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Type 2 diabetes mellitus (T2DM) is one of the most prevalent endocrine diseases in
the world. Recent studies have shown that dysbiosis of the gut microbiota may be
an important contributor to T2DM pathogenesis. However, the mechanisms underlying
the roles of the gut microbiome and fecal metabolome in T2DM have not been
characterized. Recently, the Goto-Kakizaki (GK) rat model of T2DM was developed to
study the clinical symptoms and characteristics of human T2DM. To further characterize
T2DM pathogenesis, we combined multi-omics techniques, including 16S rRNA gene
sequencing, metagenomic sequencing, and metabolomics, to analyze gut microbial
compositions and functions, and further characterize fecal metabolomic profiles in GK
rats. Our results showed that gut microbial compositions were significantly altered in GK
rats, as evidenced by reduced microbial diversity, altered microbial taxa distribution, and
alterations in the interaction network of the gut microbiome. Functional analysis based
on the cluster of orthologous groups (COG) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) annotations suggested that 5 functional COG categories belonged
to the metabolism cluster and 33 KEGG pathways related to metabolic pathways
were significantly enriched in GK rats. Metabolomics profiling identified 53 significantly
differentially abundant metabolites in GK rats, including lipids and lipid-like molecules.
These lipids were enriched in the glycerophospholipid metabolic pathway. Moreover,
functional correlation analysis showed that some altered gut microbiota families, such
as Verrucomicrobiaceae and Bacteroidaceae, significantly correlated with alterations in
fecal metabolites. Collectively, the results suggested that an altered gut microbiota is
associated with T2DM pathogenesis.

Keywords: T2DM, GK rats, gut microbiome, fecal metabolomics, Verrucomicrobia, Tenericutes,
glycerophospholipid metabolism
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INTRODUCTION

Type 2 diabetes mellitus (T2DM) is one of the most
prevalent endocrine diseases and has become a major
public health issue worldwide; it is expected to affect
693 million people worldwide by 2045 (Cho et al., 2018).
T2DM is increasingly recognized as a multifactorial disorder
influenced by genetic, environmental, and nutritional factors
(Walker et al., 2014). Recent studies have indicated that gut
microbial dysbiosis may partly induce T2DM development
(Forslund et al., 2015; Yano et al., 2015). Qin et al. (2012)
showed that patients with T2DM have a moderate degree
of gut microbial dysbiosis. Wu et al. (2017) found that
the composition and diversity of the gut microbiota in
patients with T2DM exhibited significant changes after
metformin treatment. These studies focused primarily on
the composition and function of the fecal microbiome
in individuals with diabetes. In recent years, research has
demonstrated that microbiota-derived metabolites such
as imidazole propionate, short-chain fatty acids (SCFAs),
succinate, and p-cresol contribute to host insulin resistance
(Koh et al., 2018; Canfora et al., 2019), which highlighted the
associations between gut microbial metabolites and T2DM.
However, no studies have comprehensively examined the
compositional, functional, and metabolic dynamics of the
diabetic microbiome. Thus, studies are needed to investigate
the associations of the fecal microbiome with T2DM and
further reveal the effects of fecal metabolic changes in
disease pathogenesis.

The Goto-Kakizaki (GK) rat, a non-obese and spontaneous
(genetic) T2DM experimental model, was generated from
Wistar rats through repeated inbreeding of animals with
impaired glucose tolerance resulting from impaired β-cell
function on a background of polygenic inheritance (Zambrana
et al., 2018). The advantages of GK rats include decreased
β-cell numbers, impaired metabolic functions, reduced
glucose-stimulated insulin secretion, glucose intolerance,
and chronic inflammation (Guest, 2019; Ouyang et al.,
2019). This model is frequently used to investigate the
development of T2DM and its complications, since it
could dissociate obesity related variables from the glucose
homeostasis variable (Matsunaga et al., 2016; Sarkozy et al.,
2016; Fu et al., 2019). The etiology of diabetes in GK
rats was suggested to include genetic contributions and
gestational metabolic impairment, resulting in epigenetic
programing of offspring transmitted over generations, which
causes reduced β-cell neogenesis and proliferation (Portha
et al., 2010). These characteristics make GK rats an excellent
experimental model.

The aim of current study was to systematically characterize
global differences in fecal microbial communities, functions,
and metabolic profiles of GK rats using 16S ribosomal
RNA (16S rRNA) gene sequencing, metagenomics, and
metabolomics, respectively. Our results clarify the pathogenesis
and consequences of T2DM. This is the first report to evaluate
gut microbiota composition and function and fecal metabolite
profiles in GK rats.

MATERIALS AND METHODS

Animal Model
Twenty 9-week-old male GK rats and 20 age-matched Wistar
rats were obtained from Shanghai SLAC Laboratory Animal Co.,
Ltd. These rats were kept in the Laboratory of Animal Center,
Hunan Academy of Chinese Medicine. Animals were individually
housed under specific-pathogen free conditions at 23± 2◦C, with
a 12-h light-dark cycle under 50–60% atmospheric humidity and
fed with regular rat chow and water ad libitum. The Animal
Ethical Committee of Hunan Academy of Chinese Medicine
approved all experimental procedures (approval no. 2018-0031).
Body weight gain and fasting blood glucose (FBG) levels were
measured weekly beginning at the age of 9 weeks.

Fecal Sample Collection, DNA
Extraction, and Metabolite Extraction
Fecal samples were collected at the age of 15 weeks, and at least
5 fecal pellets were obtained directly from the anus of each rat,
deposited into a sterile conical tube, and immediately frozen at
−80◦C until further analysis. Microbial DNA was extracted as
described in our previous study (Peng et al., 2018). DNA from
fecal samples was isolated by using DNA E.Z.N.A. R© Stool DNA
Kit (Omega Bio-Tek, Norcross, GA, United States) according to
the manufacturer’s protocols. Total DNA quality was measured
by using a spectrophotometer (NanoDrop 2000 UV; Thermo
Fisher Scientific, Waltham, MA, United States) with 1% agarose
gel electrophoresis.

Fecal metabolites were extracted following previously
described procedures (Deda et al., 2018). Briefly, 50-mg fecal
samples were accurately weighed, a volume of 400 µL ice-cold
methanol/water (4:1, v/v) solution was added, and the mixture
was allowed to settle at −20◦C before homogenization using a
mechanical disruptor (FastPrep-24TM5G, MP Biomedicals Co.,
Ltd., Shanghai, China) at 60 Hz for 6 min. The homogenate
was vortexed for 15 min, sonicated for 10 min three times,
then placed at −20◦C for 30 min to precipitate proteins. After
centrifugation at 13,000 × g at 4◦C for 15 min, and filtration
through a 0.22-µm membrane, the supernatant was prepared for
LC–MS analysis.

16S rRNA Gene Sequencing Analysis
The 16S rRNA sequencing analysis approach was performed
as described in our previous study (Peng et al., 2018). Briefly,
PCR amplification was performed, purified amplicons were
pooled, and paired-end sequenced was carried out. Then,
the raw data was analyzed. The detailed sequencing analysis
procedures are available in the Supplementary Material and
Methods, and the data are deposited to the National Center
for Biotechnology Information (NCBI) Sequence Read Archive
(SRA) under BioProject number PRJNA588959.

Metagenomic Analysis
Metagenomic sequencing of gut microbiota was conducted as
described in our previous study (Peng et al., 2018). Briefly,
microbial DNA was fragmented, metagenomic sequencing was
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performed, the clean raw reads were then assembled, open
reading frames (ORFs) were predicted, and bioinformatic
analysis was conducted. A more detailed analysis procedures
is available in the Supplementary Material and Methods, and
the data were deposited to the NCBI SAR under BioProject
number PRJNA589664.

Fecal Metabolic Analysis
Ultra-performance liquid chromatography coupled to triple
quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-
MS/MS) was used to analyze fecal metabolites as described in our
previous study (Zhang et al., 2019b). Briefly, chromatographic
separation was performed on Waters AcquityTM UPLC system,
mass spectrometry detection was triple TOF 5600 + MS/MS
system (AB Sciex, Concord, ON, Canada). Mass data were
collected in both positive and negative MSE continuum mode.
Quality control (QC) samples were injected at regular intervals
(every 10 samples). All raw data were imported into the
Progenesis QI 2.3 (Nonlinear Dynamics, Waters, United States)
and SIMCA-P + 14.0 software package for further data
analysis. A more detailed analysis procedures is available in the
Supplementary Material and Methods.

Bioinformatics Analysis
All bioinformatics analyses were performed using the Majorbio
Cloud Platform1. Diversity was calculated using the Quantitative
Insights Into Microbial Ecology platform (QIIME) for 16S
rRNA gene sequencing analysis results (Kuczynski et al., 2012).
Chao, Simpsoneven, and Shannon indices were calculated
to assess alpha diversity. Both the taxon-based Bray-Curtis
distance and unweighted UniFrac phylogenetic distance were
calculated to estimate beta diversity, and differences between two
groups were visualized by principal coordinates analysis (PCoA)
plots. Statistical significance was determined using analysis of
similarities (ANOSIM). Statistically significant differences in the
relative abundances of genera between GK and Wistar rats were
determined using a linear discriminant analysis (LDA) effect
size (LEfSe) algorithm (Segata et al., 2011). LDA values > 2.5
with a P-value < 0.05 were considered significantly enriched.
NetworkX was used to explore and visualize associations between
the microbial communities (Hagberg et al., 2008). The indexes
of degree (DC), closeness (CC), and betweenness centrality
(BC) were calculated to describe the topology features of
constructed networks.

For metagenomic analysis, samples for sequencing were
selected using microPITA (microbiomes: Picking Interesting
Taxonomic Abundance) (Tickle et al., 2013). Significant
differences in COG and KEGG categories between GK and
Wistar rats were determined using LEfSe. Those with LDA
values > 2.0 and P < 0.05 were considered significantly enriched.

For metabolomic analysis, principal component analysis
(PCA) and orthogonal partial least squares discriminant analysis
(OPLS-DA) algorithms were used to visually compare metabolite
profiles. The importance of each metabolite was ranked according
to their projection (VIP) scores calculated from the OPLS-DA

1www.majorbio.com

model. Metabolic pathway analysis of these significantly different
metabolites was performed using MetaboAnalyst software v.4.0
to identify the top altered pathways (Chong et al., 2018).
Spearman correlation analysis was used to evaluate correlations
between fecal metabolites and the gut microbiota.

RESULTS

T2DM Characteristics of GK Rats
To verify the development of T2DM in male GK rats, FBG
levels were measured to assess glucose homeostasis each week.
As expected, GK rats showed a significant increase in FBG levels
at all time points compared to control Wistar rats (Figure 1A).
There were no significant differences in body weight between
two groups, confirming that the GK rats had a non-obese T2DM
phenotype (Figure 1B). These findings demonstrate that GK rats
presented with typical characterstics of T2DM.

Alternative Gut Microbiota Composition
in GK Rats
Structural Diversity of Gut Microbiota
To investigate the variances of structural diversity of gut
microbiota between GK and Wistar rats, we assessed microbial
alpha diversity using the Chao, Simpsoneven, and Shannon
indices to estimate richness, evenness, and diversity, respectively.
We found that alpha diversity was significantly reduced in GK
rats compared with Wistar rats, (P < 0.001 for the Chao richness
index, Figure 2A; P = 0.046 for the Simpsoneven evenness index,
Figure 2B; and P < 0.001 for the Shannon diversity index
between two groups, Figure 2C). These results indicate that intra-
individual bacterial diversity in GK rats distinctly differed from
that in Wistar rats.

Moreover, the PCoA of weighted UniFrac distances and Bray–
Curtis dissimilarity were used to measure beta diversity in each
group. The results showed that the gut microbiota of GK rats was
significantly different from that of Wistar rats in both weighted
Uni-Frac distances (ANOSIM R = 0.9874, P = 0.001, Figure 2D)
and Bray–Curtis dissimilarity (ANOSIM R = 0.8224, P = 0.001,
Figure 2E). These results further indicated that beta diversity
in GK rats was different from that of Wistar rats. That is,
the structural diversity of the gut microbiota was significantly
different in GK rats due to T2DM.

Altered Composition of the Gut Microbiota in GK Rats
As shown in Figure 3A, taxonomic analysis indicated
that the relative abundance of 32 genera varied between
GK and Wistar rats. Among these genera, norank_f__
Bacteroidales_S24 -7_group (18.55%) was the predominant
genus in GK rats, followed by Lactobacillus (10.24%)
and Prevotella_9 (9.52%). In Wistar rats, the prevalent
genera were Norank_f__Bacteroidales_S247_group (17.74%),
Lachnospiraceae_NK4A136_group (12.70%), and unclassified_
f__Lachnospiraceae (9.25%).

Wilcoxon rank-sum tests were further performed to
compare differences in fecal bacterial communities between
the two groups at the genus level. The results revealed
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FIGURE 1 | Diabetic characteristics of GK rats. (A) Fasting blood glucose levels were measured in GK and Wistar rats. (B) Body weight was assessed weekly in GK
and Wistar rats. Data are expressed as the mean ± SEM. n = 10/group; ∗p < 0.0001.

FIGURE 2 | Gut microbial diversity in GK and Wistar rats. Alpha diversity was evaluated based on the Chao (A), Simpsoneven (B), and Shannon (C) indices of the
OTU levels. ∗P < 0.05, ∗∗∗P < 0.001. Principal coordinates analysis of beta diversity was based on the weighted UniFrac (D) and Bray-Curtis (E) analyses of the
OTU levels.

that 92 genera were significantly different between the
two groups. Of these discriminatory taxa, Prevotella_9,
Lachnospiraceae_NK4A136_group, Roseburia, Blautia,
unclassified_f__Lachnospiraceae, Turicibacter, Allobaculum,
and Prevotella_1 were significantly more abundant in GK rats
than in Wistar rats, whereas Lachnospiraceae_NK4A136_group,
Ruminococcaceae_UCG-014, unclassified_f__Lachnospiraceae,

and unclassified_f__Ruminococcaceae were significantly more
abundant in Wistar rats (Figure 3B).

LEfSe was used to further determine whether specific bacterial
taxa were differentially enriched in GK rats compared with Wistar
rats. Using a logarithmic LDA score cutoff of 2.5, we identified 69
discriminatory genera as key discriminants (Figure 3C). Several
genera including Prevotella_9, Roseburia, Blautia, Turicibacter,
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FIGURE 3 | Gut microbiota composition profiles in GK and Wistar rats. (A) Summary of the relative abundances of bacterial genera detected in GK and Wistar rats.
(B) Genus-level bacteria that were significantly different between the GK and Wistar rats. Data were showed as relative abundance (%) of top 20 most abundant
genera in each group. Statistical analysis was performed by the Wilcoxon rank-sum test. ∗∗∗P < 0.001, ∗∗P < 0.01, and ∗P < 0.05 GK vs. Wistar group.
(C) Cladogram generated from the LEfSe analysis indicating the phylogenetic distribution from phylum to genus of the microbiota of Wistar and GK rats.
(D) Histogram of LDA scores to identify differentially abundant bacterial genera between GK and Wistar rats (LDA score ≥ 2.5).

and Allobaculum were significantly overrepresented in the
feces of GK rats, whereas Lachnospiraceae_NK4A136_group,
unclassified_f__Lachnospiraceae, Ruminococcaceae_UCG_014,
unclassified_f__Ruminococcaceae, and Alloprevotella were
enriched in Wistar rats. A cladogram representing the taxonomic
hierarchical structure of the fecal microbiota from phylum
to species indicated significant differences in phylogenetic

distributions between the microbiota of GK and Wistar rats
(Figure 3D). These results showed a remarkable difference in
fecal microbiota composition between GK and Wistar rats.

Correlation Network Analysis
Correlation network analysis at the genus level was performed
to determine whether T2DM was associated with changes in
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the correlation structure and putative interaction structure
of the gut microbiota and to identify the putative keystone
genera. We found that networks constructed from GK rat
samples had more edges (225 vs. 166), a higher mean degree
(9.33 vs. 6.87), and higher transitivity (0.585 vs. 0.439) that
those constructed for Wistar rats. These results indicated
that there were more significant correlations in GK rats
than Wistar rats (Figures 4A,B). Moreover, DC, CC, and
BC were determined to evaluate taxa importance within two
networks. Based on the high scores of these topological
properties (DC > 0.1, CC > 0.2, and BC > 0.1), one genus,
g__norank_f__Ruminococcaceae, was identified in GK rats. Four
genera were identified in Wistar rats: Lachnospiraceae_UCG-
006, norank_f__Ruminococcaceae, Prevotellaceae_UCG-001, and
unclassified_f__Lachnospiraceae.

Metagenomic Analysis Revealed
Different Functional Profiles
microPITA Analysis
Samples for metagenomic sequencing were selected from
the 40 samples of 16S data using the microPITA method
(Tickle et al., 2013). Based on the term “most dissimilar
(samples with the most extreme microbial communities in
the survey),” “most representative (samples with microbial
communities representative of the survey),” “maximum
diversity (samples with the most diverse community),”
and “multiple selections (samples with two or more
above-mentioned characters),” four GK fecal samples
and four Wistar fecal samples were selected for further
investigation (Figure 5).

COG Annotation and Analysis
LEfSe analysis was performed to identify biologically
significant differences in functional COG categories between
GK and Wistar rats. This analysis provided insights into
the functional properties of fecal microbes. As shown in
Figure 6A, we found 11 significantly different functional
COGs between GK and Wistar rats. Of these COG categories,
five functional COG categories were highly enriched in the
GK group, including coenzyme transport and metabolism
[H], energy production and conversion [C], amino acid
transport and metabolism [E], carbohydrate transport and
metabolism [G] (Figure 6B), and inorganic ion transport
and metabolism [P]. In contrast, the metagenome of
Wistar rats were enriched in replication, recombination,
and repair [L] (Figure 6C); defense mechanisms [V]; cell
cycle control, cell division, chromosome partitioning [D];
extracellular structures [W]; cytoskeleton [Z]; and chromatin
structure and dynamics [B]. Notably, the predominant
COG categories associated with GK rats were in the
metabolism cluster.

Kyoto Encylopedia of Genes and Genomes
Functional Annotation and Analysis
Linear discriminant analysis effect size analysis was performed to
explore KEGG pathways with significantly different abundances
between GK and Wistar rats (Figure 6D). Based on the

threshold values LDA > 2.5 and P < 0.05, 27 KEGG pathways
(including biosynthesis of amino acids (Figure 6E), oxidative
phosphorylation, folate biosynthesis, lipopolysaccharide
biosynthesis, and others) were significantly enriched in GK
rats, and 11 KEGG pathways (including purine metabolism
(Figure 6F), mismatch repair, nucleotide excision repair,
peptidoglycan biosynthesis, DNA replication, and others)
were significantly increased in Wistar rats. Multiple functional
pathways that were more highly represented in GK rats than in
Wistar rats were involved in metabolism.

Alterations in the Fecal Metabolic Profile
of GK Rats
Multivariate Statistical Analysis
Principal component analysis (PCA) algorithm was used
distinguish the inherent trends within the metabolic data of
GK rats and Wistar rats. As shown in Figure 7A, differences
were observed between the two groups, which indicated inherent
metabolic differences between them.

To further identify metabolites that discriminate between
GK rats and Wistar rats, an orthogonal partial least squares-
discriminant analysis (OPLS-DA) model was constructed. The
OPLS-DA score plot showed clear discrimination between
two groups with [R2X (cum) = 0.435, R2Y (cum) = 0.977,
Q2(cum) = 0.972], which suggested that the model was predictive
and reliable, and that differences in metabolites’ abundance
between GK and Wistar rats were highly significant (Figure 7B).

Metabolic Variation Analysis in GK Rats
Metabolites with VIP scores > 1 in the multivariate model
OPLS-DA and p < 0.05 were considered as potential metabolic
biomarkers (Supplementary Table S1). Metabolites with
VIP > 1.5 in the multivariate model OPLS-DA and p < 0.05
in the univariate analysis were selected as significantly
differentially abundant metabolites (Supplementary Table
S2). A total of 169 potential metabolic biomarkers and 53
significantly differentially abundant metabolites were identified
between GK and Wistar rats. A heat map was constructed
to visualize these 53 significantly differentially abundant
metabolites (Figure 8). Overall, 22 and 33 metabolites were
significantly higher and lower in GK rats, respectively. Most
of the differentially abundant metabolites were lipids and
lipid-like molecules. Several sterol lipids such as 7α,12α,24-
trihydroxy-5β-cholestan-3-one, 21-hydroxyallopregnanolone,
and (23S)-1α-hydroxy-25,27-didehydrovitamin D3 26,23-
lactone were among the metabolites downregulated in
GK rats. Others glycerophospholipids such as PE[20:0/20:4
(5Z,8Z,11Z,14Z)] and PE [14:0/18:3(6Z,9Z,12Z)] were present at
higher levels in GK rats.

Correlation Analysis of Gut Microbiota
and Fecal Metabolic Phenotype
To explore the functional correlation between gut microbiota
dysbiosis and altered fecal metabolites, a correlation
matrix was calculating by using the Spearman’s correlation
coefficients between microbial communities at the family
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FIGURE 4 | Correlation network analysis of the 50 most abundant genera for (A) Wistar and (B) GK rats. The lines between nodes indicate the Spearman
correlation, and the color intensity indicates the correlation coefficient (red, positive; green, negative). Genera color are based on phylum affiliation, and sizes indicate
mean relative abundance.

FIGURE 5 | MicroPITA (microbiomes: Picking Interesting Taxonomic Abundance) analysis. Principle coordinates analysis using Bray–Curtis dissimilarity for eight
samples (four for GK rats and four for Wistar) selected by each of the four unsupervised criteria. Red and green circles represent the selected samples of GK and
Wistar rats, respectively.

level (29 bacterial taxa) and the 53 significantly altered
metabolites (VIP > 1.5). As shown in Figure 9 a total of 46
significant microbiota-metabolite correlations were determined
based on an |r| ≥ 0.75 and P < 0.01. Specifically, norank_o__
Mollicutes_RF9, lostridiales_vadinBB60_group, Bacteroidaceae

and Verrucomicrobiaceae were significantly associated with
11, 6, 16, and 6 fecal metabolites, respectively. In addition,
unclassified_p__Firmicutes was negatively correlated with
caryophyllene epoxide and (3beta,9beta)-7-Drimene-3,11,12-
triol. Erysipelotrichaceae was negatively correlated with
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FIGURE 6 | Linear discriminant analysis (LDA) integrated with effect size (LEfSe) analysis. (A) LDA integrated with LEfSe comparison of relative abundances of
cluster of orthologous groups (COG) categories between GK and Wistar rats (LDA score > 2.0, P < 0.05). (B,C) Differences in relative abundances of COG
categories [L] and [G]. (D) LDA integrated with LEfSe comparison of relative abundance of KEGG pathways between GK and Wistar rats (LDA score > 2.0,
P < 0.05). (E) The relative abundance of the purine metabolic pathway was significantly enriched in Wistar rats. (F) The biosynthesis of amino acids pathway was
significantly enriched in GK rats.

FIGURE 7 | Multivariate statistical analysis of fecal metabolites in GK and Wistar rats. (A) PCA and (B) OPLS-DA plots showing spatial division between GK and
Wistar rats.
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FIGURE 8 | Fecal metabolic profiles in GK and Wistar rats. Hierarchical clustering and heat map in the left panel showing the 53 metabolites that were significantly
differentially abundant between GK and Wistar rats. Each row represents data for a specific metabolite, and each column represents an individual. Different colors
correspond to different metabolite abundance levels. Red and blue colors represent increased and decreased levels of metabolites, respectively. The histogram in
the right panel represents variable importance in projection (VIP) scores derived from the OPLS-DA model for each metabolite. ∗∗∗ Indicates P < 0.001.

caryophyllene epoxide. Ruminococcaceae and Alcaligenaceae
were positively and negatively correlated with (±)-Enterolactone,
respectively. These correlation data suggested GK rats exhibited
significant taxonomic perturbations in the gut microbiome,
which may result in a significantly altered metabolomic profile.

DISCUSSION

This was the first study to characterize the fecal microbiome of
GK rats by integrating 16S rRNA gene sequencing, metagenomic
sequencing, and LC–MS-based metabolomics approaches. Our
results showed that the gut microbiota composition and function
and fecal metabolic phenotype were significantly different in GK
rats compared to Wistar rats.

Reduced alpha and beta diversity and altered gut microbiota
composition were observed in GK rats compared to Wistar
rats based on 16S rRNA gene sequencing results. This
suggested that T2DM may be linked to dynamic changes of
the compositions of intestinal microbiota (Zhou et al., 2019).
Compared to Wistar rats, GK rats exhibited significantly

lower proportions of the phyla Firmicutes, Saccharibacteria,
and Tenericutes, and significantly higher proportions of
Bacteroidetes, Deferribacteres, and Actinobacteria. Moreover,
the phylum Proteobacteria was also significantly increased,
in GK rats compared to Wistar rats. These results were
consistent with a previous study (Larsen et al., 2010). We
also found that the proportion of the phylum Firmicutes was
decreased, and the proportions of the phyla Bacteroidetes
and Proteobacteria were increased, in rats with T2DM
than those in non-diabetic controls. Firmicutes, the most
abundant bacterial phylum of the gut microbiota in GK rats,
could potentially have effects on the production of short-
chain fatty acids (SCFAs) (Duncan et al., 2007). SCFAs exert
significant physiological and pharmacological effects, and
they are regarded as nutritional targets to prevent or treat
T2DM (Hu et al., 2018). Bacteroidetes and Proteobacteria,
the gram-negative bacteria, could produce lipopolysaccharides
(LPS), and subsequently trigger an inflammatory response
and contribute to the development of diabetes (Larsen et al.,
2010). The phylum Deferribacteres is involved in the iron
metabolism (Li et al., 2019), and abnormal iron metabolism
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FIGURE 9 | Spearman’s correlation analysis between the gut bacteria phyla and altered fecal metabolites. Positive and negative correlations are shown as red
and green in the heat map, respectively. Significant microbiota-metabolite correlations were determined based on an | r | ≥ 0.75 and P < 0.01 (∗∗∗P < 0.001).
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are associated with a greater risk of type 2 diabetes mellitus
(Fernandez-Real et al., 2015). In addition, correlation network
analysis indicated perturbation of the gut microbiota interaction
network in GK rats. A similar disruption of the gut microbiota
interaction network was also observed in Alzheimer’s disease
transgenic mice (Peng et al., 2018) and patients with gastric
cancer (Chen et al., 2019b). Further studies are needed to
characterize the role of the gut microbiota interaction network
in T2DM progression.

Metagenomic sequencing has been widely employed for
comprehensive analysis of the relationships between microbial
function and host physiology. Several studies have employed
metagenomic approaches to explore novel changes in the
functional potential of the microbiota (Qin et al., 2012; Wei
et al., 2013; Lee et al., 2018). The results of COG and KEGG
functional analysis showed that disruptions in gut microbiota
function were mainly associated with perturbed metabolic
pathways. We found that five functional COG categories
were enriched in GK rats, including energy production
and conversion, coenzyme, amino acid, carbohydrate, and
inorganic ion transport and metabolism. KEGG analysis
further indicated that these perturbed gut bacteria in GK
rats were strongly associated with the dysregulation of some
metabolic processes such as glyoxylate and dicarboxylate
metabolism; porphyrin and chlorophyll metabolism; and
glycine, serine, and threonine metabolism. Interestingly, the
five COG categories enriched in our study, in addition to
glyoxylate and dicarboxylate metabolism, have been implicated
in the antidiabetic effects of metformin (Dong et al., 2016;
Chen et al., 2018).

Fecal metabolome characterization can improve
understanding of microbial responses to gut microbiota
perturbations. The fecal metabolic profiles were significantly
different between GK and Wistar rats. A total of 53 fecal
metabolites were identified as biomarkers of T2DM with
VIP > 1.5 in OPLS-DA and p < 0.05. Furthermore, five
perturbed metabolic pathways were identified in GK rats
(Supplementary Figure S1). Although there are only three
metabolites matched to glycerophospholipid metabolic pathway,
we presume that this pathway may perturbed in GK rats
(Supplementary Table S3). This metabolic pathway was also
shown to be the main disordered pathway in serum samples
from patients with T2DM (Zhao et al., 2017). As the major
components of cell membranes, glycerophospholipids have been
closely associated with insulin resistance and T2DM (Pantophlet
et al., 2017). Disturbances in membrane glycerophospholipid
metabolism would influence insulin secretion, further affecting
the metabolic of carbohydrates and lipids (Nolan et al., 2006).
Moreover, the glycerophospholipid metabolic pathway could
be used as a therapeutic target of T2DM-induced dementia
in db/db mice (Niu et al., 2015), high-fat diet-induced
T2DM in C57BL/6 mice (Chen et al., 2019a), and T2DM in
humans (Liu et al., 2018). Of course, the related metabolites of
glycerophospholipid metabolism pathway need to quantitatively
analysis by the targeted metabolomics, and the role of this
pathway in T2DM pathogenesis should also be determine in the
further studies.

A significant correlation between gut microbiota families
and fecal metabolites was observed, which indicated that
gut microbiota perturbations were associated with metabolic
phenotype alterations. Of particular interest, we found that
the families Verrucomicrobiaceae and Bacteroidaceae were also
dysregulated in the diabetes mouse model (Zhang et al.,
2019a). The family Verrucomicrobiaceae belongs to the phylum
Verrucomicrobia, significantly increased and has been shown
to be associated with elevated plasma concentrations of tumor
necrosis factor α (TNF-α) and interferon γ in patients with
Parkinson’s disease (Lin et al., 2019). The family Bacteroidaceae,
belongs to the phylum Bacteroidetes, was found to be
decreased with aging and were inversely correlated with colonic
proinflammatory cytokines, including TNF-α, interleukin-1β,
and interleukin-6 (Kim et al., 2019). These findings implied
that the families Verrucomicrobiaceae and Bacteroidaceae and
their associated fecal metabolites may contribute to inflammation
associated with T2DM.

Our results should be considered in the context of several
limitations. First, the animal and metagenomic sample sizes
were small, and larger cohorts should be assessed in future
studies. Second, we did not characterize associations between
host functions and the microbiome. Host metabolomics data
or physiological parameters are essential for characterizing
host–microbiota interactions. Third, absolute, rather than
relative, quantification of microbial abundances might be a
better indicator of T2DM pathogenesis (Vandeputte et al.,
2017). Finally, the roles of the most relevant taxa remain to
be investigated.

CONCLUSION

We observed dynamic shifts in the compositions and
functions of gut microbes and fecal metabolites in GK rats.
Multiple metabolic pathways were significantly associated
with T2DM. In particular, the glyoxylate, dicarboxylate, and
glycerophospholipid metabolic pathways may serve as potential
therapeutic targets for T2DM. Some altered gut microbiota
phyla such as Verrucomicrobia and Tenericutes were strongly
correlated with alterations in fecal metabolite abundance. Our
results demonstrate concurrent changes in the microbiota and
functional capacity during the progression of T2DM in the
GK rat model. Future studies should assess the longitudinal
microbiota before onset as well as during the development
of T2DM and broaden the analysis to evaluate host response
and metatranscriptomics to get more complete picture of the
pathogenesis of T2DM, with the hope of identifying targets for
drug development.
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