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A growing body of literature links events associated with the progression and severity of
immunity and inflammatory disease with the composition of the tissue extracellular matrix
as defined by the matrisome. One protein in the matrisome that is common to many
inflammatory diseases is the large proteoglycan versican, whose varied function is
achieved through multiple isoforms and post-translational modifications of
glycosaminoglycan structures. In cancer, increased levels of versican are associated
with immune cell phenotype, disease prognosis and failure to respond to treatment.
Whether these associations between versican expression and tumour immunity are the
result of a direct role in the pathogenesis of tumours is not clear. In this review, we have
focused on the role of versican in the immune response as it relates to tumour
progression, with the aim of determining whether our current understanding of the
immunobiology of versican warrants further study as a cancer immunotherapy target.
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INTRODUCTION

In recent years, immunotherapy of cancer has achieved impressive clinical benefits (1). By targeting
the mechanisms underlying tumour immune evasion, cancer immunotherapy aims to stimulate and
reactivate the ability of the immune system to detect and eradicate cancer cells. Established therapies
use a range of manipulations to strengthen host anti-tumour immunity, such as cancer vaccines to
induce antigen-specific immunisations; oncolytic viruses to enhance the immunogenicity of the
tumour; administration of immunologic adjuvants, cytokines or immunomodulators to activate
innate and adaptive immune and inflammatory pathways within the tumour microenvironment
(TME); T cell transfer therapy such as Chimeric Antigen Receptor (CAR) T cell therapy to
exclusively boost tumour-specific T cells and reactivate tumour-infiltrating lymphocytes; and finally
monoclonal antibodies to specifically disrupt immune regulatory mechanisms hijacked by tumour
cells (2). Notably, anti-CTLA4 and anti-PD-1/L1 immune checkpoint blockade (ICB) antibodies
have demonstrated long-term remissions in patients with advanced staged tumours and are now
Abbreviations: CAF, cancer-associated fibroblast; CS, chondroitin sulphate; ECM, extracellular matrix; GAG,
glycosaminoglycan; ICB, immune checkpoint blockade; PD-L1, Programmed death receptor-1 ligand; PTM, post-
translational modifications; TAM, tumour-associated macrophages; TME, tumour microenvironment.
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emerging as frontline treatment for solid cancers including
metastatic melanoma, non-small cell lung cancer, renal cell
carcinoma and bladder urothelial cancer (3).

The success of immunotherapies remains limited to a subset of
individuals (4), with most either displaying resistance or acquired
resistance to these therapies (5). Therefore, elucidating the
differences between responders and non-responders is key to
patient selection, perhaps though the identification of biomarkers
and the development of approaches to improve immunotherapy
response rates.

Over the last decade, an increasing body of evidence points
towards the TME as a major predictor of immunotherapy success.
From tumour tissue analyses, several immune phenotypes have
been defined that are predictive of response to immunotherapy (6).
Evidence of high levels of intra-tumour immunological activity such
as T cell infiltrates before treatment correlates with clinical benefits
of ICB therapy, suggesting that a pre-existing anti-tumour immune
response has been hijacked by the tumour cells but can be
reinvigorated by immunotherapies (3, 7). Accordingly, solid
tumours can be classified as ‘inflamed’ when demonstrating
abundant tumour infiltration with immune cells and numerous
inflammatory mediators. Or, on the contrary, they can be classed as
‘immune-desert’, where there is little to no immune infiltration into
the tumour (8). An additional classification is the ‘inflamed-
excluded’ phenotype, which distinguishes tumours where immune
cells are retained in the surrounding stroma, reflecting a blockage in
tumour penetration. Therefore, T-cell migration through the
tumour stroma appears to be the rate-limiting step, as the
majority of responding tumours across cancers have an inflamed
phenotype, with the inflamed-excluded phenotype making up the
majority of non-responders (Figure 1).

The classification of the TME immune phenotype is
associated with specific underlying biological mechanisms (8).
In particular, tumours with an ‘inflamed-excluded’ phenotype
Frontiers in Oncology | www.frontiersin.org 2
are associated with increased matrisome deposition (Figure 1).
The matrisome is the collective of the extracellular matrix
(ECM), the secretome and associated proteins (9). Recently,
accumulated data from tumour biopsies has highlighted
cancer-induced matrisome remodelling in immune evasion and
immunotherapy failure. Salmon, Donnadieu and colleagues
established that matrisome architecture impeded the migration
of T cells in the stroma limiting their access to tumour (10).
Using live cell imaging in human lung cancer, they revealed that
aligned fibres of matrix surrounding the tumours dictated the
motile behaviour of T cells and their capacity to infiltrate.
Further real-time imaging analyses showed the matrisome
could trap CD8+ T cells within the tumour stroma of lung,
ovarian and pancreatic carcinomas (11, 12). Similarly in breast
tumours, Acerbi et al. established that biomechanical changes
underlying matrisome remodelling were induced by the
abundant number of infiltrating immune cells at the invasive
front of the tumour (13).

Meanwhile, Chakravarthy et al., using pan-cancer analyses,
reported a gene signature to predict failure of response to ICB,
which related to matrisome dysregulation (14). They suggested that
matrisome remodelling is an immune evasionmechanismmediated
by TGF-b-activated fibroblasts to a subtype of cancer-associated
fibroblast (CAF). This paradigm is consistent with a recent
recurrent observation of a CAF subtype, which may promote an
immunosuppressive environment through depositing a high
amount of matrisome (15, 16). In addition, more transcriptional
analyses identified a similar matrisome remodelling signature in
resistance to cancer immunotherapies and failed immune responses,
suggesting its use in diagnosis and precision therapies (17). In
melanoma, quantification of the expression of proteins within the
stromal matrisome before treatment was associated with poor
response to ICB and poor prognosis, confirming the potential of
targeting the matrisome (18).
FIGURE 1 | The tumour immune phenotype and predicted response to immunotherapy. The inflamed-excluded phenotype is defined through less interaction or
contact of cytotoxic immune cells (CD8+ T-cells, natural killer cells) with the tumour epithelial compartment, which may result from a barrier formed from a particular
composition of tumour ECM (shown as the orange and green fibres in the illustration above). The ECM barrier reduces immunotherapy response.
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In our own work, we identified from multilevel analysis a
matrisome signature common across thirteen solid cancers (19).
This signature defined a tissue matrisome composition which
associated with poor prognosis, immunosuppressive cell
phenotypes and negatively correlated with cytotoxic T cell
signatures. At the same time, two back-to-back studies found
that inhibition of matrisome deposition by targeting TGF-b
could limit immune evasion and sensitise tumours to anti-PD-
L1 immunotherapy in pre-clinical models (20, 21). Together,
these studies suggest that a specific composition of tumour
matrisome may form a barrier to anti-tumour immunity. This
immune-barrier may be physical, through alignment of fibrous
proteins and stiffening of the tissue, or also through receptor-
ligand interactions. By identifying components of the matrisome
contributing to the immune barrier, it may be possible to identify
targetable molecules. The inhibition of these molecules will lead
to an altered matrisome composition, permitting T cell contact
with malignant cells, therefore improving cytotoxic tumour
immunity. Such an approach may convert an inflamed-
excluded phenotype to an inflamed phenotype and result in
better response to immunotherapy.

From our matrisome signature (19) and the signature
identified by Chakravarthy et al (14), versican within the
matrisome correlated strongly with immune suppression and
immunotherapy failure within the TME. Versican is an
extracellular matrix proteoglycan that interacts with other
ECM components and cells to influence disease phenotype.
From transcriptomic studies versican expression increases in
Frontiers in Oncology | www.frontiersin.org 3
common solid cancers including ovarian, pancreatic, breast,
lung, esophageal, and colorectal (14, 19, 22–24). While other
matrisome molecules associate with disease progression and
immune suppression such as several collagens, fibronectin, and
matrix proteases, versican stands out because of its impact on
several different cellular events that form the basis for the
progression of cancer, including proliferation, metastasis,
invasion, and immunity (25–27). Here we focus on versican,
because it has been shown to have direct association with
immune cell phenotype and trafficking in inflammatory
diseases and development, and we consider here how these
roles for versican may translate to cancer immunity. Overall
our review suggests versican could be a component within
tumours displaying an inflamed-excluded phenotype,
highlighting its potential as a target for cancer immunotherapy.
VERSICAN IN THE ECM

The Structure of Versican
Versican is a member of the proteoglycan family of matrisome
proteins. These are structurally distinct proteins with post-
translational modifications (PTM) of polysaccharides
containing amino sugars, known as glycosaminoglycans
(GAGs) (28). Versican has three distinct regions comprising
the core protein (29). The N-terminal G1 domain contains a
hyaluronan-binding region which binds to hyaluronan to form
the ‘hyalectin’ complex, and the C-terminal G3 domain consists
FIGURE 2 | Gene and protein structure of the different versican isoforms. Versican is formed of multiple motifs and domains which contribute to its binding abilities.
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of two epidermal growth factor-like repeats, a calcium-
dependent C-type lectin binding domain and a complement
binding protein-like motif (Figure 2). Between these domains,
the core protein consists of two GAG binding regions; the a-
GAG and b-GAG domains, from which the GAG chondroitin
sulphate (CS) extends following PTM during golgi processing
(30). Versican interacts with a diverse array of ECM ligands and
cell-surface molecules, thus contributing significantly to the
versatile function of the molecule (31, 32).

Sequencing of the structure of versican has revealed five splice
variants (Figure 2), leading to a core protein size ranging from
approximately 74-370 kDa (31, 33). The isoforms are generated
from alternative splicing of exons 7-8, which encode the a-GAG
and b-GAG domains respectively. The largest isoform is V0 with
both GAG domains intact, and 17-23 potential CS modification
sites. V1 and V2 are smaller isoforms, lacking the a-GAG and b-
GAG regions respectively, and therefore present fewer available
CS modification sites, from 12-15 in V1 and 5-8 in V2. The
smallest isoform V3 lacks both GAG domains, and thus has no
CS binding sites to be functionally defined as a proteoglycan (34,
35). Awareness of this structural variation has helped to elucidate
domain-specific functions; most notably the absence of CS-
modification sites in V3 has enabled clarification of the roles of
these regions (36). An analysis of isoforms by Kischel et al. in
2009, revealed the fifth structural variant V4, comprising G1, G3
and a truncated b-GAG domain. RT-PCR cloning analyses
revealed V4 in human breast cancer lesions, but it was barely
detectable in normal breast tissue (37).

The isoforms are structurally distinct at the translational and
post-translational levels (38), leading to differential roles in
normal homeostasis, inflammation and malignancy. During
embryogenesis, isoforms V0 and V1 are found within the
developing heart and brain. Within adult tissues, these
isoforms are predominant in inflammatory environments such
as tumours and provide pro-proliferative and anti-apoptotic
functions (25). V2 expression is prominent in the brain, where
it is the major isoform following embryonic development (39–
43). Unlike V0 and V1, V3 does not appear to be elevated in
disease but likely counteracts the effects of V0/V1 on cell
phenotype, acting as a dominant negative isoform (25, 26).
Concerning V3, several studies show its mRNA expression in a
variety of tissues, but only a few have identified deposits of the
protein due to the lack of a V3-specific antibody. Its biological
roles have been determined mainly through transgenic
overexpression models. These models indicate that V3
expression increases elastic fibre deposition, reduces
hyaluronan accumulation and promotes an anti-inflammatory
phenotype within vascular tissues (44, 45). Versican splice
variants differ greatly in length and in interaction with their
linking partners, predicating distinct impacts on matrix
modelling. In particular, these observations highlight the
importance of the CS binding domains in determining the
functional roles of the isoforms.

Versican and the TME Matrisome
The binding capabilities of versican within normal physiology
and non-malignant tissues further complicate the potential roles
Frontiers in Oncology | www.frontiersin.org 4
it can play within the TME. Versican interacts with multiple
proteins and carbohydrates within the ECM through different
domains as shown in Figure 2. The predominant binding
partner for versican is the GAG hyaluronan. Within most
tissues, versican is bound to hyaluronan with high levels of co-
localisation identified in malignant tissues. Hyaluronan
production is upregulated in tumours and associated with
tumour progression (46). Together the versican-hyaluronan
aggregates form cable-like lattices, increasing the viscosity of
tissues and decreasing matrix permeability (32, 47). Structural
variation between versican isoforms contributes to changes in
the size of versican-hyaluronan aggregates, influencing tissue
volume (48) and macromolecular organisation (49, 50). The
aggregate can bind to CD44 to form a supramolecular complex,
reducing the presence of elastic fibres (33). These complexes can
be stabilised by the presence of link proteins such as HAPLN1.
Studies have shown that HAPLN1 can affect immune infiltration
as well as tumour dissemination in aged TMEs (51, 52).

In addition to hyaluronan, versican also interacts with tenascin-
R, type I collagen, fibulin-1 and -2, fibrillin-1, fibronectin, and P-
and L-selectins (32, 53). Through its lectin-binding domain,
versican connects fibrillin microfibrils to hyaluronan-rich
matrices, providing elasticity, which is essential within vascular
tissues. The interaction of versican with fibronectin occurs through
the G3 domain (32). With both fibronectin and versican being
overexpressed in tumours this interaction may be critical for the
formation of a pro-tumour matrix.

The inability of versican to interact with proteins in the ECM
has been linked to specific disorders. Germline mutations within
the versican-binding domain of FBN1 can result in severe forms
of Marfan syndrome; an inherited connective tissue disorder,
possibly indicating the loss of a stable interaction between
microfibrils and versican as a pivotal contributor to this
fibrillinopathy (32, 53). Similarly, mutations in the versican
gene are solely responsible for the rare Wagner Syndrome
disease characterised by a progressive break down of the retina,
highlighting the essential role versican plays in matrix stability
and scaffolding.

The following sections will outline the role of versican within
immune cell trafficking and how its expression within the TME
may be promoting an inflamed-excluded phenotype which
associates with a poor response to immunotherapy.

Versican and Immune Trafficking
Altered immune cell trafficking and polarisation of immune cell
phenotype is a prominent feature of most cancers and several
studies have identified a role for versican in these processes (24,
27, 54). During an inflammatory response, versican interacts
with several immune cell membrane proteins including CD44,
integrin-b1, and P-selectin glycoprotein ligand 1, to guide
leukocyte trafficking; as illustrated in Figure 3 (32, 55).
Versican interacts with CD44 indirectly through hyaluronan
and directly via its CS chains (26), these interactions are
dependent on the sulphation of the CS chains (32, 56, 57).
These interactions mediate rolling of T cells on endothelial
cells during homing (58). In addition, versican is also
important in the process of leukocyte adhesion during
August 2021 | Volume 11 | Article 712807
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trafficking (59). T cells avidly adhere to the versican- and
hyaluronan-rich matrisome that is produced during
inflammation. This adhesion can inhibit T cell spreading and
migration (59). As well as T cells, monocytes have also been
shown to adhere to versican, slowing their migration through the
inflamed tissue. The addition of monoclonal antibodies to block
the G1 domain was found to inhibit this adherence, suggesting
that the interaction of versican with hyaluronan is important for
immune cell adhesion (60). The G3 domain also plays a role in
immune cell trafficking with P-selectin glycoprotein ligand 1
binding to the G3 domain to induce leukocyte aggregation, this is
important for immune activation and cell signalling (61).

The negatively-charged GAGs of versican attract various
positively-charged molecules, including growth factors (e.g.,
VEGF, TGF-b), chemokines (e.g., CXCL1, -2, -3) and
cytokines (e.g., IL-1, IL-2, IL-4) (62), producing reservoirs of
immune signals that result in gradients which direct the
inflammatory response and immune cell phenotype within a
tissue (32). For example, Masuda et al. found CCL2-chemotactic
gradients are established through binding to versican CS
glycosylation sites (63). CCL2 binds to CCR2 and guides the
movement and recruitment of monocytes and macrophages
across the TME (64). Once recruited, versican-mediated
monocyte activation occurs via CD44 receptors and integrins.
Additionally, polarisation towards a more tumour-promoting
Th2 and pro-fibrotic macrophage phenotype can occur where
CCL2 is present (32, 63). Chemokine binding to CS chains is
selective, with attachment only occurring on chains with the
ability to bind to L-selectin (56). Through chemokine gradients
and direct interaction, versican could be considered a major
component in the roads and highways that immune cells use to
traverse a tissue. In cancer, these versican highways travelled by
Frontiers in Oncology | www.frontiersin.org 5
immune cells may actually serve to protect tumour cells from the
immune response. The hyaluronan- and versican-rich
pericellular matrix often expressed around malignant cells may
be a shield from patrolling natural killer cells and other
lymphocytes, as well as preventing antibody-dependent cell-
mediated cytotoxicity (65, 66).

Versican Influences Exclusion
Versican expression may promote tissue stiffness in tumours and
other diseases, such as sclerosis, that result in altered tissue
composition (67, 68). The mechanism likely involves the
versatile binding properties of versican to link other ECM
proteins together which enables the formation of fibrous
structures and increases in tissue stiffness. For example,
versican can bind to collagen which maintains fibre density
that enables tissue rigidity (51, 69). In our own work, we found
versican was a member of a signature of twenty-two matrisome
molecules that associated with tumour tissue stiffness at both the
gene and protein levels (19). Interestingly, this signature also
associated with T cell inhibition, and fibrotic ‘barriers’ have been
suggested to physically impede T cell infiltration in vivo, as may
be the case in pancreatic cancer (70). Immunotherapeutic
response is correspondingly poor in stiff tumour tissue and
approaches to enhance tumour-infiltrating lymphocyte entry
are highly sought after. It may also be that versican influences
the poor penetrance of desmoplastic stroma that prevents
chemo- and immune-therapeutic agents from reaching the
tumour itself, however it remains unclear if this is the result of
the physical stiffness of the tissue forming a barrier, or via
receptor ligand interactions between molecular patterns on the
mesh of matrisome proteins and complementary receptors on
immune cell infiltrate, or a combination of the two.
FIGURE 3 | Immune cell trafficking on highways of versican. Versican (V0/V1) attracts pro-inflammatory cytokines forming a gradient to guide immune cells. Immune
cells bind to versican and hyaluronan via receptors such as TLRs, CD44 and P-selectin glycoprotein 1, mediating cell rolling followed by extravasation into the ECM.
Within the ECM, a cytokine gradient is also observed with immune cells locating to areas with high versican expression.
August 2021 | Volume 11 | Article 712807
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Versican Alters Immune Phenotype
As well as providing a ‘shield’, malignant cell-expressed versican
could directly alter immune cell phenotype though engagement
of cell receptors. This has been documented for both innate and
adaptive immune cells. In the former, versican expression is
associated with more tumour-associated macrophages (TAMs)
which tended to have a pro-tumour phenotype (71), which could
be reversed by silencing versican expression. This interaction of
versican with macrophages may be isoform-specific, as found in
a study with ovarian cancer cell lines where silencing of the V1
isoform reduced the activation of TLR2, -6 and CD14 on
macrophages (72). Versican stimulation of TLR2 on
macrophages increases the expression of TNF-a, which can
sometimes promote tumour progression (73, 74) through
mechanisms such as PD-L1 upregulation on both myeloid and
tumour cells (75, 76). TLR2 activation by versican also reduces
dendritic cell anti-tumour response through IL-10 and IL-6
signalling, leading to the mitigation of conventional dendritic
cell responses required for further downstream T cell activation
(77, 78).

In the adaptive immune response, versican can polarize the
CD4+ T cell response to a T regulatory phenotype. One study
found that in versican-deficient tumours, pleural T regulatory
cell numbers were reduced along with tumour mass in a
preclinical model of mesothelioma (71). These findings are
supported by our own work where we identified a specific
composition of tumour matrisome, of which versican is a
component, that positively and significantly correlated with T
regulatory and Th2 cell signatures, and negatively correlated with
cytotoxic cell signatures (Figure 4) (19).
Frontiers in Oncology | www.frontiersin.org 6
Whilst versican stimulates gradients of cytokines in tissues, its
expression is also regulated by cytokines including TGF-b,
PDGF, IL-1a and IL-1b (47, 55, 60, 80, 81). In addition,
versican itself has the ability to affect inflammatory cytokine
release in stromal cells and immune cells, therefore appropriate
cytokine-mediated versican production may promote the next
inflammatory response (55). In this case versican acts as a TLR2
agonist; stimulating TLR2 and its co-receptors TLR6 and CD14
to release pro-inflammatory molecules such as TNFa and IL-6,
inducing macrophage activation (81–85). This positive feedback
loop leads to prolongation of an inflammatory environment.

Cellular Origin of Versican
Impacts Function
Elevated levels of versican in the tumour are mostly expressed by
either malignant cells and/or tumour-associated stromal cells (86,
87). In a recent study on the cellular origins of matrisome proteins
in pancreatic cancer, levels of versican produced by malignant cells
were associated with poor patient survival, while in an investigation
in node-negative breast cancer, relapse correlated with versican
stromal levels deposited bymammary fibroblasts (88). The secretion
of TGF-b1 by malignant cells led to an upregulation of versican
secretion by mammary fibroblasts (89). Versican is expressed by
myeloid cells stimulated by hypoxic (90) and inflammatory
cytokines (91, 92). These studies suggest that the cellular origin of
versican may differ across cancer types. The cellular origin may be
important because it could account for the variation found in
translational and post-translational structures of versican, that in
turn dictates its function. Inhibiting versican synthesis in specific
cells may be an interesting way to investigate this hypothesis.
A B

FIGURE 4 | A matrisome signature containing versican (A) positively correlates with Th2 and T regulatory expression and (B) negatively correlates with cytotoxic
T cell markers. Meta-analysis on RNA-seq data from Pearce et al. (19). Analysis was completed on 33 patient samples of high-grade serous ovarian cancer omental
metastasis. The matrix index refers to a signature of 22 matrisome genes identified in the paper with values determined from a ratio of upregulated and
downregulated genes. Versican is one of six genes that were upregulated in tumours. Spearman rank correlation was used to compare matrix index values from
immune cell expression (19, 79). P-values were FDR corrected using the Benjamini & Hochberg method. The average expression of PRF1 and GZMB (genes
associated with cytotoxic T cells) was correlated to matrix index values from 11 poor prognostic patients using Pearson’s correlation. Th2, T helper cells; Treg,
T regulatory cells; PRF1, perforin 1; GZMB, granzyme B.
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Isoforms of Versican Have Diverse Roles
The unique structures of the different isoforms of versican
impact their binding abilities and strengths. This can lead to
variations in the roles of the isoforms within the tissue. In cancer
tissues, versican appears to be expressed mostly in the V0 and V1
isoforms (88, 93, 94), and silencing of these isoforms has a direct
effect on cancer progression, migration and invasion (95, 96).
The increase in migration seen when versican expression is
inhibited may result from an increase in cell adhesion to
matrisome proteins collagen I and fibronectin (95). The V2
isoform appears to stimulate vascularisation within tumours,
which may reduce tumour proliferation in the short term (the
opposite of what has been recorded for V0 and V1 isoforms),
whilst supporting cancer cell survival (97). The few studies
documenting V3 upregulation in malignancy show the isoform
demonstrating contrasting roles based on tissue context. For
example, V3-overexpressing melanoma cells exhibited reduced
growth potential in vivo, however, hyaluronan-CD44-dependent
migration was enhanced (98). Deeper analysis revealed a dual
role for this isoform, with enhanced lung metastasis suggesting a
pro-metastatic function despite an inhibition of primary tumour
growth (99). V4-specific properties are less extensively mapped;
nevertheless, it is thought that elevated V4 in the TME may
contribute to tumour progression through TGF-b1 derived from
primary breast fibroblasts (37).

Versican Proteolysis Reverses Exclusion
In addition to the isoforms of versican, products from its
proteolytic cleavage within the TME termed versikines are
Frontiers in Oncology | www.frontiersin.org 7
implicated in generating anti-tumour immunity. Recently,
studies have focused on the functional characterisation of
versikine, a Glu441-Ala442-cleaved V1 N-terminal fragment.
This fragment is produced by MMP-mediated V1 degradation,
principally involving ADAMTS1, -4 and -5 (100–103).
Proteolysis of non-V1 isoforms can also form N-terminal
fragments (101) but they have not been as extensively
researched. Versikine can engage G1 cell-surface targets such
as TLR2 on macrophages stimulating anti-tumour immunity,
emphasising its role as a damage-associated molecular pattern
(DAMP) (104, 105).

Proteolysis of versican has been associated with CD8+ T cell
migration in inflammatory diseases and cancer (104–108).
Notably in myelomas, intense proteolysis of macrophage-
derived V1 following stromal ADAMTS1 secretion has been
associated with CD8+ T cell tumour infiltration (104). Purified
versikine induces IL-6 and IL-1b expression in myeloma
marrow-derived macrophages through partially TLR2-
independent mechanisms in vitro (105). Furthermore, versikine
may also promote tumour cell apoptosis (105, 109). Through
these mechanisms, versikine can promote CD8+ T cell
inflammation and activation, which blocks the tolerogenic
polarisation directed by intact versican (105). The proteolytic
cleavage of versican can therefore induce a general immunogenic
response within the TME as summarised in Figure 5, which may
be helpful in potentiating recently emerging T cell activating
immunotherapies. In addition, versican proteolysis may serve as
a positive prognostic biomarker, as shown in colorectal cancer,
where versikine expression was associated with a high CD8+
FIGURE 5 | A depiction of the inflammatory milieu of versican V0/V1 and versikine and their respective effects on tumour immunity. V0/V1 presence leads to the
stimulation of immune-suppressive cytokines within the TME, leading to a pro-tumourigenic environment with polarisation of immune cells to TAMs and regulatory
T cells. The breakdown of V1 by versicanases such as ADAMTS1 leads to an adaptive immunity against the tumour with recruitment of CD8+ T cells and polarisation
of monocytes towards M1 macrophages. ADAMTS1, ADAM Metallopeptidase with Thrombospondin Type 1 Motif 1; TAM, Tumour-associated macrophage.
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T cell infiltrate, the absence of early metastatic invasion, and
prolonged survival (105).

Targeting Versican
Targeting the tumour matrisome is already underway in
preclinical and early clinical studies (110, 111). One lesson we
have learnt from these studies is that the matrisome has a dual
function in disease progression, acting as both a barrier to
tumour growth, but also as a barrier to anti-tumour immunity
(112). Therefore, targeting major constituents of the tumour
matrisome can inadvertently help support tumour growth
presumably by removing a barrier to tumour cell migration.
These results indicate that we must be more selective in our
approach to matrisome targeting to limit deleterious and
unwanted effects and use combinatorial treatment approaches
that are ready to attack tumour once the matrisome barrier
comes down. With this in mind, there may be therapeutic
potential in targeting versican whose roles in immune
exclusion we have shown here include providing vectors for
immune cell trafficking through biochemical cues or
contributing towards a stiff tumour matrisome through
biophysical cues. Important in our consideration of how we
target versican is the diverse roles its isoforms and fragments
may play in disease progression. Further, it may be that many
properties of versican in immune exclusion are mediated
through the post-translational modifications of CS across the
protein backbone of the a- and b-GAG regions. These CS
modifications may prove to be attractive targets because they
can be removed in situ using enzymes – an approach that is
currently showing promise for other types of tumour
glycosylations (113). From the data acquired by multiple
groups studying versican in various tumours, it is evident that
the isoforms V0 and V1 are the most dominant and have the
greatest impact on tumourigenesis. The commonality between
these isoforms is the large length and presence of the b-GAG
domain. To target these isoforms there are multiple sites on
which to focus. The first site is the hyaluronan binding site. As
shown in Evanko et al., the binding of versican to hyaluronan
causes clumping of immune cells, whilst the use of an antibody to
inhibit this interaction restored cell migration (59). Therefore,
targeting this interaction via blocking or degrading the binding
sites can be seen as a potential treatment option. The second
potential target site would be the CS chains. The CS chains
support gradient formation and cytokine localisation, and
therefore targeting the synthesis of the chains or enzymatic
breakdown of the chains may impact chemotaxis of immune
cells across the matrisome. Chondroitin-6-sulphate (C-6-S) has
been identified to be synthesised at a greater proportion in
tumour tissues compared to chondroitin-4-sulphate or its
unsulphated counterpart. The conformation of C-6-S is
thought to make it more accessible for binding, making it
more favourable within the matrisome. In addition, C-6-S was
found to inhibit IL-6 secretion by macrophages and skewed them
towards an M2-like phenotype (114, 115). The third target site is
the GAG binding domains. As mentioned previously, the b-GAG
Frontiers in Oncology | www.frontiersin.org 8
domain has a greater association with tumour progression and
immune cell localisation. Targeting the protein through the GAG
binding domain can also lead to the formation of versikine
structures which could potentially improve immune cell
infiltration in comparison to the full form of the protein.
SUMMARY

The tumour matrisome plays a role in limiting the success of
immunotherapy. The formation of an immune-excluded tumour
inhibits cytotoxic cell contact with malignant epithelial cells.
Versican expression is associated with a composition of
matrisome that associates with poor prognosis and failure of
immunotherapy response. We therefore propose that versican is
a potential candidate for targeting to improve the immune
infiltration and immunotherapy response, which we have
explored in this review.

Versican does have contrary roles within the TME as it is
involved in both tumour progression and inhibition. These
opposing functions can be explained by the diverse structures
of the versican protein, which are expressed in a variety of
isoforms, post-translational modifications, and fragmentation
products, and may be dependent on the cell of origin and the
inflammatory environment present within a tumour. The
functional roles for versican in cancer are broad, including
impacting proliferation, survival, invasion, metastasis, and
inflammation. We have focused here on how versican may
contribute to immune-excluded tumours that have poor
response to therapy and tumour-supporting innate and
adaptive immune cell phenotypes, and identified two
mechanisms though which this occurs, by biochemical and
biophysical cues.

In summary, targeting versican, and in particular targeting
specific structural forms of versican can maximise the
therapeutic potential whilst minimizing deleterious effects that
can be associated with tumour matrisome targeting. We
conclude here that targeting the V0/V1 isoforms likely via the
b-GAG domain, and specifically the modifications of CS may
provide the most specific targeting. However, it is important to
note that as further studies on versican isoforms become
available, other isoforms may prove to be more desirable
targets, for example the V4 isoform which appears to be highly
disease-specific from the limited studies currently available.
Whilst our focus here has been on versican as a specific target
within the matrisome, other proteins may also prove to be
important components within the immune barrier. For
example, both collagen and fibronectin have been highlighted
to form tight networks that can limit space for cell movement
(10). Therefore, identifying the specific components of the
barrier, such as versican, and understanding its structural
variations in tumours can aid in developing novel approaches
that may improve immunotherapy response for many people
across many cancer types.
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