07 5.67E+07 5.65E+07 1.46E+07 1.57E-04

PSO 8.76E+05 1.04E+06 9.61E+05 9.59E+05 5.04E+04 1.57E-04

GWO 4.86E+01 4.87E+01 4.87E+01 4.87E+01 3.87E-02 8.81E-04

IGA 4.85E+01 4.86E+01 4.86E+01 4.86E+01 3.69E-02 1.00E+00

F6 SGA 1.90E+04 3.15E+04 2.46E+04 2.43E+04 3.26E+03 1.57E-04

PSO 4.74E+02 5.74E+02 5.24E+02 5.15E+02 3.62E+01 1.57E-04

GWO 2.58E+00 4.83E+00 3.77E+00 3.74E+00 6.99E-01 6.70E-04

IGA 1.87E+00 3.55E+00 2.43E+00 2.36E+00 5.01E-01 1.00E+00

F7 SGA 2.84E+09 6.44E+09 4.57E+09 4.53E+09 1.13E+09 1.57E-04

PSO 1.93E+05 2.51E+05 2.22E+05 2.21E+05 2.05E+04 1.57E-04

GWO 7.01E-03 5.29E-02 1.67E-02 1.20E-02 1.37E-02 1.57E-04

IGA 3.24E-04 6.80E-03 3.27E-03 3.68E-03 2.29E-03 1.00E+00

F8 SGA -1.35E+04 -1.21E+04 -1.31E+04 -1.32E+04 4.14E+02 1.57E-04

PSO -1.65E+02 -1.26E+02 -1.43E+02 -1.38E+02 1.52E+01 1.57E-04

GWO -1.50E+04 -1.03E+04 -1.40E+04 -1.44E+04 1.32E+03 1.15E-03

IGA -1.50E+04 -1.47E+04 -1.49E+04 -1.50E+04 1.16E+02 1.00E+00

F9 SGA 5.17E+28 9.28E+30 2.40E+30 1.74E+30 2.69E+30 1.57E-04

PSO 5.69E+35 1.08E+36 8.10E+35 7.84E+35 1.70E+35 1.57E-04

GWO 2.27E-13 8.93E-10 1.20E-10 4.76E-11 2.73E-10 1.57E-04

IGA 0.00E+00 1.14E-13 2.27E-14 0.00E+00 4.79E-14 1.00E+00

F10 SGA 1.58E+01 1.82E+01 1.72E+01 1.72E+01 7.07E-01 1.57E-04

PSO 1.05E+01 1.13E+01 1.10E+01 1.11E+01 2.64E-01 1.57E-04

GWO 4.09E-08 1.10E-06 1.97E-07 6.64E-08 3.26E-07 1.57E-04

IGA 1.80E-10 2.15E-09 9.54E-10 8.40E-10 5.44E-10 1.00E+00

F11 SGA 1.55E+02 2.86E+02 2.31E+02 2.39E+02 4.51E+01 1.57E-04

PSO 1.13E+00 1.15E+00 1.14E+00 1.14E+00 6.09E-03 1.57E-04

GWO 1.23E-13 5.48E-01 5.48E-02 6.39E-13 1.73E-01 1.57E-04

IGA 0.00E+00 5.55E-16 3.11E-16 3.89E-16 2.15E-16 1.00E+00

https://doi.org/10.1371/journal.pone.0267970.t006
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Table 7. Results of test functions (F1-F11) with 100 dimensions.

Fun Alg Min Max Mean Median Std P-value

F1 SGA 7.51E+04 1.04E+05 8.49E+04 8.17E+04 8.94E+03 1.57E-04

PSO 1.26E+03 1.34E+03 1.29E+03 1.28E+03 3.11E+01 1.57E-04

GWO 6.89E-14 1.22E-11 2.26E-12 1.38E-12 3.61E-12 1.57E-04

IGA 6.51E-18 1.87E-15 4.94E-16 2.71E-16 5.43E-16 1.00E+00

F2 SGA 1.41E+33 1.50E+44 2.45E+43 1.33E+37 5.33E+43 1.57E-04

PSO 2.11E+31 8.05E+36 8.40E+35 2.90E+33 2.54E+36 1.57E-04

GWO 1.07E-10 4.50E-09 1.47E-09 9.56E-10 1.26E-09 2.12E-04

IGA 2.57E-12 2.57E-10 4.09E-11 1.61E-11 7.70E-11 1.00E+00

F3 SGA 3.37E+05 6.33E+05 4.57E+05 4.34E+05 8.89E+04 1.57E-04

PSO 1.33E+03 2.03E+03 1.67E+03 1.68E+03 2.31E+02 1.57E-04

GWO 7.96E+04 3.53E+05 1.93E+05 1.76E+05 8.50E+04 8.80E-01

IGA 1.04E+05 2.97E+05 1.88E+05 1.85E+05 6.23E+04 1.00E+00

F4 SGA 7.91E+01 9.15E+01 8.62E+01 8.61E+01 3.53E+00 1.57E-04

PSO 5.00E+00 5.00E+00 5.00E+00 5.00E+00 0.00E+00 1.57E-04

GWO 4.59E-02 9.09E+00 1.62E+00 3.06E-01 2.93E+00 1.57E-04

IGA 3.78E-06 1.28E-03 5.31E-04 4.78E-04 4.14E-04 1.00E+00

F5 SGA 1.67E+08 2.20E+08 1.93E+08 1.98E+08 2.09E+07 1.57E-04

PSO 2.39E+06 2.79E+06 2.58E+06 2.59E+06 1.38E+05 1.57E-04

GWO 9.83E+01 9.86E+01 9.84E+01 9.84E+01 8.77E-02 6.70E-04

IGA 9.82E+01 9.83E+01 9.83E+01 9.83E+01 5.72E-02 1.00E+00

F6 SGA 7.30E+04 1.01E+05 9.16E+04 9.19E+04 8.49E+03 1.57E-04

PSO 1.25E+03 1.31E+03 1.27E+03 1.27E+03 1.91E+01 1.57E-04

GWO 8.02E+00 1.23E+01 9.71E+00 9.63E+00 1.37E+00 1.57E-04

IGA 4.71E+00 7.34E+00 5.88E+00 5.71E+00 8.28E-01 1.00E+00

F7 SGA 3.22E+10 4.54E+10 3.97E+10 4.00E+10 4.34E+09 1.57E-04

PSO 1.15E+06 1.35E+06 1.22E+06 1.21E+06 6.48E+04 1.57E-04

GWO 1.75E-03 1.01E-01 3.96E-02 2.07E-02 4.05E-02 1.94E-03

IGA 1.03E-03 6.57E-03 2.61E-03 2.10E-03 1.71E-03 1.00E+00

F8 SGA -2.18E+04 -1.77E+04 -2.04E+04 -2.07E+04 1.16E+03 1.94E-03

PSO -2.44E+02 -1.89E+02 -2.19E+02 -2.20E+02 1.56E+01 1.57E-04

GWO -2.99E+04 -2.73E+04 -2.88E+04 -2.91E+04 8.66E+02 1.91E-02

IGA -3.02E+04 -1.85E+04 -2.87E+04 -2.99E+04 3.60E+03 1.00E+00

F9 SGA 6.22E+63 8.66E+66 1.88E+66 4.14E+65 2.81E+66 1.57E-04

PSO 1.91E+71 2.46E+71 2.20E+71 2.17E+71 1.52E+70 1.57E-04

GWO 1.14E-13 9.80E-09 1.08E-09 1.82E-11 3.07E-09 5.07E-04

IGA 0.00E+00 2.27E-13 9.09E-14 0.00E+00 1.17E-13 1.00E+00

F10 SGA 1.75E+01 1.91E+01 1.83E+01 1.85E+01 4.99E-01 1.57E-04

PSO 1.12E+01 1.17E+01 1.14E+01 1.14E+01 1.55E-01 1.57E-04

GWO 2.57E-08 2.07E-07 1.15E-07 1.14E-07 6.21E-08 1.57E-04

IGA 4.16E-10 4.01E-09 1.52E-09 1.32E-09 1.09E-09 1.00E+00

F11 SGA 6.60E+02 9.10E+02 7.63E+02 7.62E+02 7.79E+01 1.57E-04

PSO 1.30E+00 1.34E+00 1.33E+00 1.33E+00 1.02E-02 1.57E-04

GWO 1.80E-13 2.99E-11 4.23E-12 1.08E-12 9.08E-12 1.57E-04

IGA 1.11E-16 1.22E-15 4.44E-16 3.89E-16 3.70E-16 1.00E+00

https://doi.org/10.1371/journal.pone.0267970.t007
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images from 0–9. The MNIST image data is a single-channel grayscale map of 28 × 28 pixels,

with each pixel taking values between 0 and 255, with 60,000 samples in the training set and

10,000 samples in the test set. The general usage of the MNIST dataset is to learn with the

training set first and then use the learned model to measure how well the test set can be cor-

rectly classified [23].

5.2 Implementation

As shown in Fig 7(a), the Deep Convolutional Neural Network (DCNN) pre-trained on the

MNST dataset [19] is used as the experimental object in this paper, and the accuracy of the

model is 99.35% with a Loss value of 0.9632. As shown in Fig 7(b), the model of network

adversarial attack is shown. The number of populations of a specific size (set to 100 in this

Table 8. Results of test functions (F12–15) with fixed dimensions.

Fun Alg Min Max Mean Median Std P-value

F12 SGA 2.54E-04 6.31E-02 1.95E-02 6.19E-03 2.41E-02 1.57E-04

PSO 1.89E-07 3.39E-05 1.26E-05 6.56E-06 1.33E-05 1.57E-04

GWO 6.36E-18 1.97E-03 2.35E-04 4.81E-11 6.21E-04 5.45E-01

IGA 0.00E+00 9.31E-08 6.52E-08 9.31E-08 4.50E-08 1.00E+00

F13 SGA 4.34E-02 7.16E-01 4.88E-01 5.31E-01 2.04E-01 1.57E-04

PSO 1.51E-03 1.37E-02 6.55E-03 6.44E-03 3.92E-03 1.57E-04

GWO 1.95E-07 2.17E-01 2.86E-02 2.16E-04 6.81E-02 1.31E-01

IGA 4.44E-16 8.66E-04 4.33E-04 4.33E-04 4.56E-04 1.00E+00

F14 SGA 8.29E-04 1.54E-01 4.80E-02 2.40E-02 5.81E-02 2.85E-04

PSO 2.14E-06 1.29E-04 4.82E-05 3.86E-05 3.95E-05 3.20E-03

GWO 2.32E-01 5.95E+00 1.74E+00 1.13E+00 1.74E+00 1.57E-04

IGA 2.50E-05 1.44E-03 4.90E-04 3.25E-04 4.98E-04 1.00E+00

F15 SGA -9.54E+02 -9.02E+02 -9.39E+02 -9.45E+02 1.64E+01 1.57E-04

PSO -9.60E+02 -5.72E+02 -8.27E+02 -8.81E+02 1.43E+02 2.50E-03

GWO -9.60E+02 -7.48E+02 -8.65E+02 -8.73E+02 8.05E+01 2.50E-03

IGA -9.60E+02 -9.60E+02 -9.60E+02 -9.60E+02 7.05E-03 1.00E+00

https://doi.org/10.1371/journal.pone.0267970.t008

Fig 7. The model of network adversarial attack. (a) The structure of DCNN for experiment. (b) The model of network adversarial attack.

https://doi.org/10.1371/journal.pone.0267970.g007
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paper) is first generated and then input to the neural network to obtain the confidence of the

specified labels. To reduce the computational expense, the input is reduced to a binary image

of 28 × 28 and the randomly generated binary image is iterated using the IGA proposed in this

paper. Among the 100 individuals, the fathers and mothers with relatively high confidence are

selected by roulette selection, and then the children are generated by using the improved cross-

over link in this paper, and the children from a new population by improving the mutation

link until the specified number of iterations. Finally, the individual with the highest confidence

is picked from the 100 individuals, which is the binary image with the highest confidence after

passing through the neural network.

5.3 Result

As shown in Fig 8, the confidence after 99 iterations of DCNN is 99.98% for sample “2”. Sam-

ple “6” and sample “4” have the slowest convergence speed, and the confidence of sample “6”

is 78.84% after 99 iterations, and the confidence of sample “4” is 78.84% after 99 iterations.

Fig 8. The confidence change of the binary image after iteration.

https://doi.org/10.1371/journal.pone.0267970.g008
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The statistics of the experimental results are shown in Fig 9. The binary image of sample “1”

generated after 999 iterations has confidence of 99.94% after passing DCNN, which is much

higher than the confidence of sample “1” in the MNIST test set in the DCNN control group. In

the statistics of the results after initializing the population with the MNIST test set, because the

overall confidence of the population initialized with the test set is higher, the increase in confi-

dence during iteration is smaller. The confidence of the sample selected from the MNIST test

set is 99.56%, and after 10 iterations the confidence of the sample is 99.80%, and the number

“1” becomes vertical; after 89 iterations the confidence is 99.98%, and the number “1” has a

tendency to “decompose” gradually.

As shown in Fig 10, the reason for this situation is probably that the confidence as a func-

tion of the image input is a multi-peak function, and the interval in which the test set images

are distributed is not the highest peak of the confidence function. This causes the initial popu-

lation of the test set to “stray” from some pixels in the images generated by the IGA.

6 Conclusion

The comparison and simulation experiments show that the improved method proposed in this

paper is effective and greatly improves the convergence efficiency, global search capability and

Fig 9. Statistical table of experimental results.

https://doi.org/10.1371/journal.pone.0267970.g009
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convergence success rate. Applying IGA to the field of neural network adversarial attacks can

also quickly obtain adversarial samples with high confidence, which is meaningful for the

improvement of the robustness and security of neural network models.

In this paper, although the genetic algorithm has been improved to enhance the perfor-

mance of the genetic algorithm, it is based on the genetic algorithm, so it cannot be completely

separated from the general framework of the genetic algorithm, and the problem that the

genetic algorithm is relatively slow in a single iteration cannot be solved. We hope to explore a

new nature-inspired optimization algorithm in our future work. In addition, the reason why

the neural network model has so many adversarial samples, we believe that it is a design flaw

in the architecture of the neural network model. In future work, we will also try to explore a

completely new way of the infrastructure of neural networks so as to compress the space of

adversarial samples.

With the wide application of artificial intelligence and deep learning in the field of com-

puter vision, face recognition has outstanding performance in access control systems and pay-

ment systems, which require a fast response to the input face image, but this has instead

become a drawback to be hacked. For face recognition systems without in vivo detection,

using the method in this paper only requires output labels and confidence information can

obtain high confidence images quickly. In summary, neural networks have many pitfalls due

to their uninterpretability and still need to be considered carefully for use in important areas.

Supporting information

S1 Data.
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Fig 10. The confidence curve of a binary image.

https://doi.org/10.1371/journal.pone.0267970.g010
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