
royalsocietypublishing.org/journal/rsob
Review
Cite this article: Gauthier AE, Rotjan RD,
Kagan JC. 2022 Lipopolysaccharide detection

by the innate immune system may be an

uncommon defence strategy used in nature.

Open Biol. 12: 220146.
https://doi.org/10.1098/rsob.22.0146
Received: 16 May 2022

Accepted: 9 September 2022
Subject Area:
immunology, microbiology

Keywords:
LPS, TLR4, innate immunity, inflammasomes,

inflammation, pattern recognition
Author for correspondence:
Jonathan C. Kagan

e-mail: jonathan.kagan@childrens.harvard.edu
© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Lipopolysaccharide detection by the
innate immune system may be an
uncommon defence strategy used
in nature

Anna E. Gauthier1,2, Randi D. Rotjan3 and Jonathan C. Kagan1,4

1Division of Gastroenterology, Boston Children’s Hospital and Harvard Medical School, 300 Longwood Avenue,
Boston, MA 02115, USA
2Program in Virology, Harvard Medical School, Boston, MA, USA
3Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
4Harvard Medical School, and Boston Children’s Hospital, Division of Immunology, Division of Gastroenterology, USA

RDR, 0000-0002-3401-9784; JCK, 0000-0003-2364-2746

Since the publication of the Janeway’s Pattern Recognition hypothesis in
1989, study of pathogen-associated molecular patterns (PAMPs) and their
immuno-stimulatory activities has accelerated. Most studies in this area
have been conducted in model organisms, which leaves many open ques-
tions about the universality of PAMP biology across living systems.
Mammals have evolved multiple proteins that operate as receptors for the
PAMP lipopolysaccharide (LPS) from Gram-negative bacteria, but LPS is
not immuno-stimulatory in all eukaryotes. In this review, we examine the
history of LPS as a PAMP in mammals, recent data on LPS structure and
its ability to activate mammalian innate immune receptors, and how these
activities compare across commonly studied eukaryotes. We discuss why
LPS may have evolved to be immuno-stimulatory in some eukaryotes but
not others and propose two hypotheses about the evolution of PAMP struc-
ture based on the ecology and environmental context of the organism in
question. Understanding PAMP structures and stimulatory mechanisms
across multi-cellular life will provide insights into the evolutionary origins
of innate immunity and may lead to the discovery of new PAMP variations
of scientific and therapeutic interest.
1. Introduction
The ability to distinguish self from non-self is fundamental to the survival of all
eukaryotic life. At a molecular level, this is accomplished by pattern recognition
receptors (PRRs) of eukaryotic cells that recognize conserved molecules of
microorganisms that are distinctly non-self [1]. These molecules come in the
form of microbial cell wall components and nucleic acids, and are termed
pathogen-associated molecular patterns (PAMPs). Examples of PAMPs include
the lipid A subregion of bacterial lipopolysaccharide (LPS), the flagellin subunit
of bacterial flagella as well as microbial RNA and DNA in association with indi-
vidual nucleotides [2]. Based on the pattern recognition model, originally
posited by Charles Janeway Jr in 1989 [3], it has been assumed that PRRs of
eukaryotes should have the ability to detect all members of a given class of
microorganisms via their conserved PAMPs. The only exception to this rule
should be microorganisms with altered PAMP structures that prevent PRR
detection, which may result from coevolution with the host. Therefore, apart
from pathogens or beneficial commensals that have an evolutionary history
with a eukaryotic host, PRRs should have the ability to detect all microorgan-
isms [2,4]. The assumption of near-universal PAMP detection by PRRs is a
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foundation of modern immunology that has been tested
many times since Janeway published this theory. Neverthe-
less, it remains to be determined (i) whether PRRs of
eukaryotes detect all microorganisms that have not co-
evolved with the host, and (ii) whether PAMPs evolved to
be universally detected by eukaryotes spanning the evol-
utionary tree. In this review, we use LPS as a case study
for investigating the universality of PAMP detection. In mam-
mals (humans and mice), LPS is one of the most well-studied
PAMPs, making it a strong candidate for evaluation and
comparison to other known PAMPs. The goal of this
review is to summarize what is known about LPS to date,
and to highlight avenues for further investigation of this
microbial product and others.
pen
Biol.12:220146
2. Discovery of lipopolysaccharide lipid A
and its role as a pathogen-associated
molecular pattern in innate immunity

Humans have been studying LPS and its mechanism of
action on the mammalian immune system for over 150
years. One of the first rudimentary isolations of LPS was
probably made in 1856 along with the discovery of its ability
to cause disease. At the time, it was referred to as ‘putrid
poison’ and was implicated experimentally in the onset of
fever and lethal septic shock in dogs by the Danish physiol-
ogist and medical doctor, Peter Ludvig Panum. Panum
incubated raw meat in water at room temperature until it
smelled ‘putrid’, at which time the substance was passed
through a series of filters until macroscopically free of bac-
terial particles. Injection of dogs with the substance led to
disease (fever, vomiting and vascular collapse), followed by
either rapid death or slow recovery, depending on the
animal and dose. Panum hypothesized that this substance
was responsible for the symptoms of sepsis he observed in
his patients [5,6].

Over 30 years later in 1892, ‘putrid poison’ was further
purified and dubbed endotoxin by Richard Pfeiffer, a student
of Robert Koch [7]. Pfeiffer hypothesized that disease caused
by Vibrio cholera was not dependent on bacterial viability, but
on a toxic compound (endotoxin) from the bacteria. An
experiment performed with heat-killed V. cholera demon-
strated that the toxic substance could withstand prolonged
heating at 100°C and was located in the bacterial cell wall
[8]. Andre Boivin, Ion Mesrobeanu and Lydia Mesrobeanu
were the first group of scientists to observe that endotoxin
contained a polysaccharide region and a lipid region, a
molecular moiety that would come to be known as Gram-
negative bacterial LPS [9–11]. In 1952, Dr Otto Westphal
and Dr Otto Lüderitz developed the hot phenol method
still used to purify LPS today (though it has been since modi-
fied) [12], and in 1954, the method to precipitate the lipid
region from LPS [13]. Westphal and Lüderitz proposed that
this region (named lipid A) was responsible for the toxic
activities of LPS [14]. Lipid A was confirmed to be the toxic
region of LPS by Dr Ernst Rietschel, Westphal and Lüderitz
in 1971, when they determined that the polysaccharide
regions of LPS were not required for the lipid A region’s
observed toxicity [15]. In 1975, Dr Chris Galanos directly
demonstrated that solubilized lipid A was responsible for
the endotoxic activities of LPS [16]. In 1982, Rietschel’s
laboratory solved the structure of lipid A from Salmonella
minnesota [17], and in 1983, the structures of lipid A from
E. coli [18] and Salmonella enterica serovar Typhimurium
[19] were solved.

While pathologic sepsis-inducing activities of LPS were
used to identify and characterize the activities of this PAMP
experimentally, it is now appreciated that the detection of
LPS by select PRRs initiates beneficial defensive responses
to infection [20]. Toll-like receptor 4 (TLR4) is one of the
first identified members of the PRR superfamily present in
mammals. This protein was identified as a likely PRR by
Medzhitov, Janeway and colleagues in 1997, as they found
human TLR4 (first known as hToll) to be homologous to
the Drosophila melanogaster Toll protein [21], which had
been previously identified as a sensor of fungal infections
by Lemaitre et al. [22]. When constitutively activated,
human TLR4 was found to activate nuclear factor kappa B
(NF-κB) and upregulate several activities necessary for adap-
tive immunity [21]. Medzhitov & Janeway [23] hypothesized
that this human TLR4 protein functioned to detect PAMPs.
Studies in mice provided the first genetic evidence to support
this prediction. Decades prior to the work of Medzhitov and
Janeway, two groups separately discovered mouse strains
(C3H/HeJ and C57BL/10ScCr) that could not recognize
LPS and displayed increased host susceptibility to Gram-
negative bacterial infections [24–26]. A year after the work
of Medzhitov and Janeway, Poltorak et al. [27] identified
mutations in the TLR4 gene in these strains of mice that
rendered TLR4 incapable of recognizing LPS; thus, directly
linking LPS recognition in mice to TLR4. This finding was
validated by several near-contemporaneous studies [28,29].

In addition to TLR4, several other mammalian proteins
have been identified as PRRs that detect LPS. These include
lipopolysaccharide-binding protein (LBP), cluster of differen-
tiation 14 (CD14), myeloid differentiation factor-2 (MD2),
brain-specific angiogenesis inhibitor 1 (BAI1), guanylate-
binding protein 1 (GBP1) and members of the inflammatory
caspase family (caspase-4, caspase-5 and caspase-11). Below
we describe the mechanisms of LPS recognition by these dis-
tinct PRRs and the consequences of this recognition on
inflammation and immunity.
3. Importance of lipopolysaccharide to
Gram-negative bacteria and mammalian
innate immunity to lipopolysaccharide

The LPS molecule is an amphipathic glycolipid that accounts
for the majority of molecules present in the outer leaflet of the
Gram-negative bacterial outer membrane (OM) [30,31]. As
such, it plays a vital role in optimal bacterial cell functions
[32]. LPS maintains the integrity of the bacterial OM, provid-
ing a tightly regulated permeability barrier that is resistant to
environmental assaults such as toxins, detergents, antibiotics
and other antimicrobial compounds [33–36]. LPS is thought
to be essential to the fitness and function of this class of
bacteria. However, there have been three species of Gram-
negative bacteria identified that are viable without LPS:
Neisseria meningitidis [37], Moraxella catarrhalis [38] and Acine-
tobacter baumannii [39], which are all pathogens of the
mammalian respiratory system. Furthermore, studies which
have knocked out essential enzymes required for LPS
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biosynthesis demonstrate that some bacteria can survive
without LPS, at least in the laboratory setting [40]. These
examples, although notable, will not be the focus of this
review; others have published informative reviews on this
topic [36,41,42]. Apart from the examples listed above,
Gram-negative bacteria require LPS for viability and optimal
fitness [43–46].

The human and murine innate immune systems have
evolved multiple PRRs that detect LPS [20]. Upon the detec-
tion of prototypical E. coli LPS, the mammalian (human/
mouse) innate immune system mounts a robust transcrip-
tion-based inflammatory response [20,47]. This response is
dictated by the PRR binding the lipid A region of LPS and
the localization of said PRR in the cell; whether it is mem-
brane bound or cytosolic. Membrane-localized PRRs that
detect the lipid A region induce both the cytokine (NF-κB-
activated) [27,48–50] and interferon (interferon regulatory
transcription factor 3 (IRF3)-activated) [51] arms of the
innate immune system, whereas cytosolic PRRs induce pore
formation in the cell membrane and the cleavage (activation)
and release of IL-1 family inflammatory cytokines into the
extracellular space [52,53].

Human and murine phagocytic cells, such as macro-
phages and dendritic cells, express two main PRR groups
that recognize the lipid A region of LPS. TLR4, along
with its accessory proteins LBP, CD14 and MD2, functions
to detect LPS that is present in the extracellular space
(figure 1a, 1–13) [54]. LBP circulates in the serum and loosens
LPS from the bacterial cell membrane or from LPS micelles
[55,56] to enable the extraction of an LPS monomer by
CD14 [57–59]. CD14 comes in two forms: a GPI-anchored
membrane-bound form and a soluble form that lacks a GPI
anchor, both of which bind to LPS monomers [58,60]. CD14
subsequently releases LPS to a complex, composed of MD2
[61] and TLR4 [62,63]. Engagement of MD2 and TLR4 with
LPS induces the dimerization with another TLR4-MD2
complex. The acyl chains of the lipid A subregion of LPS
cross-link these molecules, leading to dimerization of the
cytosolic tails of TLR4, which contain a signalling motif
known as a Toll/interleukin-1 receptor (IL-1R) (TIR)
domain [64,65]. The dimerized TIR domains are detected
by an intracellular protein known as the Toll/interleukin-1
receptor domain-containing adapter protein (TIRAP), which
serves as a general sensor for most activated (i.e. dimerized)
TLRs [66]. TIRAP interacts with acidic phosphoinositides pre-
sent in the cytoplasmic leaflet of the plasma and endosomal
membranes, thereby surveying these organelles for the pres-
ence of dimerized TLRs. TIRAP-mediated TLR detection is
achieved through interactions between its TIR domain
and those of the upstream receptors. These interactions lead
to the assembly of a micron-sized filamentous organelle
known as the myddosome, which represents the principal
subcellular site of TLR-mediated inflammatory enzyme acti-
vation [67]. The myddosome was first defined in cell-free
systems with recombinant proteins [68,69] and identified
as an endogenous protein complex that is assembled upon
TLR activation in macrophages [67]. This complex is a
prototypical example of an increasing set of filamentous sig-
nalling organelles of the innate immune system, which are
collectively known as supramolecular organizing centres
(SMOCs) [70,71]. In the case of the myddosome, its’ assembly
coincides with the activation of the interleukin-1 receptor (IL-
1R) associated kinase (IRAK) family kinases within this
structure [68]. Activation of the IRAKs initiates a kinase
and ubiquitin ligase-dependent cascade that culminates in
the induction of aerobic glycolysis [70] and the translocation
of the transcription factors activator protein 1 (AP-1), NF-κB
(and others) to the nucleus and the subsequent expression
of proinflammatory cytokines [72,73].

Within minutes of LPS binding at the plasma membrane,
TLR4 is endocytosed in a CD14- and MD2-dependent
manner [74]. Within endosomes, the proteins TRIF-related
adaptor molecule (TRAM) and TIR domain-containing
adaptor-inducing IFN-β (TRIF) are thought to be recruited
to the TIRs of TLR4 [75]. How TRAM-TRIF recruitment is
coordinated with TIRAP-MYD88 recruitment to the TLR4
TIRs is unknown. Despite this lack of mechanistic insight, it
is clear that TRAM-TRIF recruitment stimulates transcription
factor activation, with a notable factor being IRF3. In the
nucleus, IRF3 induces the expression of interferons and
hundreds of interferon-stimulated genes (ISGs) that play
diverse roles in host defence [76]. Just as myddosome assem-
bly at the plasma membrane is dependent on MYD88, SMOC
formation at the endosomal membrane is likely to be depen-
dent on TRIF, and this complex is referred to as the triffosome
[77]. In support of the model that TRIF mediates SMOC
formation at the endosomal membrane, multiple proteins
have been identified that are recruited to the triffosome in
the context of extracellular LPS stimulation and subsequent
inhibition of TGFβ-activated kinase (TAK1). Specifically,
TRIF binds to the ISG-encoded protein, Z-DNA-binding
protein 1 (ZBP1). ZBP1 in turn binds to receptor-interacting
serine/threonine-protein kinase 1 (RIPK1) to recruit fas
associated via death domain protein (FADD) and caspase-8
to induce cell death and the production and secretion of
active IL-1β [78]. More recently, extracellular LPS stimulation
alone was also demonstrated to result in the formation of the
trifosome containing ZBP1 bound to RIPK1. ZBP1 recruit-
ment of RIPK1 was required for the timely interaction of
multiple proteins with the triffosome, including TAK1, NF-
kappa-B-essential modulator, tumour necrosis factor (TNF)
receptor-associated factor 3 (TRAF3) and TANK-binding
kinase 1 (TBK1), to drive NF-κB and IRF3-mediated
production of proinflammatory cytokines and interferon [79].

LPS is also detected in the cytosolic space of human and
murine cells. Human caspase-4 and -5, and murine caspase-
11 detect LPS in the host cell cytosol (figure 1b)
[52,53,80,81]. Similar to extracellular LBP, intracellular GBP1
can recognize either bacterial OMs or LPS micelles and can
recruit other GBP family members to the site of detection
[82–84]. Caspase-4/11 associates with GBPs and binds to
LPS to trigger the activation of the latent enzymatic activity
of these proteins, resulting in the caspase-mediated cleavage
of the substrate protein gasdermin-D (GSDMD) [82,84–86].
Interestingly, in mice, CD14 also functions to deliver LPS to
caspase-11 [87]. After cleavage of GSDMD, the N-terminal
subunit oligomerizes at the cell membrane into a large pore
[88,89] that can serve as a conduit (i.e. channel) for protein
secretion [90]. If these GSDMD pores are not repaired by
the cell, membrane rupture may occur by a process known
as pyroptosis [91]. Upon pore formation by GSDMD, potass-
ium ions are released into the extracellular space, which leads
to the activation of a SMOC known as the NLRP3 inflamma-
some [92]. Just as the myddosome represents the subcellular
site of inflammatory kinases that drive transcription factor
activation, the inflammasome is the subcellular site of
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enzymes that promote the activation and release of IL-1
family cytokines. These inflammasome-associated enzymes
are members of the caspase family, most commonly cas-
pase-1 or caspase-8 [93]. The need for caspase-1 to promote
IL-1 release is based on the finding that caspase-1 and cas-
pase-4, -5, -11 differ in their abilities to detect LPS and
cleave IL-1 [81,92]. Caspase-1 can cleave IL-1β [94,95],
which is critical to enable its inflammatory activity and trans-
mission through a GSDMD pore [96], but this enzyme cannot
bind LPS. Conversely, caspase-4, -5, -11 can bind LPS, but
cannot cleave IL-1 family cytokines [52,53]. Thus, inflamma-
somes serve as a link between the LPS sensory caspases
and the caspases that cleave IL-1. Interestingly, whereas the
structures and functions of the CD14-MD2-TLR4 network
are largely conserved in mammals [97], with the possible
exception of bats [98,99], the structure and activities of
LPS-binding caspases. The caspase-11 (-4,-5) homologues in
carnivores and felines have distinct features from their



Figure 1. (Caption overleaf.) Mammalian PRRs that recognize LPS and the downstream signalling pathways initiated after PAMP recognition. (a) Extracellular innate
immune pathways are induced following PRR recognition of LPS. (1) LBP interacts with bacterial cell membrane or LPS micelles so that (2) CD14 can extract a
monomer of LPS and (3) deliver it to a monomer of MD2/TLR4. (4) The engagement of LPS with the monomer of MD2/TLR4 cross-links this monomer with another
monomer of MD2/TLR4, creating a dimer. (5) TIRAP is recruited to the dimer which subsequently results in (6) the formation of the myddosome that (7a) mediates
downstream proinflammatory signalling and (7b) the induction of aerobic glycolysis, which (8) culminates in the translocation of transcription factors NF-κB and AP-
1 to the nucleus to induce the production of proinflammatory cytokines and mediate metabolic reprogramming. (9) MD2/TLR4 are next endocytosed and TIRAP is
replaced by the adaptor proteins (10) TRAM and (11) TRIF, which leads to (12) downstream signalling events in the cytosol that (13) culminate in the translocation
of the transcription factor IRF3 to the nucleus and the production of interferon and ISGs. (14) Independent of TLR4, the BAI1 receptor, with seven transmembrane
domains, binds to the polysaccharide region of LPS on Gram-negative bacteria and subsequently (15) interacts with ELMO, the DOCK180 complex, and RAC1 to (16)
initiate phagocytosis. (17) Phagocytosis activates NADPH-oxidase and (18) the production of ROS. ROS mediates bacterial killing within the phagosome/phagolyso-
some as a means to host defence. (b) Intracellular innate immune pathway induced following Caspase-11 (-4, -5) recognition of LPS. (1) GBP1 associates with the
bacterial OM or micelle and (2) recruits other GBPs to the site of interaction. (3) Caspase-11 (-4, -5) associates with GBPs and recognizes LPS from Gram-negative
bacteria in the cell cytosol and subsequently (4) cleaves GSDMD. (5) The N-terminal subunit of GSDMD aggregates at the plasma membrane to form pores and (6)
potassium ions (K+) are released to the extracellular space, which in turn (7) activates the NLRP3 inflammasome containing caspase-1. (8) Inflammasome-mediated
cleavages of pro-IL-1β causes (9) active IL-1β to be secreted with pores formed by GSDMD. IL-1β is now activated and triggers proinflammatory signalling in
neighbouring cells and informs the adaptive immune response.
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murine and human counterparts [100,101]. Recent studies
established three classes of caspase-4 family members that
exist in nature. One class represents LPS receptors that need
downstream inflammasomes to process IL-1β (e.g. human
and mice). One class represents receptors that intrinsically
link LPS detection to IL-1β cleavage, bypassing the need for
inflammasomes and serving as one-protein signalling path-
ways (felines). The final class represents caspase-1 like
proteins that do not bind LPS at all (canines) [102,103].

Lastly, BAI1 functions in concert with TLR4 and LPS-
detecting caspases as a PRR that is required to successfully
eliminate Gram-negative bacterial infections (figure 1a,
14–18) [104]. BAI1 recognition of LPS induces the production
of microbicidal reactive oxygen species (ROS) in phagocytes.
Originally, BAI1 was discovered because it is abundant
in neurons and glial cells and was reported as an angiogen-
esis inhibitor in a brain tumour model [105]. It is now
appreciated that BAI1 is expressed in a wider range of cell
types, including macrophages, though at lower levels of
expression. Das et al. [106] revealed the ability of BAI1 to
act as a PRR for LPS. BAI1 is an adhesion-type G-protein-
coupled receptor containing an N-terminal extracellular
domain that recognizes multiple substrates, including LPS,
[104,106] and exposed phosphatidylserine on apoptotic cells
[107]. Upon binding to LPS, the intracellular C-terminal
domain of BAI1 interacts with the engulfment and cell
motility (ELMO) protein and the dedicator of cytokinesis
(DOCK180) protein complex, to initiate phagocytosis and
NADPH-oxidase-mediated killing of Gram-negative bacteria
by ROS in a ras-related C3 botulinum toxin substrate 1
(Rac1)-dependent manner [104]. Unlike the above-described
PRRs, BAI1 has been reported to interact with the polysac-
charide portion of LPS and not the lipid A subregion [106],
suggesting that there are multiple mechanisms of interaction
with LPS.
4. Lipid A structure and the human-centric
view of lipid A detection

The ability of LPS to interact with PRRs is directly related to
its structure. The structure of LPS consists of three distinct
regions: (i) the lipid A anchor (or subregion), which is hydro-
phobic, (ii) the core oligosaccharide, which is hydrophilic,
and (iii) the O-antigen which is a long chain polysaccharide
that is also hydrophilic [44,108,109]. The biosynthesis of
each region is tightly regulated on the inner membrane
facing the bacteria cell cytosol, beginning with the biosyn-
thesis of the lipid A anchor, followed by the addition of the
core oligosaccharide, and ending with the addition of the
O-antigen [108]. At the end of this process, LPS is flipped
from the cytoplasmic inner membrane to its final destination
in the outer leaflet of the OM [110,111]. The lipid A anchor is
embedded in an underlying phospholipid bilayer of the OM
[32] and has the most conserved structure of the three regions
that make up LPS [44,112]. Compared to the lipid A anchor,
the hydrophilic regions of LPS are less conserved and
typically are not required for bacterial viability in the labora-
tory setting. The combination of sugars that make up the core
and O-antigen of the LPS molecule varies between genera
(even species) of bacteria [43,110]. Importantly, the lipid A
region of LPS is responsible for the engagement of TLR4
and caspase-11 (-4, -5) [113]. When LPS is stripped of its
core and O-antigen, it is still capable of interacting with
these mammalian PRRs [16,114–116].

The structure of E. coli lipid A is largely conserved among
aerobic and enteric Gram-negative bacteria (figure 2a)
[44,124]. This lipid A is composed of a bis-phosphorylated
β(1→6)-linked D-glucosamine disaccharide backbone that is
hexa-acylated with four primary acyl chains and two second-
ary acyl chains. Primary acyl chains are linked to the
disaccharide backbone via ester and/or amide bonds, and
typically, the secondary acyl chains extend asymmetrically
from the primary acyl chains [18,108,109]. The saturated
acyl chains of lipid A are aliphatic in nature, and it is this
property that creates the low permeability environment for
hydrophobic solutes [32,36]. E. coli lipid A has acyl chains
ranging from 12 to 14 carbons in length [108,109]. Exper-
iments measuring bacteria membrane permeability after
altering the number of acyl chains present in E. coli lipid A
resulted in increased permeability when the number of acyl
chains was experimentally decreased [125], illustrating that
hexa-acylation is required for optimal bacterial membrane
function and integrity in E. coli. Acyl chain number is likely
to be species-specific to optimize permeability for each taxa
dependent on the environmental setting [44,126–128].

Central to the ideas of pattern recognition, as it relates
here to LPS-PRR biology, is that multi-cellular organisms
detect conserved cell wall structures as their primary signal
of microbial encounter. This strategy enables a small set of



Escherichia coli Moritella oceanus 28 & 36   Halobacteroides lacunaris TB21 

Cobetia pacifica KMM 3879 Thermomonas hydrothermalis Halomonas magadiensis

Echinicola pacifica KMM 6172 Echinicola vietnamensis KMM 6221 Pseudoalteromonas haloplanktis TAB 23 

Figure 2. Published structures of lipid A from Gram-negative bacteria cultured from aquatic ecosystems. (a) Hexa-acylated lipid A from E. coli with acyl chains
ranging from 12 to 14 carbons in length [108]. Compared to E.coli lipid A, (b) hexa-acylated lipid A from M. oceanus 28 and 36 contains longer secondary
acyl chains with 16 carbons [117], (c) hexa-acylated lipid A from H. lacunaris TB21 contains shorter primary and secondary acyl chains with 10 carbons [118],
(d ) hexa-acylated lipid A from C. pacifica KMM 3879 contains a shorter acyl chain with 10 carbons [119], (e) hexa-acylated lipid A from T. hydrothermalisis contains
only shorter, odd-length primary and secondary acyl chains with 11 carbons as well as D-GalA residues attached to the phosphate groups of the di-glucosamine
backbone [120], ( f ) hepta-acylated lipid A from H. magadiensis contains shorter (10 carbons) and longer acyl chains (16 or 18 carbons) [121], (g) tetra-acylated lipid
A from E. pacifica KMM 6172 T contains longer primary acyl chains ranging from 15 to 17 carbons as well as a D-GalA residue attached to the di-glucosamine
backbone [122], (h) tetra-acylated lipid A from E. vietnamensis KMM 6221 contains longer primary chains with 15 or 16 carbons as well as a D-GalA residue attached
to the di-glucosamine backbone [122] and (i) penta-acylated lipid A from P. haloplanktis TAB 23 contains only even-length acyl chains with 12 carbons [123].
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LPS-binding proteins to detect the conserved cell wall struc-
ture of any bacterium we would ever encounter. As such,
the idea of pattern recognition predicts that all bacteria
should be recognizable by PRRs, except those bacteria that
are host-adapted and have evolved PAMPs capable of
immune evasion [113,124,128,129]. Based on the human-cen-
tric work of most research in this area, the tenets of the
pattern recognition concept have been most thoroughly
explored using bacteria and LPS that have the potential to
interact with terrestrial animals. The most laboriously studied
examples include studies of E. coli and other pathogens and
commensals of humans [127,130–137]. Based on this work,
bis-phosphorylated, hexa-acylated lipid A (with specific
carbon chain number) is considered the ideal structure in
Gram-negative bacteria, and this structure is near-universally
detected by mammalian PRRs. Alteration of this structure to
evade PRRs only occurs when evolutionary pressures of bac-
terial detection by the host are applied (as in the case of
virulent pathogens or beneficial commensals). However, it
is important to note that most multi-cellular organisms are
not terrestrial, and most bacteria live in environments that
are not conducive to human life and may never interact
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with humans. In the next section, we discuss recent studies to
determine the role of the lipid A subregion of LPS from bac-
teria that occupy diverse ecological niches to serve as PAMPs
for mammalian PRRs.
ietypublishing.org/journal/rsob
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5. Lessons from the environment:
Gram-negative bacteria

To determine whether lipid A has a globally conserved
structure and elicits a global pattern of conserved response,
Gram-negative bacteria have been cultured from diverse,
and in some cases extreme, environments to determine the
lipid A structure of LPS and its effect on the mammalian
innate immune system (figure 2b–i). A recent study posed
the question of whether PRRs of mammals could detect
LPS from bacteria from an environment largely uninhabited
by mammals: the deep sea [117]. The deep sea harbours
no resident mammals, and there are a limited number of
mammalian species that access it via sporadic diving [138].
The deep sea is also known to host distinct populations of
Gram-negative bacteria, different from shallow water and
terrestrial environments [139,140]. Deep-sea samples col-
lected from the equatorial Pacific were found to be rich in a
culturable genus of bacteria, Moritella spp., that is not found
in shallow water samples from the same region [117]. There-
fore, Moritella spp. offered a model to test the universality of
the concepts of pattern recognition.

Using a newly discovered species of deep-sea Gram-nega-
tive bacteria, Moritella oceanus, Gauthier et al. demonstrated
that these bacteria have an OM composed of lipid A that
was not detected by CD14, TLR4 or caspase-11. This finding
was notable, as subsequent analysis revealed that M. oceanus
LPS contained E. coli-like lipid A structures that were
hexa-acylated, bis-phosphorylated, and displayed no other
backbone modifications. The immunological silence of
M. oceanus lipid A was associated with an increased level
of C16 secondary acyl chains (figure 2b). The high levels of
C16 could explain the inability of M. oceanus lipid A to be
detected by the mammalian PRRs tested [117]. Previous find-
ings support that C16 may prevent interaction of lipid Awith
mammalian MD2, and hence, TLR4 engagement [141]. How-
ever, why C16 chains would interfere with CD14 interactions
and caspase-11 interactions remains unknown. Thus, the
interaction between acyl chain length and PAMP recognition
is a ripe area for future investigation.

It is appreciated that the conditions of an environment
directly influence bacterial membrane structure; specifically,
the OM must adapt for optimal function and fitness of the
bacteria [142–145]. Extreme environments such as the deep-
sea thus present an opportunity to test the hypothesis
that environmental drivers of bacterial fitness may be vastly
different from a terrestrial or mammalian-host enteric
environment and therefore may not be compatible with
mammalian PRR systems. A recent study tested this hypo-
thesis by screening the ability of 44 strains of live Moritella
sp. to engage CD14 and TLR4 in mouse macrophages.
It was found that 80% of the strains tested were unable
to engage with CD14 and/or TLR4, as compared to live
E. coli, even though all strains were predicted to contain a
bis-phosphorylated, hexa-acylated lipid A [117]. It is almost
certain that deep-sea bacteria did not evolve to evade mam-
malian PRRs and do not gain any fitness benefit from
doing so. Instead, this environment should have a different
set of evolutionary drivers and constraints, independent of
mammalian interactions, such that there is no evolutionary
pressure for LPS to be immune evasive, stimulatory or
silent in mammals. This idea therefore implies that any
immuno-stimulatory or immuno-evasive response of mam-
malian cells to deep-sea LPS is accidental rather than
selectively driven. Importantly, this raises the question as to
the frequency at which this phenomenon happens when
bacteria are isolated from other extreme environments.
Further tests of the pattern recognition model with lipid A
from diverse ecosystems remain an important topic for
future investigation. Indeed, a solid experimental foundation
for such ecosystem-based tests of the universality of pattern
recognition already exists.

For example, lipid A structures have been isolated from the
Gram-negative bacteria Halobacteroides lacunaris TB21, which
was cultured from a deep-sea hypersaline anoxic brine in the
Eastern Mediterranean Sea [118], and also from Cobetia pacifica
KMM 3879 cultured from shallow water sediment collected in
the Sea of Japan [119] (figure 2c,d). Interestingly, both of these
bacteria produced hexa-acylated lipid A species with C10 and
C12 acyl chains, and the LPS from both species behaved simi-
larly in murine macrophages and human cells. In these cells,
the marine lipid A structures were poor inducers of NF-κB
activation and competed with E. coli LPS for receptor binding.
These findings suggested that these lipid A structures bind
but do not signal. There is a growing list of bacteria with a
variety of acyl chains of varying lengths from aquatic environ-
ments, and interestingly, many of these provoke a reduced
innate immune response compared to E. coli, suggesting the
potential for pseudo-silent or highly dampened immune acti-
vation. Thermomonas hydrothermalisiswas first cultured from a
hot spring in Gemil, Portugal and produces a hexa-acylated
lipid A with C11 acyl chains and galacturonic acid (D-GalA)
residues attached to the phosphate groups of the di-glucosa-
mine backbone (figure 2e). In murine macrophages and
human cells, LPS from T. hydrothermalisis failed to induce
innate immune signalling as measured by NF-κB activation
and cytokine release compared to E. coli LPS [120]. Halomonas
magadiensis is a halophilic Gram-negative bacteria that
expresses a hepta-acylated lipid A with even-length acyl
chains (C10, C12, C14, C16 and/or C18) and is similarly incap-
able of activating NF-κB in HEK293 cells and human THP-1
cells (figure 2f ) [121]. Echinicola pacifica KMM 6172 T and Echi-
nicola vietnamensis KMM 6221 were isolated from animals
inhabiting marine environments: a Strongylocentrotus interme-
dius urchin from the Sea of Japan and mussels from a farm on
Nha Trang Bay in the Sea of China, respectively [122]. Both
produce amonophosphorylated, tetra-acylated lipid A charac-
terized by odd and even-length acyl chains (C15, C16 and/or
C17) as well as a D-GalA residue on the glucosamine sugar
that is not phosphorylated (figure 2g,h). The lipid A from
both species induced significantly less NF-κB activation and
IL-8 release compared to Salmonella enterica serovar Typhimur-
ium. Pseudoalteromonas haloplanktis TAB 23 was isolated from
shallow water in the Antarctic Sea and was found to produce
a penta-acylated lipid Awith C12 length acyl chains that was
incapable of inducing the production of tumour necrosis factor
α (TNFα) in human THP-1 cells (figure 2i) [123].

Collectively, these publications suggest that there are
some Gram-negative bacteria that may have an increased
occurrence of producing lipid A that is antagonistic or is
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functionally silent (pseudo-silent) to mammalian PRRs. In
the above examples, lipid A chain length and number are
directly implicated in the biological activity of immune inter-
actions, but this coupling of structure and function is
relatively rare in the environmental microbiology literature.
All of the above examples have been isolated from aquatic
environments, but whether similar characteristics have
evolved in other environments remains unexplored. It may
be hypothesized that the wider the difference in physical
environment between bacteria and a mammalian host, the
greater the chances of accidental mammalian PRR evasion,
pseudo-silence or silence. It is unclear whether this same
hypothesis should be applied to PRRs produced by non-
mammals, which represent the vast majority of multi-cellular
life forms.
Biol.12:220146
6. Lessons from the environment:
eukaryotes

Across the tree of life, lipid A (or LPS) has been used to study
the activation of non-mammalian innate immunity. In exper-
imental settings, the most common approach is to treat cells
or inject animals or plants with purified LPS or lipid A
from E. coli [113]. While this is a logical experimental starting
point from a mammal-centric perspective, mammals rep-
resent a small fraction of all multi-cellular life. Mammals
represent less than 1% of all animals. Invertebrates account
for approximately 95% of all animals on Earth, and lower ver-
tebrates (amphibians, fish and birds) comprise a bulk of the
remaining 5%. When plants are included in these figures;
plants account for about 20% of all species of multi-cellular
life compared to animals [146]. The spectrum of non-mam-
malian organisms that detect LPS is largely undefined.
Even in some common model organisms, the ability to
detect lipid A is unknown or unclear. In general, evidence
to date underscores that the use of lipid A as a PAMP
across taxa is not conserved; we will review lipid A as a
PAMP (or not) in common model organisms below.

In some invertebrates, lipid A is a PAMP, similar to what
has been observed in mammals. Lipid A detection in the
horseshoe crab (Limulus polyphemus) by the PRR Factor C is
well established, following a molecularly defined activation
pathway [147–151]. In granular hemocytes, the immune
cells of horseshoe crabs, the serine protease Factor C is
expressed on the plasma membrane and remains inactive
until it recognizes lipid A, upon which time it cleaves itself
into its active form [147,152]. Active Factor C cleaves the
zymogen Factor B, which subsequently activates the pro-clot-
ting enzyme that is key to the conversion of coagulogen to
coagulin and the antimicrobial clotting response to remove
any potentially harmful bacteria [149,153–156]. As a part of
this response, it has been proposed that coagulin may serve
as a ligand to a TLR identified in horseshoe crabs to induce
downstream NF-κB signalling [157–159]. Factor C is sensitive
to picogram quantities of lipid A, and for this reason—
coupled with the high toxicity of lipid A to humans—L. poly-
phemus are harvested to isolate Factor C from their blood as a
highly sensitive assay to detect endotoxin (lipid A) contami-
nation in medical and pharmaceutical industries [160–162].
Factor C does share an important and surprising commonal-
ity with mammalian LPS receptors: it could not detect lipid A
from deep-sea M. oceanus, suggesting that long-held
assumptions of the universality of lipid A detection by
Factor C are incomplete [117].

By contrast, there are some model systems that do not
have any mechanism to detect LPS. For example, the model
organism Drosophila melanogaster does not express any
lipid A detecting PRRs and therefore does not elicit a tran-
scriptional response to any LPS or lipid A [163,164]. In
D. melanogaster, the detection of Gram-negative bacteria
requires the immune deficiency (IMD) pathway and recog-
nition of the PAMP peptidoglycan (PGN) [163,164].
Previous data that purportedly show LPS activating the
innate immune system of D. melanogaster are a result of
PGN contamination of LPS preparations [165,166], which
was later clarified through a series of definitive experiments.
Early (pre-2000) experiments suggesting LPS detection all
require repeated verification, because the protocol for suc-
cessfully purifying LPS was not established until 2000 [167].
Using robust protocols, Leulier et al. used purified LPS and
PGN derived from the cell walls of Gram-negative and
Gram-positive bacteria to illustrate that only PGN, but not
LPS, could stimulate innate immune responses in D. melano-
gaster [164]. Similarly, experiments performed by Kaneko
et al. with synthetic lipid A, which is free of contaminants,
underscored that LPS does not activate the IMD pathway,
but PGN from Gram-negative bacteria does [163].

The nematode model organism, Caenorhabditis elegans,
also may not detect lipid A. Instead, there is evidence that
other portions of the LPS molecule (O-antigen and core) med-
iate innate immune signalling. Aballay et al. observed
Salmonella enterica with mutations in core and O-antigen bio-
synthesis enzymes could not mount a productive immune
response in C. elegans, despite the fact that lipid A remained
intact (unchanged) [168]. S. enterica with intact LPS induced
an innate immune defence pathway known as the pro-
grammed cell death (PCD) response in nematodes. When
the authors of this study purified LPS from S. enterica, how-
ever, they could not induce the PCD response observed
with live infections. It is possible that LPS is not a specific
PAMP in nematodes, but that intact LPS is required for
non-specific cell adhesion in the context of infection. To
date, no PRR that recognizes LPS has been identified in
C. elegans. The genome of these organisms, however, does
contain one TLR orthologue, a TIR domain-containing
gene, and nine LBP orthologues [169,170]. Unlike in mam-
mals and D. melanogaster, the C. elegans TLR does not
participate in the innate immune responses to most microbial
stimuli [171], however, the TIR domain-containing protein
(TIR-1) is critical to the innate immune response against mutli-
ple Gram-negative pathogens [171–173]. Whether the LBP
orthologues inC. eleganshave a role in host defence is unknown,
however, one gene (F44A2.3) is upregulated in response to
the Gram-positive bacteria, Enterococcus faecalis, and the
Gram-negative bacteria, Photorhabdus luminescens [174].

Until recently, it was thought that the model mustard
plant Arabidopsis thaliana recognizes lipid A from Pseudomo-
nas spp. and Xanthomonas campestris, but not E. coli, via the
membrane-bound PRR, lipooligosaccharide-specific reduced
elicitation (LORE) [175]. However, a recent study refuted
this idea with the findings that LPS and lipid A from com-
mercial and laboratory-derived preparations contain free
medium-chain 3-hydroxy fatty acids, essentially confounding
the conclusions of studies that were previously assumed to
have LPS- and lipid A-only preps. Kutschera et al. [176]
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found that the removal of these free fatty acids from LPS
and lipid A preparations rendered the LPS and lipid A
silent to LORE-mediated innate immune detection, thereby
suggesting that the free fatty acids were the detection trigger.
The authors concluded that LORE binds most strongly to
medium-chain 3-hydroxy fatty acids with 10 carbons,
and further hypothesized that these fatty acids are a product
of separate cellular processes in bacteria and are not always
directly attached to lipid A naturally. In Pseudomonas spp.,
however, medium-chain 3-hydroxy fatty acids with 10 car-
bons are a derivative of lipid A that may functionally
behave as an indirect LPS detection trigger [177]. Whether
or not the fatty acids are released in the context of an innoc-
uous encounter or in direct response to Pseudomonas infection
in A. thaliana remains unknown.

Although extracellular lipid A pattern recognition clearly
occurs in marine environments (L. polyphemus), it is thought
that large classes of lower marine vertebrates are functionally
blind to extracellular lipid A. For example, fish are extremely
resistant to LPS-induced septicemia and can survive injec-
tions of upwards of 200 µg kg−1 of purified LPS [178–180].
Initially, these data stimulated the theory that there may be
no PRR in teleost fishes (Osteichthyes) to detect lipid
A. Indeed, orthologues of TLR4 and their accessory proteins
(MD2 and CD14) are virtually all absent from the sequenced
genomes of teleost fish [178,181–184]. Sequencing of the ele-
phant shark genome (Chondrichthyes) revealed that the
TLR4 gene contained numerous stop codons which would
undoubtedly render it non-functional, prompting the hypoth-
esis that Chondrichthyes also do not detect LPS, at least
extracellularly [185]. Even though high quantities of LPS
are not lethal to fish, in clear contrast with the mammalian
response, there are numerous reports of fish mounting a tran-
scriptional response to LPS [186–191]. These reports,
however, have used doses of LPS (10–500 µg ml−1) that are
100–5000 times higher than used in mammals. It is only at
these high doses that a transcriptional response is detected,
and even still, fish are resistant to LPS-induced septicemia.
As such, extracellular LPS detection at an environmentally
relevant dose may not naturally occur in fishes.

An interesting debate surrounds the common model
freshwater fish Danio rerio, which expresses two paralogues
of TLR4 (TLR4ba and TLR4bb) [192–194] and a putative
orthologue of MD2 (LY96) [195]. However, these paralogues
do not activate NF-κB upon stimulation with LPS in vivo or
when transfected into a 293 T reporter cell line alone or in
tandem with human CD14 and MD2 [193,194]. Furthermore,
co-expression of TLR4ba and TLR4bb with D. rerio LY96 did
not activate NF-κB. Interestingly, when TLR4bb was overex-
pressed with LY96 and human CD14, Loes et al. observed
the activation of this pathway. However, this surprising
finding still suggests that paralogues or orthologues to mam-
malian TLR4, and its accessory proteins are not lipid A
sensing PRRs in D. rerio [195], since it was only with a mam-
malian accessory protein that the activation of NF-κB could
be achieved. No other fish to date has been shown to possess
extracellular PRRs that detect lipid A [189,192], though this
requires further investigation. Given the above experiments,
D. rerio-specific TLR4ba or TLR4bb are probably not respon-
sible for an innate immune response to LPS, but notably,
transcriptional responses and/or animal death upon pro-
longed exposure to high concentrations of LPS were
observed [195]. As such, we hypothesize that intracellular
lipid A pattern recognition may instead be responsible for
the phenotypes reported. To this point, there has been
direct evidence that D. rerio expresses a functional orthologue
of caspase-4/11 that senses LPS in the cytosol [196,197].
Notably, published genomes of teleost fishes do contain puta-
tive orthologues of intracellular lipid A detecting caspases;
but there are no other lipid A detecting caspases in fish
that have been functionally confirmed. As such, mechanisms
of potential intracellular LPS detection require further study
in aquatic systems.

Given the complexity of potential extracellular and intra-
cellular LPS and lipid A detection pathways across
eukaryotic domains, a clear understanding of where and
when lipid A recognition has been gained and lost through-
out evolutionary history remains an unsolved puzzle. It
may not be as simple as saying certain classes of eukaryotes
have PRRs that recognize lipid A while others do not. For
example, insects (excepting the model organism D. melanoga-
ster) do display evidence of innate immunity to lipid A,
although no PRRs have been identified to date [198], and
statements like these are possible for many multi-cellular
organisms. If one examines the literature for a species’
response to LPS or lipid A, there is undoubtedly at least
one publication describing the engagement of an inflamma-
tory innate immune pathway, but no identification of a
PRR; hence highlighting how rich the field of lipid A pattern
recognition is for discovery. Moreover, little is known about
the lipid A structures required for optimal innate immune
recognition in non-mammalian eukaryotes. It is possible
that no PRRs have been identified in some of the model
species described above because the optimal lipid A structure
is unknown. Given the diversity of lipid A structures from
bacteria cultured from diverse environments, it is possible
that lipid A from an organism’s endogenous environment
could reveal new PRRs for LPS. The recent evidence
that even small changes of 2 carbons in lipid A chain
length can alter the ability of PRRs to detect LPS in mammals
[117–120,141] suggests that significant structure-function
considerations must be made when such investigations
are undertaken.
7. Discussion: global pathogen-associated
molecular pattern detection in
eukaryotes

From this review, three main conclusions are offered: (i) LPS
is a common PAMP in terrestrial mammals, with multiple
PRRs operating to induce complementary yet distinct host
responses upon encountering this microbial product; (ii) the
focus of PRRs on LPS as a means of bacterial detection is
most likely to be a mammal-specific trait that is best suited
to detect bacteria that co-inhabit the same terrestrial ecosys-
tem; and (iii) lipid A is not a PAMP in all multi-cellular
organisms. These conclusions raise questions about the recog-
nition of other PAMPs. Are they conserved throughout
nature, in terms of their mechanisms of detection by multi-
cellular hosts and are global detection mechanisms
common to broad groups of eukaryotes? The answer for
lipid A is clearly no, but there may be other PAMPs that
are more global and conserved. Thus, the real question may
instead be, why is lipid A detection not used by all multi-
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cellular organisms to detect bacteria? Considerations of the
mechanisms of PAMP detection, and the corresponding
risks and benefits of any given pathway, are key to under-
standing the potential exploitative routes of infection across
the evolutionary spectrum. To explore these questions, we
first examine the universality premise of PAMP detection in
non-lipid A molecules.

Microbial nucleic acid sensing PRRs are an obvious candi-
date for universal PAMPs, as all microorganisms possess
nucleic acids (genetic material) foreign to multi-cellular
organisms. Mammals recognize foreign nucleic acids through
PRRs localized to endosomes, the nucleus and the cytosol.
TLRs, RIG-I-like receptors (RLRs), the DICER family of pro-
teins (DICER) and individual PRRs AIM2, IFI16, cGAS and
STING recognize microbial nucleic acids in mammals. Sub-
strates recognized by intracellular nucleic acid sensing PRRs
include double-stranded (ds) RNA (TLR3, RLRs and
DICER), single-stranded (ss) RNA (TLR7/8), CpG DNA
(TLR9), 23 s rRNA (TLR13), dsDNA (AIM2, IFI16 and
cGAS) and cyclic dinucleotides (STING) [199,200]. While
there is a multitude of nucleic acid substrates, detection by
the corresponding PRRs can occur at different locations
within the cell. For example, human and murine PRRs that
recognize nucleic acids of microbes are localized exclusively
to the intracellular space of the cell [201,202]. TLRs localized
to the endosome detect nucleic acids from microbes surveyed
from the extracellular space, while cytosolic and nuclear
PRRs detect nucleic acids generated by intracellular patho-
gens as part of their life cycle [201,203]. Many PRRs that
recognize nucleic acid PAMPs in mammals induce the pro-
duction of interferon, with the exception of the pyroptosis-
inducing receptor AIM2 [204,205] and the DICER family of
proteins [200]. Mammalian DICER proteins possess the abil-
ity to cleave dsRNA into small RNAs [206–208]; however,
interferon-mediated responses can suppress DICER signal-
ling and account for the majority of the innate immune
response induced following the detection of microbial nucleic
acids [203,209,210]. The interplay between DICER and inter-
feron signalling is actively being defined and is multi-layered
[211]. Importantly, interferon-mediated innate immunity is
conserved in vertebrates including teleost fishes as well
as Chondrichthyes. Teleost fishes use orthologous PRRs to
mammalian TLRs, RLRs, cGAS-STING and probably
DICER; however, AIM2 and IFI16 are absent in fish genomes
[212–216]. Interestingly, fish have a unique TLR, TLR22, that
is localized to the plasma membrane and recognizes dsRNA
[217]. Thus, even if nucleic acids are globally detected, the
pathways for detection may be varied across taxa.

In invertebrates and plants, interferon is absent, and
the recognition of microbial nucleic acids is accomplished
by multiple classes of PRRs independent of interferon
[218,219]. D. melanogaster innate immune signalling pathways
responsible for the detection of foreign nucleic acids include
the Toll pathway [220], the IMD pathway [221], the cGAS-
STING pathway [222–224] and the RNA interference
(RNAi) pathway [225–227]. While the role of the Toll and
IMD pathways in these contexts is obscure, it is established
that cGAS-STING and DICER2 bind microbial nucleic
acids. Intracellular recognition of dsDNA by D. melanogaster
cGAS-STING induces NF-κB and is required to restrict viral
infection [222,224,228]. DICER2 binds dsRNA and catalyses
its conversion to short interfering RNAs (siRNAs) that are
subsequently loaded onto downstream host proteins to be
degraded [225,226,229,230]. Notably, only DICER ortholo-
gues are present in the genomes of A. thaliana and
C. elegans, while orthologues to cGAS and STING are
absent [231,232]. D. melanogaster and A. thaliana express mul-
tiple DICER proteins and use specific DICER proteins
(DICER2 in D. melanogaster and DICER1–4 in A. thaliana)
directly as PRRs that bind foreign nucleic acids [233–235].
By contrast, the C. elegans genome has one DICER protein
that potentially partners with multiple PRRs to exert an
innate immune response [232,236]. C. elegans expresses ortho-
logues of RLRs (RDE4 and DRH1) that are required for RNAi
and function as PRRs for nucleic acids in concert with DICER
[237,238]. Apart from RNAi, A. thaliana can induce two other
innate immune defence pathways upon recognition of foreign
nucleic acids. In plants, PAMP-triggered immunity (PTI) and
nuclear shuttle protein-interacting kinase 1 (NIK1)-mediated
immunity are initiated following recognition of viral nucleic
acids, RNA and DNA, respectively [239]. The leucine-rich
repeats (LRR) receptor-like kinases in A. thaliana, somatic
embryogenesis receptor kinase 1 (SERK1) and the brassinos-
teroid-insensitive 1 (BRI1)-associated receptor kinase 1
(BAK1), are coreceptors for unknown PRRs that detect
RNA viruses and induce PTI. Similarly, the PRR that func-
tions as a coreceptor with NIK-1 is unknown [240]. Unlike
the above-described model plant and invertebrates, the
PRRs and signalling pathways that respond to microbial
nucleic acids in L. polyphemus have not been identified. Inter-
estingly, DICER orthologues are present in the terrestrial
arachnid species, Tetranychus urticae, and RNAi molecular
machinery is functional [241]. L. polyphemus does encode
genes orthologous to those present in the D. melanogaster
Toll and IMD signalling pathways; however, whether these
pathways are important for an innate immune response to
nucleic acids in these animals remains unknown [242].
Therefore, apart from L. polyphemus, the recognition of
microbial-derived nucleic acids is established in plants and
invertebrates even in the absence of interferon.

PRRs that recognize the bacterial cell wall component,
PGN, are a second plausible candidate for a universally
detected PAMP. PGNs are peptide-linked polysaccharides
in the bacterial cell wall with specific features that are critical
to the structure and function of both Gram-negative and
Gram-positive bacteria [243]. The sugar backbone of PGN is
primarily composed of two disaccharides, N-acetylmuramic
acid (NAM) and N-acetylglucosamine (NAG). The linked
peptides in Gram-negative bacteria are often distinguished
by γ-d-glutamyl-meso-diaminopimelic acid (iE-DAP) [244],
while Gram-positive bacteria contain an L-Lysine residue
and sometimes iE-DAP [245]. Both classes of bacteria possess
muramyl dipeptide (MDP), the minimal region of PGN
required for interacting with some mammalian PRRs [246].
Apart from these conserved features, the number of sugars
comprising the PGN backbone, and their modifications,
can vary greatly between different bacterial species
[243,245,247,248]. The best-characterized PRRs that detect
Gram-negative PGN in mammals are the nucleotide-binding
oligomerization domain (NOD) proteins, NOD1 and NOD2,
which are localized to the cytosol and detect iE-DAP or
MDP, respectively [249–251]. NOD2 can also recognize
Gram-positive bacteria via MDP. In addition to these recep-
tors, the following PRRs have been identified in mammals
that recognize conserved components of PGN: the nucleo-
tide-binding domain and LRR-containing (NLR) family of
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receptor members, NLRP1 [252,253] and NLRP3 [254,255],
which are localized to the cytosol as well as PGNs recognition
proteins 1–4 (PGRP1–PGRP4), which are secreted [256,257].
Unlike NOD1, NOD2, NLRP1 and NLRP3, which induce
proinflammatory transcriptional responses in mammals
following the recognition of PGN, PGRP1, 3 and 4 kill
bacteria bound via PGN by disrupting the function of the
bacterial cell membrane [256,258–261]. Human PGRP2,
however, has amidase activity and hydrolyses PGN from
the bacterial cell wall, possibly for subsequent detection by
NOD receptors [262,263]. Similar to what was observed for
nucleic acids, the model organisms evaluated encode PGN-
sensing PRRs, lending initial support for broad recognition
of PGN molecules.

Further examining PGN recognition across eukaryotic
taxa, it has been shown that genomes of teleost fishes contain
orthologues to mammalian PRRs NOD1, NOD2 and PGRP
that recognize PGN; however, only PGRPs of zebrafish have
been functionally verified to bind PGN of Gram-negative
and Gram-positive bacteria [216,264–266]. Apart from mam-
mals, PGN-sensing PRRs are most well-characterized in
D. melanogaster which binds PGNs via long or short PGRPs
[163,164,267–273]. PGRP-LC and PGRP-LE are long receptors
localized to the extracellular space, the plasma membrane,
or the cytosol that bind Gram-negative bacteria through
PGN-containing iE-DAP and activate the IMD pathway
[163,164,274]. PGRP-SA and PGRP-SD are short receptors
that survey the extracellular space and induce the Toll path-
way following the recognition of Gram-positive bacteria
with PGN-containing L-lysine residues [275,276]. In total,
the genome of D. melanogaster encodes 13 PGRPs, some of
which bind to PGN and have functional consequences inde-
pendent of the Toll and IMD pathways [268,277]. PGRPs
are conserved in the model invertebrate L. polyphemus [242];
however, the existence of a PGRP orthologue in C. elegans is
debatable [256,278]. Interestingly, the Toll and IMD pathways
are present in L. polyphemus, suggesting that these pathways
may function downstream of PGRPs, but this remains to be
tested. On the other hand, should an orthologue of PGRP
function as a PRR in C. elegans, it does not employ the Toll
or IMD signalling pathways, as these pathways are absent
in nematodes [171,279]. In contrast with invertebrates, fish
and mammals, A. thaliana does not employ PGRPs as
PGN-sensing PRRs. Instead, plasma membrane-localized
lysin-motif (LYM) proteins, LYM1 and LYM3, bind PGN
from both Gram-negative and Gram-positive bacteria and
induce PTI [280,281]. Therefore, all the model organisms dis-
cussed encode PGN-sensing PRRs, but only the PRRs of
D. rerio, D. melanogaster and A. thaliana have been functionally
verified apart from mammals.

Innate immune recognition of microbial nucleic acids
and PGN is likely conserved in plants, invertebrates
(D. melanogaster, C. elegans and L. polyphemus), teleost fishes
and mammals through overlapping and unique classes of
PRRs. This is in contrast with the lipid A subregion of LPS,
a PAMP that may not be recognized by select invertebrates
and plants (D. melanogaster, C. elegans and A. thaliana), as
well as possibly teleost fishes (and Chondrichthyes)
(figure 3). One hypothesis as to why nucleic acid sensing
and PGN-sensing PRRs are more ubiquitous is that these
PAMPs are common to multiple classes of microorganisms.
Only Gram-negative bacteria possess LPS, whereas nucleic
acids are common to all classes of microorganisms and
PGN is present in the cell walls of both Gram-negative and
Gram-positive bacteria. When PAMPs are common to mul-
tiple classes of microorganisms, there may be a stronger
evolutionary advantage for PRRs to recognize these PAMPs
in a greater range of multi-cellular organisms.
8. The future of understanding
lipopolysaccharide lipid A as a
pathogen-associated molecular pattern
in innate immunity

The near-universal detection of nucleic acids and PGN in the
organisms discussed raises the question as to why the lipid A
subregion of LPS did not evolve to be a globally detected
PAMP. We propose two new hypotheses here that could be
tested to address this question.
Hypothesis 1: The density of lipid A in the environment influences
LPS-sensing PRR evolution: high density Lipid A will desensitize
PAMP-response, and thus select against LPS-sensing PRR evolution.
The concentration of Gram-negative bacteria in the environ-
ment may have influenced the evolution of LPS-sensing
PRRs. For example, in marine environments, the concen-
tration of bacteria in shallow water (less than 200 m) on
average is 1 × 106 ml–1 [140,283], whereas in the air, it is 1 ×
103 ml–1 [284]. Perhaps, because LPS is located on the cell
surface of Gram-negative bacteria coupled with the high con-
centration of bacteria in shallow ocean water, certain marine
organisms evolved not to detect the lipid A subregion of
LPS extracellularly, or altogether, because it is too prevalent
to effectively work as a detection signal. This hypothesis
may, however, be localized to specific environments and/or
be heavily influenced by life-history traits. For example,
L. polyphemus serves as an example of a marine organism
that recognizes lipid A, but the concentrations of lipid A
in the natural environment at the time of L. polyphemus
evolution (445 Ma) are unknown [285]. Further, deep-sea
invertebrates occupy a habitat with comparable concentra-
tions of bacteria present in the air of terrestrial
environments [286], but there are as of yet no data on orga-
nismal response to lipid A in this extremely primitive and
ancient deep-sea environment.
Hypothesis 2: Animals that feed on Gram-negative bacteria may have
evolved to not recognize lipid A as a PAMP. Predation of Gram-nega-
tive bacteria may have selected against PRR-detection to enable food
consumption without immunostimulation.
Some invertebrates consume bacteria as a food source, such
as D. melanogaster and C. elegans; interestingly, these
organisms do not use lipid A as a PAMP. In C. elegans,
only intact LPS can induce an innate immune response,
suggesting that only whole bacteria may activate innate
immunity; any bacteria in the process of whole or partial con-
sumption would have a disrupted LPS, presumably
rendering it undetectable. In D. melanogaster, no recognition
of any region of LPS occurs; instead, Gram-negative bacteria
are detected via PGN and/or nucleic acids. There are many
taxa that consume microbes as a food source (e.g. foramini-
fera [287], copepods [288], rotifers [289], amoebas [290],
mites [291] and gastropods [292]), but the PRR detection
pathways for these organisms has not yet been investigated
except for the social amoeba, Dictyostelium discoideum,
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which is known to express one TIR domain-containing
protein that participates in microbial recognition [293]. A cur-
sory look at the genomes of foraminifera and Dictyostelium
discoideum suggest that TLRs are not present, while ortholo-
gues to TLRs are present in copepods, rotifers, mites and
gastropods, lending anecdotal justification/incentive for
investigating this hypothesis further. Large meta sweeps of
rapidly emerging genomic information can help to validate
or eliminate this hypothesis, but this work has yet to be
undertaken. In other systems, the detection of ‘friend from
foe from food’ has been well examined and is critical for
organisms to activate the appropriate response [294–298],
and the inability to distinguish between these categories
has consequences [299]. Microbial predators include some
of the earliest-evolved multi-cellular taxa on earth, and so it
is possible that they have overly simplistic recognition sys-
tems where they cannot distinguish between categories of
non-self cells. Alternatively, their long history may have
instead enabled selection for complex recognition mechan-
isms to distinguish between categories of non-self cells. This
question remains unanswered but opens new lines of inquiry
into the origins of innate immune systems.
9. Concluding thoughts
There has been much work on the mechanisms of LPS detec-
tion, and the conservation of response across model organism
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taxa. However, the field is now at the point of needing to
understand the evolution of different LPS structures and
the coevolutionary response (or lack thereof) in PRRs. Evol-
utionary pressures unique to an environment may result in
some PAMPs, (e.g. nucleic acids and PGN), being more uni-
versally detected than lipid A by PRRs of multi-cellular
organisms. Likewise, these pressures may also contribute to
why PAMPs from distinct ecosystems are accidentally silent
or antagonistic to their cognate PRRs in mammals. Whether
or not nucleic acids and PGN from innocuous microbes can
be accidentally silent to their respective PRRs in derived
and basal eukaryotes akin to lipid A in mammals remains
unknown and is a ripe area for exploration. A shift in think-
ing from the ‘what’ to the ‘why’ of PAMP structure and PRR
response will undoubtedly help to discover new structures
and pathways, but it will also help us to understand the ori-
gins of innate immunity and find new PAMP variations of
therapeutic interest. The development of novel tools and
assays, and their affordability, has created the opportunity
to enable rapid insight in natural systems beyond the classic
model organisms. Examination in extreme environments and
across taxonomic breadth of both microbes and hosts will
certainly catalyse transformational advance.
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