
Blakeley-Ruiz et al. Microbiome            (2019) 7:18 
https://doi.org/10.1186/s40168-019-0631-8
RESEARCH Open Access
Metaproteomics reveals persistent and
phylum-redundant metabolic functional
stability in adult human gut microbiomes
of Crohn’s remission patients despite
temporal variations in microbial taxa,
genomes, and proteomes

J. Alfredo Blakeley-Ruiz1,2, Alison R. Erickson1,7, Brandi L. Cantarel3,8, Weili Xiong1,6, Rachel Adams1,
Janet K. Jansson5, Claire M. Fraser3,4 and Robert L. Hettich1,2*
Abstract

Background: The gut microbiome plays a fundamental role in the human host’s overall health by contributing key
biological functions such as expanded metabolism and pathogen defense/immune control. In a healthy individual, the
gut microbiome co-exists within the human host in a symbiotic, non-inflammatory relationship that enables mutual
benefits, such as microbial degradation of indigestible food products into small molecules that the host can utilize, and
enhanced pathogen defense. In abnormal conditions, such as Crohn’s disease, this favorable metabolic relationship
breaks down and a variety of undesirable activities result, including chronic inflammation and other health-related
issues. It has been difficult, however, to elucidate the overall functional characteristics of this relationship because the
microbiota can vary substantially in composition for healthy humans and possibly even more in individuals with gut
disease conditions such as Crohn’s disease. Overall, this suggests that microbial membership composition may not be
the best way to characterize a phenotype. Alternatively, it seems to be more informative to examine and characterize
the functional composition of a gut microbiome. Towards that end, this study examines 25 metaproteomes measured
in several Crohn’s disease patients’ post-resection surgery across the course of 1 year, in order to examine persistence
of microbial taxa, genes, proteins, and metabolic functional distributions across time in individuals whose microbiome
might be more variable due to the gut disease condition.
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Results: The measured metaproteomes were highly personalized, with all the temporally-related metaproteomes
clustering most closely by individual. In general, the metaproteomes were remarkably distinct between individuals and
to a lesser extent within individuals. This prompted a need to characterize the metaproteome at a higher functional
level, which was achieved by annotating identified protein groups with KEGG orthologous groups to infer metabolic
modules. At this level, similar and redundant metabolic functions across multiple phyla were observed across time and
between individuals. Tracking through these various metabolic modules revealed a clear path from carbohydrate, lipid,
and amino acid degradation to central metabolism and finally the production of fermentation products.

Conclusions: The human gut metaproteome can vary quite substantially across time and individuals. However, despite
substantial intra-individual variation in the metaproteomes, there is a clear persistence of conserved metabolic functions
across time and individuals. Additionally, the persistence of these core functions is redundant across multiple phyla but
is not always observable in the same sample. Finally, the gut microbiome’s metabolism is not driven by a set of discrete
linear pathways but a web of interconnected reactions facilitated by a network of enzymes that connect multiple
molecules across multiple pathways.

Keywords: Gut microbiome, Metaproteomics, Crohn’s disease, Longitudinal analyses, Microbial metabolic function,
Human microbiome
Background
The human body hosts a dynamic ecosystem of micro-
bial organisms that form an integral part of the overall
health maintenance of the host [1]. These microbiota
comprise several similar but distinct niches spread out
across every surface and cavity of the body, including
the skin, nose, mouth, genital track, and gut, where
they perform similar but distinct functions [2]. Micro-
biota, both in terms of population composition and
abundances, associated with a healthy human host have
been credited with assisting the host with critical func-
tional roles, including expanded metabolism, pathogen
defense, immune development, and immune modula-
tion [3–5]. In contrast, microbiota associated with a
diseased human host have been associated with unhealthy
phenotypes such as obesity, allergies, chronic pain, and
inflammation [6–8].

One of the most diverse microbial populations in the
human body can be found within the gut [2], where the
microbiota play a critical role in assisting the host with
metabolism of indigestible food products and immune
modulation [5, 9]. Fermentation products produced by the
gut microbiota, including short-chain fatty acids, lie at the
intersection of human host-microbiota interactions. These
fermentation products, particularly butyrate, propionate,
and acetate, are a major source of energy for the host,
especially in colonocytes [10, 11], and play a role in host
immune modulation, health, and disease [3, 12–15].

The composition of the gut microbiota can vary quite
substantially across time and individuals. Many factors have
been shown to impact this variation, including diet, geog-
raphy, age, genetic relatedness, and health status [16–18].
Given the number of possible host factors influencing
the gut microbiota, it becomes difficult to tease apart
what specifically separates the gut microbiota in healthy
versus unhealthy individuals. One potential approach to
this complicated question is to focus on discrete “meta-
bolic modules” in a gut microbiome, rather than taxa
membership or genomic inventory. Many different bac-
teria share the ability to perform similar metabolic func-
tions. Hence, microbiomes with very different taxonomic
and protein compositions could share substantial func-
tional similarity, suggesting that functional redundancy
in microbial membership may provide an environmen-
tal health advantage [19]. Since proteins are critical par-
ticipants in the functional activity of life, the direct
detection of microbiome-relevant proteins via metapro-
teomics is ideally suited to help tease apart this prob-
lem, and to this end, several studies have demonstrated
the ability of LC-MS/MS to measure gut metapro-
teomes from fecal material, providing a framework for
potentially observing gut microbiome function via dir-
ect protein detection [18, 20–22].

A few studies have investigated the gut metaproteomes
of preterm infants and healthy adults across time, and
these studies have revealed variability in both the protein
identities as well as overall metabolic activities [23–25].
Recently, the temporal dynamics of the gut microbiome
composition in an inflammatory bowel disease cohort
that included subjects with Crohn’s disease (CD) having
inflammation either in the ileum (ICD) or the colon
(CCD), as well as subjects with ulcerative colitis and
heathy individuals, were determined by 16S rRNA gene
sequencing [26]. All of the subjects with IBD exhibited
more volatility in microbiome composition over time, as
compared to the healthy individuals, but the degree of
dysbiosis from healthy was significantly higher for the
ICD patients that had undergone surgery. An open ques-
tion is how this volatility influences functions carried
out by the gut microbiome? To examine this issue, the
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current study utilizes an integrated metagenomic/meta-
proteomic approach to investigate the longitudinal stability
and variability in the gut metaproteomes of Crohn’s
disease patients post resection-surgery. In contrast to
previous studies, the focus of this work seeks to go beyond
taxa, gene, and protein profiling to investigate microbial
metabolic activity at a higher functional level to observe
how persistent and redundant function is maintained
across varying microbial gut populations. Fecal samples
were collected from several adult individuals in remission
(post resection surgery) over the course of 1 year (25 sam-
ples in total and 5 samples per individual). Metagenomic
and metaproteomic data revealed persistent and phylum-
redundant metabolic functions despite a significant level
of variability in taxa, genes, and proteins.

Methods
Patient cohort
This study focused on five human subjects (labeled as
P58, P68, P33, P92, and P104), each with a history of
Crohn’s disease and resection surgery, which were
selected (as detailed below) from a larger Swedish cohort
that has been described previously [26]. Five subjects
were selected who had multiple fecal samples collected
over 1 year. Representatives of both sexes were included
in the study (3 females and 2 males), and the subjects
were all adults (youngest, born 1967; oldest born 1944).
All subjects had undergone resection surgery prior to
2008 and were in remission during this sample collec-
tion. (Additional file 1: Table S1).

Community DNA preparation
Stool (fecal) samples were self-collected and shipped
within 1 day to Dr. Jonas Halfvarsson at the Orebro
University Hospital in Orebro, Sweden, where they were
immediately frozen at − 70 °C upon arrival. The samples
were stored frozen until use, and then small portions
were excised and thawed immediately prior to DNA
extraction to avoid freeze-thaw damage. DNA was
extracted from 250mg of each fecal sample in duplicate.
For processing, samples were thawed at 4 °C and, in
aliquots of 0.15 g per tube, resuspended in 1ml of 1 ×
phosphate-buffered saline. Cell lysis was initiated with
two enzymatic incubations, first, using 5 μl of lysozyme
(10 mgml−1; Amresco, Solon, OH), 13 μl of mutanoly-
sin (11.7 U μl−1; Sigma-Aldrich), and 3 μl of lysostaphin
(4.5 U μl−1; Sigma-Aldrich) for an incubation of 30 min
at 37 °C and, second, using 10 μl proteinase K (20 mg
ml−1; Research Products International, Mt. Prospect,
IL), 50 μl 10% SDS, and 2 μl RNase (10 mg ml−1) for an
incubation of 45 min at 56 °C. After the enzyme treat-
ments, cells were disrupted by bead beating in tubes with
lysing matrix B (0.1-mm silica spheres; MP Biomedicals,
Solon, OH), at 6m s−1 for 40 s at room temperature in a
FastPrep-24 (MP Biomedicals). The resulting crude lysate
was processed using the ZR fecal DNA miniprep kit
(Zymo, Irvine, CA) according to the manufacturer’s
recommendations. The samples were eluted with 100 μl of
ultrapure water into separate tubes. DNA concentrations
in the samples were measured using the Quant-iT Pico-
Green double-stranded DNA (dsDNA) assay kit (Molecu-
lar Probes, Invitrogen, Carlsbad, CA) [27].

Shotgun metagenomic sequencing and assembly
DNA isolation from stool samples yielded 3–5 μg of
purified metagenomic DNA from each of the 15 sam-
ples. All metagenomic samples were sequenced using
the Illumina platform. Illumina libraries were prepared
with the DNA Prep Kit (Illumina, San Diego, CA)
following a variation of the manufacturer’s protocol.
Following library construction, each sample was sub-
jected to cluster amplification (cBOT) and paired-end
sequencing using an Illumina HiSeq2000 according to
manufacturer specifications. Raw sequence data were
processed using a combination of Illumina RTA/CASAVA
software for base-calling and quality scoring and in-house
QC pipelines to filter and truncate low-quality reads.
Sequences were assembled using NEWBLER by subject
after read reduction using khmer [28, 29]. Genes were pre-
dicted using MetaGeneMark [30]. Default parameters were
used for all assembly related software. Amino acid se-
quences of all the predicted genes were then compiled into
five individual-specific protein databases (each one consist-
ing of a single concatenated, de-replicated metagenome of
all three time-points per individual). The metagenome se-
quence data can be retrieved using the following URL for
the NCBI SRA data deposit, under project ID 46321:
http://www.ncbi.nlm.nih.gov/sites/entrez?db=bioproject&
cmd=Retrieve&dopt=Overview&list_uids=46321

Metaproteomics sample collection
Each fecal sample for metaproteome measurements
(~ 130 mg for each sample) was solubilized in 1 mL
SDS lysis buffer (4% w/v SDS, 100mM Tris·HCl (pH 8.0),
10mM dithiothreitol (DTT)), sonically disrupted (40%
amplitude, 10-s pulse with 10-s rest, 2-min total pulse
time), incubated at 95 °C for 5min, and centrifuged at
21,000 × g. An aliquot of each crude protein extract was
quantified using a bicinchoninic acid (BCA)-based protein
assay kit (Pierce), and yielded about 4mg/mL protein for
each sample. The crude protein extract was precipitated
by trichloroacetic acid (TCA), pelleted by centrifugation,
and washed with ice-cold acetone to remove lipids and
excess SDS, as described previously [18]. The protein
precipitates were resolubilized via sonication in 500 μl of
8M urea in 100mM Tris·HCl (pH 8.0) and reduced by
incubation with DTT at a final concentration of 10mM
for 1 h at room temperature. Samples were normalized for
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total protein at this step by using 1mg of crude protein
for each sample, which was then diluted further with 100
mM Tris·HCl and 10mM CaCl2 (pH 8.0) to a final urea
concentration below 4M. Proteolytic digestions were
initiated with sequencing grade trypsin (1/100, w/w;
Promega) and incubated overnight at room temperature.
A second aliquot of trypsin was added (1/100) after the
reactions were diluted with 100mM Tris·HCl (pH 8.0) to
a final urea concentration below 2M. Following digestion,
the peptides were acidified (protonated) in 200mM NaCl
and 0.1% formic acid, filtered with a 10 kDa molecular
weight cutoff spin column (Sartorius) to remove under
digested proteins. Final peptide solutions were then
quantified using bicinchoninic acid (BCA)-based protein
assay kit (Pierce) to enable uniform sample injection onto
the LC column.

LC-MS/MS
Peptide mixtures were analyzed in technical replicate
measurements via two-dimensional liquid chromatog-
raphy tandem mass spectrometry (LC/LC-MS/MS) on an
LTQ-Orbitrap-Elite mass spectrometer (ThermoFisher
Scientific). Peptides (100 µg per sample) were loaded and
separated on-line using a bi-phasic 2D (strong-cation
exchange (SCX) and C18 reverse phase (RP))-LC column.
Each peptide sample was first washed off-line to remove
residual urea and NaCl and was then placed in-line and
analyzed via 22-h 2D-LC-MS/MS. All samples were
analyzed by 11 salt pulses (5%, 7.5%, 10%, 12.5%, 15%,
17.5%, 20%, 25%, 35%, 50%, and 100% of 500mM ammo-
nium acetate) each followed by a 110min gradient to 50%
solvent B (70% acetonitrile, 30% HPLC grade water, 0.1%
formic acid) with the following profile: 0 to 10% solvent B
in 10min, 10 to 35% solvent B in 75min, and 35 to 50%
solvent B in 25min. Mass spectral data were acquired
using Xcalibur in data-dependent acquisition mode for
each chromatographic separation. One precursor MS scan
was acquired in the Orbitrap at 30 K resolution followed
by ten data-dependent MS/MS scans (m/z 400–1700) at
35% normalized collision energy with dynamic exclusion
enabled at 1.

Informatics and quantification
Custom-built FASTA target-decoy databases were gener-
ated for each individual by combining that individual’s
specific protein database mentioned above with the
human genome and common contaminants. The MS
raw data for each sample was searched against the
individual-specific protein database using MyriMatch/
IDPicker with a PSM false discovery rate (FDR) filter of
less than 2% [31, 32]. MyriMatch automatically concate-
nates a reversed database to the forward version prior to
searching to enable proper FDR calculation. Protein se-
quences were clustered into protein groups at ≥ 90%
sequence identity using USEARCH (v5.0) [33]. A protein
group was classified as identified if it had at least one
unique peptide and two distinct peptides, as resolved
with in-house scripts. Mass spectra were assigned to
protein groups using spectral balancing, as previously
described [15, 25, 34].

Data analysis
The protein databases were functionally annotated with
Kyoto Encyclopedia of Genes and Genomes (KEGG)
orthologous groups and phylum and genus level taxo-
nomical assignments using Ghost KOALA [35]. Phylum
level taxonomy and KEGG orthologous groups were
assigned to each protein group using the Ghost KOALA
annotations of the seed sequence for each protein group.
The KEGG assignments to each identified protein group
were further used to infer and quantify human gut
microbiome-specific metabolic modules using GOmixer
[36, 37]. A metabolic module was inferred if ≥ 33.3% of
the enzymatic steps in the module were covered within
a single phylum. The phylum abundance of each module
was calculated in GOMixer by using the mean spectral
count of each phylum’s protein groups that mapped to
the module. To examine statistical variance between
samples, Spearman correlation coefficients between sam-
ples were calculated and hierarchically clustered into a
heatmap using Euclidian distance. Technical reproduci-
bility was evaluated using Spearman correlation coeffi-
cients between measurements of the same sample. All
statistics were calculated using Python scripts. All figures
were rendered using Python scripts (https://www.pytho-
n.org/) or Excel. All figures were refined for quality and
sizing in Inkscape (www.inkscape.org). All python script-
ing was done using the following libraries: Pandas,
NumPy, Seaborn (https://seaborn.pydata.org/), Matplo-
tlib, and SciPy [38–41]. Functional influence of each
phylum was calculated by taking the total number of
KEGG orthologous groups identified with protein
evidence in each phylum by sample and dividing that by
the total number of KEGG orthologous groups found in
the sample’s protein database.

Results and discussion
Sequence-guided sample selection and metagenome
assembly
16S rRNA sequences were previously generated and pub-
lished for 135 fecal samples from a Swedish cohort of IBD
patients and healthy subjects [26]. From this same sample
collection, five individuals with ileal Crohn’s disease
(ICD) were selected for deeper analysis of microbial
function by metagenomics and metaproteomics because
these ICD individuals showed the greatest microbiome
volatility and were the most disparate compared to
healthy individuals [26].

https://www.python.org
https://www.python.org
http://www.inkscape.org
https://seaborn.pydata.org
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Shotgun metagenomic sequence data were generated
from three fecal samples per each individual, corre-
sponding to an initial time point and at two subsequent
6-month intervals. Metaproteome measurements were
conducted on the same samples, plus an additional two
intervening time-points for each individual, ensuring
that the protein data was adequately represented by
metagenomes on either side of the sampling dates.

Individual gut metaproteomes reveal substantial
proteome variability
A total of 14,850 non-redundant protein groups were
identified in this study from the 25 samples. Of these
protein groups, 494 were human, and 14,356 were
microbial. A total of 732–2900 microbial and 119–222
human protein groups were found in each sample
(Additional file 1: Figure S1A). Although relatively few
human protein groups were identified in total number,
they were quite abundant in most samples and com-
prised a substantial proportion of the assigned spectra.
(Additional file 1: Figure S1B). The measurement
correlation for all technical replicates had an R2 greater
than 0.9 and a slope within 0.1 of 1, indicating high
technical reproducibility (Additional file 1: Figure S2).
As evident by the number of protein groups identified in

each sample, qualitative variation between samples was
high. Relatively few identical microbial protein groups were
observed in all samples (these proteins are further charac-
terized and described in Additional file 1: Appendix S1).
Additionally, only 168 microbial protein groups were
observed at least once in every individual. Even within
a single individual, qualitative variation was high. In
individual P104, only 7% of the microbial protein
groups identified in that individual were observed
across all time points (Fig. 1a). Individuals P33, P104,
and P92 had the most varied metaproteomes across
time, whereas P58 and P68 had more stable metapro-
teomes. However, even though individual P58 had the
most qualitatively stable metaproteome, less than 36%
of its microbial protein groups were found across all
time points (Fig. 1a).
With this much variation, it was deemed that Spearman

correlation coefficients were best suited to quantify the
similarity or dissimilarity of the metaproteomes between
measurements (Fig. 2). Hierarchical clustering of the
correlation between measurements revealed a personalized
metaproteome. All measurements clustered more closely
to samples from the same individual than samples from
any other individual (Fig. 2). These results are similar to a
previous study that examined the metaproteomes of
healthy adult individuals over time [24]. The idea of
personalized gut metaproteomes appears to be a distinct
feature of adult metaproteomes, as a recent study of
preterm infants showed that the gut metaproteomes of
preterm infants did not necessarily cluster by individual
over time [25], indicating that individual-specific metapro-
teomes develop between early infancy and adulthood.
Overall these results suggest that there is an underlying

continuity in metaproteomes from the same individual.
However, due to the protein variability found within the
individuals even with the most similar metaproteomes (P58
and P68), any real observations of functional similarity
between samples are likely more meaningful by observing
common identifiers of function, such as KEGG orthologous
groups, instead of the individual taxa, genes, or proteins.

Assignment of KEGG orthologous groups reveals
remarkable functional redundancy among protein groups
KEGG can be used to infer the functional and taxonomic
association of protein groups based on the biochemical
function of the orthologous groups (KEGG orthology group
(KO) terms) [42] and was employed here to classify and
interrogate the metaproteome information. For 99% of all
protein groups, KO terms and phylum assignments were
unambiguous. For this reason, the annotation of the seed
sequence for each protein group was used for the
annotation of the entire protein group. The KEGG annota-
tions for each protein sequence and related protein group
are detailed in Additional file 2: Spread Sheet 1. The protein
groups, their final KEGG annotations, and their abundance
per measurement are listed in Additional file 3: Spread
Sheet 2.
An average of 165,451 ORF’s per protein database was

assigned a KO term. This translated into an average of
5504 predicted KO terms per individual, indicating high
functional redundancy across protein sequences. Simi-
larly, this high functional redundancy was also observed
across identified protein groups, where 10,172 identified
protein groups were assigned a KO term but only
amounted to a total of 1573 KO terms. These results are
consistent with the concept that many of the different
protein groups identified likely have the same function.
This is supported by the much more expansive HMP
project, which reveals similar available metabolic func-
tions despite varied taxonomy [2].
Within an individual, 16% of the KO terms pre-

dicted by each individual’s protein database had pro-
tein evidence in at least one of their five samples
(Additional file 1: Figure S3). For context, less than 2% of
the protein groups predicted for each individual had
protein evidence in at least one sample. The majority of
the observed functions was centered around four phyla:
Firmicutes, Bacteroidetes, Actinobacteria, or Proteobac-
teria. These phyla represented the greatest percentage of
the total number of KO terms predicted by each sample’s
respective protein database (Additional file 1: Figure S4).
Similarly, Firmicutes, Bacteroidetes, Actinobacteria, and
Proteobacteria along with Verrucomicrobia were the most



Fig. 1 Illustration of how much variation there is in the protein groups identified across time and individuals, and how that variation decreases
when resolution is restricted to functional groups. a The number of microbial protein groups that were observed across all time points, more
than one time point, and only one time point for each individual. b, c KEGG orthologous groups and GoMixer modules, respectively. d The
percentage of microbial protein groups, KEGG orthologs, and GoMixer modules that are found across all individuals, more than one individual,
and only one individual
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represented phyla in previous human gut metaproteomic
studies [24, 43]. Although they were observed in this
study, Verrucomicrobia did not represent a significant
proportion of the identified protein groups. This could be
related to the compromised health state of the individuals
in the current study as compared to the other studies of
healthy individuals. While not as dominant as the other
four phyla, protein groups associated with Fusobacteria
and Euryarchaeota in P58 and P33, respectively, repre-
sented an uncharacteristically high percentage of the total
number of KO terms predicted by their associated protein
databases (Additional file 1: Figure S4).
Variability between samples decreased when the quali-

tative analysis was constrained to the KO term level. Be-
tween individuals, 25% of the KO terms identified across
all samples were seen at least once in every individual.



Fig. 2 Heatmap illustrating the hierarchical clustering of the Spearman correlation coefficient between samples. Color represents the Spearman
correlation coefficient between samples based on protein group abundance. Samples were hierarchically clustered using a Euclidian distance that
was calculated based on the correlation coefficients
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There was also lower intra-individual variability. A
greater percentage of the total number of detected KO
terms in each individual was also found across time
when compared to the protein groups (Fig. 1). These
followed essentially the same trend as the protein group
level observations, with P104, P33, and P92 being more
variable than P58 and P68 (Fig. 1). This suggests two
conclusions: the trends in terms of the most variable
individuals across time hold true through to the KO
term level, and there is overall less qualitative variation
between samples when focusing on functional groups
instead of protein groups (Fig. 1).

Inferred metabolic modules demonstrate persistence of
metabolic function in a dynamic microbiome
To expand the search for functional similarity between
samples, the metabolic dynamics of this metaproteomic
dataset were explored using a map of human microbiome
derived metabolic modules created by the Raes lab [36],
which represent a set of reactions responsible for the
conversion of one compound to another, and are inferred
via enzyme evidence from the metaproteomic datasets.
This metabolic map is available in an online tool called
“GOmixer” at http://www.raeslab.org/gomixer/ and is
illustrated for this study in Fig. 3. One hundred sixteen
out of a total of 133 metabolic modules in “GOmixer”
were inferred for specific phyla using the Ghost
KOALA annotations for each protein group. A variety
of phyla contributed proteomic evidence for these
modules; however, in agreement with the trends in
Additional file 1: Figure S4, most of the inferred modules
were populated with protein groups that originated in
Firmicutes, Bacteroidetes, Proteobacteria, or Actinobac-
teria. Two or more phyla provided evidence for most of
the modules observed in Fig. 3, where the green lines
indicate modules that have protein evidence in two or
more phyla, and the red lines indicate modules that have
protein evidence in all four of the main phyla described
above. Together, these modules indicate protein evidence
for high redundancy in metabolic function between gut
microbiome phyla.
An inspection of the inferred modules reveals several

interesting points about the gut microbiome’s metabolic
function in these five individuals. First, despite substantial
variation in the protein groups observed in each sample,
these modules demonstrate persistence of metabolic

http://www.raeslab.org/gomixer/


Fig. 3 Metabolic map of all the GOMixer modules rendered in the GOMixer web application, http://www.raeslab.org/omixer/visualisation/map.
Highlighted lines represent all the modules that were inferred with peptide evidence in at least one sample. Line thickness represents how many
samples the module was observed in with the thickest lines representing modules that were represented across all samples, the medium thickest
lines being represented by modules inferred in all individuals, and the least thick lines representing modules not seen in all individuals. Red colored
lines represent modules that were observed in Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria. Green lines represent modules that were
observed in at least two of the phyla. Black lines represent modules only represented in Firmicutes. Yellow lines represent modules only observed in
Bacteroidetes. Purple lines represent modules only represented in Proteobacteria. Two modules that were unique to other phyla were MF0027 inferred
in Euryarcheota and MF0010 inferred in Fusobacteria. These were colored beige and orange respectively
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function across time and individuals. Sixty-nine modules
were observed in all individuals, of which 18 were
observed in all samples. Tracking through these 18
modules reveals a clear path from carbohydrate, lipid,
and amino acid degradation to central metabolism and
finally the production of fermentation products (Fig. 3).
Second, this persistence of function is redundant across
multiple phyla but was not always observable in the same
sample. All of the 69 modules except for one were ob-
served in two or more phyla, and all of the 18 modules
observed across all samples were observed in two or more
phyla, but not always in the same sample. In some cases,
the protein evidence for a module comes from one
phylum but then changes to another phylum at a different
time. (Fig. 4b, Fig. 5b, Additional file 4: Spreadsheet 3,
Additional file 1: Figures. S5-S9). Third, the gut micro-
biome metabolism is not driven by a set of discrete linear
pathways but a web of interconnected reactions facilitated
by a network of enzymes that connect multiple molecules
across multiple pathways. For example, the identified pro-
tein groups suggest that lactose (MF0048) degrades into
glucose before following the classical glycolysis pathway,
while glycerol (MF0107, MF0108, MF0109) and fucose
(MF0124) degrade into glyceraldehyde 3-phosphate, which
is the precursor to the pay-off phase of glycolysis. Simi-
larly, protein enzyme pathway detection suggests that
threonine degradation (MF0029 and MF0030) skips gly-
colysis by degrading directly into acetyl-CoA and other
fermentation products including propionate and formate.
These modules represent a major portion of the meta-

bolic function of the gut microbiome. Population of these
modules from the measured proteomes provide evidence
for microbial-driven degradation of complex molecules
across multiple samples, including all 20 amino acids, and
a large repertoire of carbohydrates, such as starch, fucose,
xylose, arabinose, lactose, and glycerol. Degradation
modules connect to energy producing modules such as
glycolysis, glyoxylate bypass, and fermentation, for
which there was consistent protein evidence. These
energy-producing modules culminate into a variety of
gut relevant metabolites, including pyruvate, acetyl-
CoA, succinate, formate, propanoyl-CoA, CO2, acetate,
butyrate, and propionate.
The metaproteomic experimental evidence for these

specific metabolic modules reveals a detailed functional
view of the gut microbiome ecosystem, in which microbes
acquire energy by degrading complex molecules from both
the host and the host’s diet, and then this degradation

http://www.raeslab.org/omixer/visualisation/map


Fig. 4 a Detailed pathway describing modules MF0003 and MF0005, which together degrade acetylglucosomine and acetylneuraminate into
pyruvate, fructose-6-phospate, and acetate. All of the KEGG ortholog terms in this figure had peptide evidence in at least one sample. K00656,
while not a part of these modules, but serves as anchor point between these modules and central metabolism. b Line graphs that depict the
abundance of each module by phylum across time for each individual
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process ultimately leads to metabolites, such as bu-
tyrate, acetate, and propionate, that the host can use
for energy. It appears that the majority of this meta-
bolic function is not specific to an individual bacter-
ial strain, species, genus, or phylum but is instead
shared between phyla. Furthermore, the phylum driv-
ing an individual module, as evidence by proteomic
data, can change dynamically across time and
individuals (Figs. 4b, and 5b, Additional file 1: Figure
S5-S9). This manuscript provides a detailed analysis
of a few of these key modules, but the full set of
modules that were inferred with proteomic evidence
across time and individuals is detailed in Additional
file 4: Spreadsheet 3.
Observation of acetylglucosamine and acetylneuraminate
indicate the microbiome can feed itself at the expense of
the host
Detailed analysis of Fig. 3, and the information in
Additional file 4: Spreadsheet 3, prompted interest in two
specific modules, MF003 and MF005. These modules are
observed in all individuals across multiple phyla and
highlight metabolites that enter central metabolism at mul-
tiple positions in the pathway. Specifically, these modules
represent the degradation of acetylglucosamine and acetyl-
neuraminate into D-Fructose 6-phosphate, pyruvate, and
acetate. Acetylglucosamine and acetylneuraminate are
sugar amine hybrids found in the host mucosal layer,
human milk oligosaccharides, and in animal food products



Fig. 5 a Representation of direct routes to short-chain fatty acids and acetyl-CoA with proteomic evidence based on GOMixer modules. All KEGG
Ortholog terms mentioned in this figure had proteomic evidence in at least one sample, although many had evidence across all individuals and
most samples. For example, K00656 had proteomic evidence in all samples and in Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes,
but not always at the same time. These enzymes form a sizable representation of the pathways to these metabolites with proteomic evidence;
however, not all enzymes that can produce these molecules are included. b Line graphs that depict the abundance of modules related to each
short-chain fatty acid across time per individuals. The abundance of the modules related to each short-chain fatty acid were summed by phylum
and divided by total number of spectra
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that are key host nutrients and presumably are used by
the gut microbiome as a source of energy [44–46].
Interestingly, providing N-acetyl-glucosamine as a sup-
plement has been suggested as a potential method for
alleviating inflammatory bowel disease [47]. MF0003
and MF0005 enter central metabolism at three separate
levels, and merge with each other at N-acetyl-D-gluco-
samine 6-phosphate, highlighting a simple demonstra-
tion of the interconnected nature of gut microbiome
metabolism (Fig. 4).
Evidence for the presence of MF003 and MF005 was
observed across all individuals and in Firmicutes, Pro-
teobacteria, Bacteroidetes, and Actinobacteria, thereby
demonstrating the persistence of function despite the
dynamic nature of the gut microbiome. Evidence for
N-acetylneuraminate lyase (K01639) was observed in
Firmicutes (P68, P92, P58, and P104), Proteobacteria
(92), and Bacteroidetes (P68, P33, P58, and P104) but
not in Actinobacteria. Evidence for the production of
N-Acetyl-D-glucosamine 6-phosphate was limited in
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both modules; however, evidence for N-acetylmannosa-
mine-6-phosphate 2-epimerase and N-acetylmannosa-
mine kinase (K00885 and K01788) was observed in
Proteobacteria on day 88 in P92 and in Actinobacteria
on day 173 in P104. Similarly, evidence for the phospho-
transferase system (K02802, K02803, and K02804) was
only observed in Firmicutes in individuals P68 and P104,
and in both Firmicutes and Proteobacteria in individual
P92. Despite the relatively sparse evidence for enzymes
specifically involved in the production of N-acetyl-D-glu-
cosamine 6-phosphate, mentioned above, there was
substantial evidence for enzymes associated with the
utilization of N-acetyl-D-glucosamine 6-phosphate. N-
acetylglucosamine-6-phosphate deacetylase (K01443)
was observed across all individuals in Firmicutes (P68,
P92, P33, P58, P104), Proteobacteria (P92), Actinobac-
teria (P33, P58, P104), and Bacteroidetes (P68, P92, P33,
P104). Glucosamine-6-phosphate deaminase (K02564)
was also observed across all individuals in Firmicutes
(P68, P92, P33, P58, P104), Actinobacteria (P68, P58,
P104), Proteobacteria (P92), and Bacteroidetes (P68,
P92, P33, 58, P104). Together, these enzymes show con-
sistent presence of both modules across all individuals.
Of interest, N-acetylglucosamine-6-phosphate deacety-

lase (K01443) was highlighted as a core enzyme in a
previous healthy cohort study [24]. Combined with the
fact that this enzyme is found across multiple phyla, this
suggests that it may be a key source of energy for gut
microbiomes. In contrast, K01639 and K01639 were also
observed in all individuals in this study but were not in
the core set from this previous study, possibly suggesting
a potentially different utilization of D-glucosamine
6-phosphate.
These enzymes serve as a representative case for both

the redundant and dynamic nature of microbiome meta-
bolic functions. For example, most of these enzymes were
observed in one of the four phyla at least once, but the
modules were not always inferred in the same phyla across
individuals. These modules also highlight the web like
nature of gut microbiome metabolism. The degradation of
acetylglucosamine and acetylneuraminate connects at
N-acetyl-D-glucosamine 6-phosphate, and together these
modules release products into central metabolism at three
separate points: D-fructose 6-phosphate, pyruvate, and
acetate. D-fructose 6-phosphate is a precursor to the
pay-off phase of glycolysis. Pyruvate is the end product of
the pay-off phase of glycolysis and is the starting point for
a variety of fermentation pathways, as well as the TCA
cycle and glyoxylate bypass. Acetate is one of the three
main short-chain fatty acids produced by the gut micro-
biome and is a source of energy for both the host and the
microbiome. It can be converted to acetyl-CoA at the
cost of ATP or via transferase with the help of
butanoyl-CoA or propanoyl-CoA [48]. Conversion by
transferase produces butyrate and propionate which can
also be converted by the host into energy. Together, these
modules represent a sample case of how many different
phyla contain similar metabolic modules that can utilize
host derived molecules, such as acetylglucosamine and
acetylneuraminate.

Observation of short-chain fatty acid associated modules
indicates that the host is fed by a changing set of
pathways and bacteria
Just as acetylglucosamine and acetylneuraminate feed the
microbiome, short-chain fatty acids, particularly acetate,
propionate, and butyrate, are thought to be one of the pri-
mary methods by which the gut microbiome feeds its host.
“GOmixer” highlights nine modules as acetate (MF0113),
propionate (MF0121, MF0122, MF0123, MF0125,
MF0126), or butyrate (MF0114, MF0116, MF0117) produ-
cing. All these modules were observed with peptide
evidence in at least one sample. Some of these modules
do not represent the direct production of short-chain fatty
acids but instead represent the production of precursors
to CoA-transferase and kinase reactions. Only MF0113,
MF0116, MF0117, MF0125, and MF0126 connect the dir-
ect production of short-chain fatty acids via CoA-
transferase, kinase, or a similar reaction. The average
abundance of the KO terms in each module divided by
the total depicts the persistence of function amidst a
dynamic microbial ecosystem as evidence for particularly
propionate and acetate producing modules persistence
across time and individuals, while being driven by differ-
ent phyla or modules (Fig. 5b, Additional file 1: Figures.
S5-S7; Additional file 4: Spreadsheet 3). Evidence for en-
zymes involved in the direct production of butyrate was
observed only in individuals P58, P68, and P92. This sup-
ports previous proteomic studies, which indicated that the
abundance of butyrate producing enzymes is significantly
lower in patients with Crohn’s disease [18].
A reaction network was manually produced by utiliz-

ing the KEGG orthologous groups that had representa-
tion in the modules and their associated reactions, as
seen in Fig. 5a. This network highlights evidence for a
dynamic and interconnected microbial metabolic func-
tion. Acetate production via acetate kinase (MF0113)
had peptide evidence across all individuals. One set of
enzymes can produce acetate via a two-step process that
involves first converting acetyl-CoA to acetyl-phosphate
(K13788, K00625, K15024) and then converting acetyl-
phosphate to acetate (K00925), producing ATP in the
process (Fig. 5a). These reactions are reversible [49], and
there was evidence for the enzymes involved in both
steps across all individuals and almost all the samples.
According to the KEGG database and the literature, given
propanoyl-CoA as the starting material, this module will
also produce propionate, as observed from peptide
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evidence for the potential production of propionate across
all individuals [50]. This highlights the interconnectedness
of gut metabolism, as the same enzymes can plug into dif-
ferent fermentation routes of the broader metabolic net-
work given different starting material.
There was also limited evidence for a propionate unique

kinase (K00932) in individual P92 and the production of
propionate via CoA transferase (K01026) in P33 and P58.
Production of butyrate or propionate by CoA-transferase
requires the transfer of the coenzyme from butyrate or
propionate to another acid typically acetate, but it could
also be lactate. This is an interconnected process. For
example, propionate CoA-transferase, K01026, according
to KEGG reactions, transfers CoA between lactate,
propionate, or acetate to produce lactoyl-CoA, acetyl-
CoA, or propanoyl-CoA (Fig. 5). K01026 further
highlights the interconnectedness of gut microbiome
metabolism, as Proponyl-CoA is converted into propionate
by converting acetate or lactate into acetyl-CoA or lactoyl-
CoA respectively, and vice versa.
Butanoyl-CoA can be converted into butyrate by two

main methods, presenting a good example of the dynamics
of microbial metabolic function. Acetate CoA-transferase
(K01034 and K01035) converts Butanoyl-CoA to butyrate
by converting acetate into acetyl-CoA and vice versa.
Butyrate kinase is a two-step process that involves conver-
sion of butanoyl-CoA to butanoyl-phosphate (K00634),
followed by the production of butyrate via the kinase
(K0929). In each individual, except P92 which had no
peptide evidence of butyrate production, only one method
or the other was observed. P58 and P68 had evidence for
the production of butyrate via transferase, and P104 and
P33 had evidence for the production of butyrate via kinase.
P33 only had peptide evidence for K00634 but not the
actual kinase. This presents an example of persistence of
function despite a dynamic gut microbiome. There was
peptide evidence for butyrate production across most
individuals.
Although not typically included in discussions about

short-chain fatty acid production in the gut, it should be
noted that peptide evidence for the production of the
smallest short-chain fatty acid, formate, was observed via
K00656 across all samples, thus providing persistent
peptide evidence for the conversion of pyruvate to
acetyl-CoA across a variety of phyla.
K00656 has been consistently observed in previous

metaproteomic studies, along with acetate producing
enzymes K00625 and K00925, [24, 43] indicating that
acetate production via these enzymes may be ubiquitous
regardless of human host health status. Interestingly,
one of these studies [24] highlights propionate CoA-
transferase and butryl-CoA dehydrogenase as being core
enzymes, although these are not observed across all
individuals in this dataset. This correlates to previous
research which has shown that short-chain fatty acid-
producing proteins, especially butyrate, are less abun-
dant in Crohn’s disease patients [18].

Conclusions
Measurement of the metaproteomes of Crohn’s disease
patients (all post resection-surgery and in remission) over
the course of a year revealed substantial variability in the
protein groups observed across time and individuals.
There was significant qualitative variability even within
the same individuals, which supports the dynamic nature
of the microbiome’s composition that was previously
observed in the same individuals [26]. The gut metapro-
teomes of these individuals were distinctly personalized,
with some individuals exhibiting less variability across
time than others.
This study demonstrated that despite this variability,

many metabolic functions are consistently observed
across diverging sequence space, suggesting that sequen-
tial variability may not be a good indicator of metabolic
functional variability. Individual KO terms were found to
be more consistent across time and individuals than
protein groups. The majority of KO terms observed
originated from Firmicutes, Actinobacteria, Proteobac-
teria, and Bacteroidetes, and when placed in a metabolic
context, consistent and somewhat redundant metabolic
functions relating to the degradation and fermentation
of food products were observed.
Although this study did not focus on taxonomical reso-

lution below the phylum level, it is evident that almost all
the functions observed across all individuals were ob-
served in multiple phyla. This provides compelling
evidence that these functions are not specific to any one
phylum, genus, or species and may suggest that functional
redundancy across taxa is a hallmark of robust gut micro-
biome stability. These modules reveal the interconnected-
ness of gut microbiome metabolism, suggesting that
overall gut microbiome operation should be viewed in a
network context focused on metabolic function.
Clearly, the integration of metagenomic assembled

genomes (MAGs) with deep metaproteome data would
provide specific details down to the strain level and thus
enable high-resolution metabolic pathway reconstruction
at the most informative level. While this is a desirable
goal, in reality, the construction of extensive MAGs in
complex microbiomes is still in its infancy. In most
cases, it is beyond current state-of-the-art to accomplish
this goal. Thus, one is left with a range of complete and
incomplete taxa assignments, all of which confound the
integrated metagenomic/metaproteome datasets by
introducing large uncertainties and variabilities in
assigned genes/proteins to taxa. Inspection of our meta-
proteome datasets at various taxonomic levels revealed
that the most informative data about functional activity



Blakeley-Ruiz et al. Microbiome            (2019) 7:18 Page 13 of 15
was at the phyla level, where metabolic activity was
found to be driven by temporal dynamic and redundant
phyla representation. Although this is a broad level view,
even this analysis provides novel insights into robust and
temporally redundant microbiome operation.
Although this study was not designed to directly con-

trast healthy individuals versus individuals with Crohn’s
disease, these specific diseased individuals have been
contrasted with healthy individuals in a prior study [26]
and thus were selected here to encompass the widest
range of taxonomical variability. The data revealed that
microbiomes of these post-surgery individuals had
significant variability in taxa, genes, and proteins; how-
ever, key metabolic modules associated with central
metabolism were seen in all samples, even though the
phyla of origin was often different. End-point metabolic
modules, such as short-chain fatty acid production,
were seen intermittently across samples, although only
butyrate-producing modules were absent in one
individual.
Specifically, there was evidence that there is persistent

and phylum-redundant metabolic functional stability in
these individuals. This approach provides a distinct
observational viewpoint of following metabolic reactions
and compounds/enzymes as a marker of overall micro-
biome activity, even if populations and specific genes/
proteins vary.
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