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Abstract

Prior studies of aging and Alzheimer disease have evaluated resting state functional connectivity 

(FC) using either seed-based correlation (SBC) or independent component analysis (ICA), with a 

focus on particular functional systems. SBC and ICA both are insensitive to differences in signal 

amplitude. At the same time, accumulating evidence indicates that the amplitude of spontaneous 

BOLD signal fluctuations is physiologically meaningful. We systematically compared covariance-

based FC, which is sensitive to amplitude, vs. correlation-based FC, which is not, in affected 

individuals and controls drawn from two cohorts of participants including autosomal dominant 

Alzheimer disease (ADAD), late onset Alzheimer disease (LOAD), and age-matched controls. 

Functional connectivity was computed over 222 regions of interest and group differences were 

evaluated in terms of components projected onto a space of lower dimension. Our principal 

observations are: (1) Aging is associated with global loss of resting state fMRI signal amplitude 

that is approximately uniform across resting state networks. (2) Thus, covariance FC measures 

decrease with age whereas correlation FC is relatively preserved in healthy aging. (3) In contrast, 

symptomatic ADAD and LOAD both lead to loss of spontaneous activity amplitude as well as 

severely degraded correlation structure. These results demonstrate a double dissociation between 

age vs. Alzheimer disease and the amplitude vs. correlation structure of resting state BOLD 

signals. Modeling results suggest that the AD-associated loss of correlation structure is attributable 

to a relative increase in the fraction of locally restricted as opposed to widely shared variance.

Keywords

Resting-state functional connectivity; Covariance; Aging; Late onset Alzheimer disease; 
Autosomal dominant Alzheimer disease

1. Introduction

The literature on resting state fMRI functional connectivity (FC) in aging and Alzheimer 

disease (AD) is extensive1. The consensus view is that FC generally becomes weaker with 

advancing age, especially within the default mode network (DMN) (Spreng and Schacter 

2012; Ferreira and Busatto 2013; Dennis and Thompson 2014; Sala-Llonch et al., 2015; 

1As of October 21, 2021, a PubMed search on “resting state fMRI AND aging” returned 1377 hits of which 61 were reviews. “Resting 
state fMRI AND Alzheimer disease” returned 1098 hits of which 89 were reviews.
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Damoiseaux 2017). Similar findings have been reported in AD (Greicius et al., 2004; Mevel 

et al., 2011), i.e., prominent FC decreases especially within the DMN. Importantly, it is 

the DMN in which the characteristic distribution of neuropathology is most prominent in 

AD (amyloid beta (Aβ)/tau accumulation, atrophy) (Matthews et al., 2013; Sheline and 

Raichle 2013; Dennis and Thompson 2014; Forouzannezhad et al., 2019). Thus, it has been 

suggested that loss of FC in higher order functional systems, especially the DMN, may be 

more prominent in AD as compared to aging (Jones et al., 2011; Toepper 2017; Chhatwal et 

al., 2018; Lin et al., 2018). However, this inference is based on relatively few studies, which 

leaves open the question of whether the effects of healthy aging vs. AD are distinguishable 

strictly on the basis of FC.

Autosomal dominant AD (ADAD), an uncommon variant (~1% of all cases), defined by 

mutations in presenilin 1, presenilin 2, or amyloid precursor protein (APP) genes causes 

symptomatic disease in relatively young patients. Longitudinal studies of ADAD and late 

onset AD (LOAD) demonstrate similar pathology: Aβ plaques develop early (Bateman 

et al., 2012; Gordon et al., 2018; McDade et al., 2018) followed by tau accumulation, 

neurodegeneration, and finally cognitive decline (Bateman et al., 2012; Potter et al., 2013; 

Almkvist et al., 2017). Importantly, unlike LOAD, ADAD occurs in younger individuals. 

This difference offers a means of disentangling the effects of aging vs. pathology by 

studying AD in the absence of advanced age. Apart from age of onset, ADAD differs from 

LOAD in the distribution of neuropathology, specifically, greater subcortical atrophy and 

Aβ/tau deposition (Tentolouris-Piperas et al., 2017; Luckett et al., 2021). Notwithstanding 

this difference, the available evidence suggests that the FC manifestations of ADAD and 

LOAD are similar at comparable disease stages (Thomas et al., 2014; Chhatwal et al., 2018). 

However, a head-to-head comparison of FC in ADAD vs. LOAD, rigorously controlling for 

age, has not so far been reported.

Almost all prior work on FC in aging and AD has been cast in terms of either Pearson 

correlation, which is normalized, and therefore, invariant with respect to signal amplitude, 

e.g., (Damoiseaux 2017, Jalilianhasanpour et al. 2019), or ICA of time series normalized 

to unit variance, e.g., (Chhatwal et al. 2018, Forouzannezhad et al. 2019). These analyses 

remove from consideration systematic differences in the amplitude of spontaneous fMRI 

signal fluctuations. However, decreases in the amplitude of fMRI signal fluctuations have 

been reported in association with old age (Garrett et al., 2010; Grady and Garrett 2014; 

Vieira et al., 2020) as well as neurodegenerative disorders including AD (Luo et al., 2015; 

Mascali et al., 2015; Kazemifar et al., 2017; Marchitelli et al., 2018)2. These prior results 

suggest that insight can be gained by systematically comparing FC evaluated with vs. 

without signal normalization. This is most naturally done by comparing correlation-based 

FC to covariance-based FC, which is computationally identical except for omission of 

normalization (Varoquaux et al., 2010).

2The amplitude of spontaneous fMRI signal fluctuations has been variably evaluated as the temporal standard deviation (SDBOLD) 
Garrett et al., (2010). “Blood oxygen level-dependent signal variability is more than just noise.” J Neurosci 30(14): 4914–4921. or 
as root mean squared power summed over a defined spectral range (ALFF) Zuo et al., (2010).. “The oscillating brain: complex and 
reliable.” Neuroimage 49(2): 1432–1445. The algebraic distinction between these measures is negligible.
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We adopt an extant data-driven approach based on whole-brain sampling of resting state 

BOLD fMRI signals from 222 regions of interest (ROIs) representing 12 resting state 

networks (RSNs; Fig. 1)(Seitzman et al., 2020). Representing FC data in a space of 

relatively low dimension using established techniques, e.g., principal component analysis, 

simplifies distinguishing between the effects of aging vs. AD and ADAD vs. LOAD. This 

is accomplished by assessing group differences in terms of components (Madsen et al., 

2017). As will be shown below, almost all systems-level structure in 222 × 222 covariance 

and correlation matrices can be represented with only 30 components. A component-based 

approach to assessing group differences in FC also enables distinguishing between the 

effects of age vs. AD using straightforward regression.

We address three questions: (1) Do the effects of age and AD manifest differently in 

covariance- vs. correlation-base based FC? (2) what FC features distinguish AD (ADAD 

and LOAD) from healthy aging; (3) what FC differences, if any, distinguish ADAD from 

LOAD across clinical disease stages as measured by Clinical Dementia Rating (CDR™). To 

this end, we analyze covariance- and correlation-based FC evaluated globally over the entire 

brain.

2. Methods

2.1. Participants

ADAD participants (Table 1) were drawn from 14 international sites in the Dominantly 

Inherited Alzheimer Network (DIAN) observational study (www.dian-info.org). The DIAN 

recruits and follows families with disease-causing mutations in APP, PSEN1, and PSEN2 

(Bateman et al., 2012). The DIAN cohort included mutation carriers (MC, N = 123) and 

corresponding non-carrier family members (NC; N = 83) who served as controls. Data 

utilized here were derived from the 11th semiannual data freeze.

Institutional review boards at Washington University in Saint Louis and participating 

institutions approved the protocols.

Data for LOAD participants was drawn from ongoing studies of aging and AD from the 

Charles F. and Joanne Knight Alzheimer Disease Research Center (ADRC) at Washington 

University School of Medicine (WUSM). All participants or their legal representative 

provided written informed consent. The institutional review board at Washington University 

in Saint Louis approved the protocols.

We analyzed data obtained in cognitively normal participants with (N = 51) and without (N 
= 131) biomarker evidence (amyloid PET) of preclinical LOAD and cognitively impaired 

participants with biomarker evidence of LOAD (N = 50). Demographics are listed in Table 

1; 25 participants were excluded owing to excessive head motion.

2.2. Disease staging

Disease stage was defined by the Clinical Dementia Rating (CDR™) (Morris 1993). 

CDR scores of 0, 0.5, and ≥1 indicate, respectively, normal cognitive status, very mild 

dementia, and mild to moderate dementia. Amyloid (Aβ) positivity was defined by either 
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[11C]Pittsburgh compound B (PiB)(Klunk et al., 2004) or [18F]florbetapir PET (Wong et al., 

2010). Aβ positivity was defined, for PiB, as mean cortical binding potential (MCBP) ≥ 0.18 

(Su et al., 2013) and, for florbetapir, a standardized uptake value ratio (SUVR) ≥1.2 (Mishra 

et al., 2017).

2.3. Imaging acquisition

LOAD participants were scanned at WUSM. Imaging of ADAD participants was conducted 

at their respective DIAN sites using local scanners. To increase the compatibility between 

DIAN and WUSM cohorts, we analyzed only data collected on Siemens 3T scanners 

(Erlangen, Germany). During resting state fMRI scans, participants were instructed to 

maintain visual fixation on a crosshair. fMRI runs were approximately 6 min in duration. 

“Pre-scan normalize” was enabled to minimize gain field inhomogeneities attributable 

proximity to the receiver coils. Two resting state fMRI runs were acquired in the WUSM 

cohort. The number of acquired runs in the DIAN cohort varied between 1 and 3. Additional 

details concerning sequences and quantity of data is provided in Supplemental Table S1.

2.4. Initial FC preprocessing

FC pre-processing generally followed previously described methods (Laumann et al., 2017; 

Gratton et al., 2019) implemented in the 4dfp suite of tools (http://4dfp.readthedocs.io). 

This included slice timing correction and correction of odd versus even slice intensity 

differences attributable to interleaved acquisition (see Supplemental Materials in Hacker et 

al. (2013)). Head motion was corrected within and across runs. Intensity inhomogeneity 

was corrected using the FAST module in FSL (Zhang et al., 2001) followed by intensity 

normalization (one multiplicative scalar applied to all voxels and volumes) to obtain a 

whole brain mode value of 1000. Echoplanar imaging (EPI) distortion due to magnetization 

inhomogeneity was corrected using the mean field map method of Gholipour et al. (2008). 

For the DIAN cohort, initial atlas transformation was computed by affine registration of 

the functional data to an atlas-representative template via the MP-RAGE (EPImean → 
MP-RAGE → template). The final atlas transformation was performed after denoising (see 

below). The WUSM data included a T2-weighted image that was inserted in the transform 

composition chain (EPImean → T2w → MP-RAGE → template). Volumetric time series 

were resampled in (3mm)3 atlas space in a single step combining head motion correction, 

distortion correction, and atlas transformation. Frames corrupted by excessive head motion 

were identified on the basis of both DVARS (frame-to-frame signal change over the entire 

brain); and frame displacement (FD) measures (Power et al., 2012). The DVARS censoring 

criterion was individually set to accommodate baseline shifts (see Supporting Information in 

White et al. (2020); the FD censoring criterion was 0.4mm. Frames were censored if either 

criterion was exceeded. Censoring statistics are reported in Table 1. The time series were 

band-pass filtered to retain frequencies between 0.005 Hz and 0.1Hz. Censored frames were 

approximated by linear interpolation for purposes of band-pass filtering but excluded from 

all subsequent steps.

2.5. Denoising

Denoising was accomplished using a CompCor-like strategy (Behzadi et al., 2007). 

As previously described Raut et al. (2019), nuisance regressors were derived from 
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three compartments (white matter, ventricles, and extra-axial space) and were then 

dimensionality-reduced to create a matrix for singular value decomposition (SVD). White 

matter and ventricular masks were segmented in each participant using FreeSurfer (Fischl 

2012) and spatially resampled in register with FC data. The final set of nuisance regressors 

also included the six parameters derived from rigid body head-motion correction, the global 

signal (GS) averaged over the (FreeSurfer-segmented) brain, and the GS temporal derivative. 

Appendix D shows that omitting regression of the global signal minimally impacts the 

present results. As a final preprocessing step, the volumetric time series were non-linearly 

warped (via each participant’s MP-RAGE) to Montreal Neurological Institute (MNI) 152 

space ((3mm)3 voxels) using FNIRT (Andersson et al., 2010; Jenkinson et al., 2012).

2.6. FC computation

Pre-processed fMRI time series were extracted from 222 regions of interest (ROIs) 

representing 12 previously defined RSNs (Fig. 1) (Seitzman et al., 2020). This set of ROIs 

provides dense coverage of the cerebral cortex and subcortical structures. ROIs in areas of 

fMRI signal drop out (Ojemann et al., 1997) were excluded. The cerebellum was excluded 

owing to inadequate coverage of this structure in some ADAD participants; given the limited 

role of the cerebellum in AD we elected to forego including this region instead of excluding 

participants. FC was conventionally evaluated in terms of Pearson correlation as well as 

covariance, which is simply un-normalized correlation. Thus, covariance retains sensitivity 

to signal amplitude whereas correlation does not. Algebraic details are provided in Appendix 

A. Parallel covariance/correlation analysis constitutes a major feature of the present work.

Evaluating covariance rather than correlation requires minimizing the impact of artifactual 

differences in depth of signal modulation unrelated to physiology. In addition to 

enabling “pre-scan normalize” during fMRI acquisition (see above), residual gain field 

inhomogeneities were reduced using the FAST module in FSL (Zhang et al., 2001). Further, 

all fMRI data were intensity normalized (multiplication by a single scalar over all brain 

voxels and volumes) to obtain a consistent mode value of 1000 in all participants. Thus, a 

covariance value of 10 corresponds to 1% rms fMRI signal modulation.

2.7. Dimensionality reduction and derivation of fixed bases for covariance and correlation 
analyses

Sections 2.7 and 2.8 recapitulate algebra recently described in a different context (Snyder et 

al., 2022). The fixed basis on which all susbequent analyses of covariance FC depend was 

obtained by principal component analysis (PCA) (Liang et al., 2002) applied to the mean 

covariance matrix, CCONT , obtained in the combined WUSM + DIAN control participants. 

Diagonalization of CCONT  yields

CCONT = W ΛCONTW T (1)

where the columns of W contain the eigenvectors of CCONT  and ΛCONT is a diagonal matrix 

of eigenvalues. Dimensionality reduction was achieved by taking the first 30 eigenvectors of 

CCONT  as a fixed basis on which to project all covariance evaluations. Thus,
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CCONT = W ΛCONT W T
(2)

is the projection of CCONT  onto the covariance FC basis, W . In the present data, the first 30 

eigenvectors retained a large fraction (60.4%) of the total variance in CCONT . Projection of 

participant i’s fMRI data (Xi, not necessarily a control) onto the fixed covariance basis was 

computed as Y i = W TXi. The covariance matrix of Y i is

1/Li Y iY i
T

(3)

where Li is number of retained frames following frame censoring. We define the diagonal 

entries of this matrix, Λi, as the of 30 covariance components in participant i and define 

Ci ≡ W ΛiW
T  as the projection of participant i’s covariance structure onto the fixed basis. 

The algebraic rationale for these definitions is given in Appendix A. Importantly, because 

W  is fixed, Λi (a 30 × 30 diagonal matrix) and Ci (also a 30 × 30 diagonal matrix) 

are informationally equivalent. Moreover, {Λi}, the covariance components corresponding 

to any subgroup of participants, can be subjected to algebraic operations, e.g., averaging 

over participant subgroups and regression operations. For notational simplicity, we define 

Ψi ≡ diag(Λi) as the 30 covariance components in participant i reshaped as a 1 × 30 row 

vector.

Correlation FC analyses were conducted independently and in parallel to covariance FC 

analyses. The associated algebraic quantites are denoted in lower case symbols. Thus, for 

example, the correlation FC basis set, w, was defined as the first 30 eigenvectors of the mean 

control correlation matrix, rCONT . The 30 retained correlation components accounted for 

54.9% of total variance. In parallel to Ψi, ψi ≡ diag(λi) is the row vector of 30 correlation 

components in participant i. All symbols used in the presentation of results are listed in 

Table 2. Parallel covariance/correlation analysis is implicit in format of Table 2. Additional 

algebraic details are discussed in Appendix A.

2.8. Covariance:correlation global scalar proportionality

Inspection of CCONT and rCONT  suggested that these forms exhibit strikingly similar 

“matrix topographies” (see Results), i.e., differ, to good approximation, only by a global 

scalar factor proportional to the amplitude of BOLD signal fluctuations. Hence, the model, 

CCONT ≈ vCONTrCONT , where υCONT is a scalar. We refer to this scalar quantity as the 

global covariance:correlation proportionality constant. Details concerning estimation of υ 
are given in Appendix A. As υ is defined in controls as well as participant subgroups, this 

measure provides a quantitative index of the dissociation between the amplitude vs. the 

correlation structure of spontaneous BOLD signals.

Table 2 lists the variables used in the presentation of results. Asterisk subscripts stand for 

any subgroup, e.g., LOAD CDR1+. Note that the bases, W  and w, are fixed (therefore, 

represented without subscripts).
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2.9. Estimation of the effects of age and AD using linear regression

The effects of age and cohort (WUSM vs. DIAN) on FC components was estimated in the 

control participants using the regress function in MATLAB 2020b. For each component (j 
=1, 2, …, 30), Ψi or ψi were entered into the regression model with intercept (column of 

1’s), participant age, and cohort (0 or 1 representing ADRC or DIAN) as regressors. For 

covariance FC, regression returned 30 component-specific constants: change/year (Bj
Age), 

intercept (component estimate at age 0; Bj
Int), and a term accounting for cohort (WUSM 

vs. DIAN; Bj
Coℎort). The {Bj

Age} were used construct FC covariance matrices representing 

the effect of age, controlling for cohort. Parallel regression operations on correlation FC 

returned βj
Age, βj

Int , βj
Coℎort, j = 1, 2, … 30. Next, the regression model was applied to 

all participants to reconstruct group-level FC matrices at selected CDR stages (0, 0.5, 

1+) from which the effects of age and cohort have been removed by regression. Thus, 

corrected Ψij = (uncorrected Ψij − Bj
Age (Age)i − Bj

Coℎort(Coℎort)i . The corrected component 

results were averaged over participants to generate group-level component vectors, e.g., Ψ*
for covariance FC, where the overbar denotes averaging over participants and the asterisk 

represents a particular subgroup, e.g., LOAD CDR 1+.

2.10. Statistical significance testing

Whole-brain, group-level contrasts are represented as the L1-norm of component differences 

ΔΨ*  and Δψ* , where the asterisk represents a particular group contrast, e.g., LOAD CDR 

1+ vs. controls. The rationale underlying this formulation is that, to the extent that all 

participants share the identical FC eigenstructure (see Appendix A), ΔΨ*  is equivalent to 

the sum of over components of power differences. The significance of group-level contrasts 

was assessed by comparing the true value of ΔΨ*  (or Δψ* ) against a null generated by 

permutation resampling over participants.

3. Results

3.1. Dimensionality reduction

Fig. 2 shows the mean control covariance and correlation matrices before (CCONT , rCONT) 

and after (CCONT , rCONT) projection onto their respective fixed bases. The block structure 

of these matrices, before and after projection onto the fixed bases, replicates established 

findings reported in multiple rs-fMRI studies (Laumann et al., 2015; Gotts et al., 2020; 

Seitzman et al., 2020). It is visually evident that the major features of CCONT  are preserved 

in CCONT  and similarly for rCONT  vs. rCONT . Although the projection accounts for 

only 60.4% of total variance in CCONT , the squared Pearson correlation between the 

block averages before vs. after dimensionality reduction, i.e., 〈CCONT〉k and 〈CCONT〉k
(see Appendix A), is 0.998 (Fig. 2C). Similarly, the squared Pearson correlation between 

〈rCONT〉k and 〈rCONT〉k is 0.997 (Fig. 2F). These results demonstrate that dimensionality 

reduction preserves the network structure of both covariance and correlation FC.
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Anatomical topography of covariance and correlation bases—Fig. 3 shows scree 

plots and ROI weights for each of the 30 covariance (W ) and correlation (w) basis vectors 

derived by PCA of the combined WUSM + DIAN control participants. Both W  and w are 

structured according to major functional systems. Thus, for example, the first component 

of both W  and w is dominated by oppositely signed DMN vs. visual system (VIS) 

weights. The second component includes oppositely signed cingulo-opercular + salience 

+ fronto-parietal weights vs. VIS + DMN weights. Higher components exhibit progressively 

less RSN structure. Fragmentation of RSN-related structure, coupled with asymptotically 

small eigenvalues as component indices approach 30, implies that dimensionality reduction 

largely preserves the functional organization of BOLD fMRI time series, reinforcing the 

result illustrated in Fig. 2. Similarity of the covariance vs. correlation bases is addressed 

also in Fig. S4, which shows W Tw, the 30 × 30 matrix of inner products. The largely 

diagonal structure of W Tw demonstrates substantial similarity of the bases derived by PCA 

of CCONT  and rCONT .

3.2. Covariance:correlation global scalar proportionality

Fig. 4 shows the covariance and correlation matrices obtained in the combined WUSM + 

DIAN control groups. It is evident that these matrices exhibit strikingly similar “matrix 

topographies”. The global covariance:correlation ration in the controls is 2.98 (υCONT; 

see Appendix Eq. (8)). The proportion of model-consistent variance (ηCONT
2 ) is 0.94. 

Panel C shows the difference, CCONT − vCONTrCONT , i.e., focal deviations from global 

proportionality. Such deviations include somewhat greater covariance:correlation ratios in 

parts of the DMN and somewhat lesser ratios in somatomotor cortex. Although these 

deviations are potentially of physiological interest, they are quantitatively minor (6% of 

explained variance). Taking into consideration this low proportion of explained variance, we 

defer further analysis of focal deviations from global covariance:correlation proportionality 

to future work.

Table 3 lists υ∗ and η*
2 obtained in the ADRC and DIAN participants stratified by 

CDR. There are two noteworthy findings. First, the global covariance:correlation ratio 

systematically decreases with disease progression, both in the LOAD and ADAD cohorts, 

albeit more steeply in the ADAD cohort. Second, variance explained by the proportionality 

model is remarkably robust (η*
2 ≈ 0.96 in all groups) and not affected by disease progression.

3.3. Effect of age in the controls

Fig. 5 represents the effects age in the combined WUSM + DIAN controls. Covariance 

FC and correlation FC are shown in Panels A and B, respectively. The effect of age was 

estimated by regression of covariance components (Ψij) on age, with cohort (ADRC or 

ADAD) as a regressor of no interest. This regression yielded coefficients, Bj
Age, j = 1, 2, … 

30, in units of covariance component change per year. The displayed covariance age effect 

matrix is W [diagBAge]W T . Aging leads to weaker withinRSN covariance (blue diagonal 

blocks) as well as weaker cross-RSN negative covariance (primarily red off-diagonal 
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blocks). The effect of age on correlation FC is qualitatively similar but quantitatively much 

weaker. The displayed matrix is vCONTw[diagβAge]wT . Panel C plots Bj
Age vs. Bj

Int, i.e., 

change per year in covariance component j vs. component j value extrapolated to age 0. The 

slope of the fitted line is 1.69% loss per year. The relatively good fit (Pearson correlation 

= −0.985; p < 10−6) indicates that all covariance components exhibit approximately the 

same proportional loss relative to the starting value. Panel D shows the parallel result for 

correlation components, scaled by υCONT. The model fit is less good but still quite strong 

(Pearson correlation = −0.856). Crucially, the fitted line (slope = −0.48%) indicates that 

correlation FC loss per year is numerically much less than covariance FC loss (−0.48% vs. 

−1.69%). This difference between the effects of age on covariance vs. correlation FC is 

discussed theoretically in Appendix B.

3.4. Effects of AD represented as dimensionality-reduced, covariance and correlation 
difference matrices

Fig. 6 shows dimensionally reduced, covariance difference matrices relative to controls at 

successive clinical disease stages of LOAD (panels B - D) and ADAD (panels F - H). The 

effects of age and cohort have been removed by regression. Corresponding, undifferenced 

matrices are shown in Fig. S1. Panel A (effect of age) is reproduced from Fig. 5A for 

comparison. It is visually evident that the impact of AD on covariance FC is minimal prior 

to CDR stage 1. Weak, non-significant, sign-inverted effects are present in older, Aβ+, CDR 

0 LOAD participants (panel B) and younger, mutation-positive, Aβ− ADAD participants 

(panel E). Note strikingly similar “matrix topographies” (e.g., detailed patterning in the 

sub-cortical diagonal block), with or without sign inversion, in all matrices.

Fig. 7 shows dimensionally reduced, correlation difference matrices parallel to the results 

shown in Fig. 6. As in the covariance FC results, inspection suggest that the impact of AD 

on correlation FC is minimal prior to CDR stage 1. This is verified in Table 4, which reports 

significance tests of group-level contrasts in covariance FC and correlation FC. Significance 

levels were consistently greater for correlation as opposed to covariance FC.

3.5. Differential impact of LOAD and ADAD on covariance and correlation components

Fig. 8 addresses the question of whether either variant of AD differentially impacts 

particular covariance or correlation components. Each panel reports a group-level analysis 

of the 30 component values corresponding to the fixed basis (ΔΨj or Δψj), averaged over 

selected participant groups.

Similar effects are evident in panels A and B, which show covariance component differences 

(CDR 1+ minus control) for LOAD and ADAD. Slopes of the fitted lines (−0.564 and 

−0.436) indicate that, at CDR 1+ (mild dementia), component values are, on average, 

attenuated by a factor of approximately 1/2 relative to controls. The line fits are somewhat 

less tight than in Fig. 5C, consistent with the possibility that AD differentially impacts 

certain covariance components. Panel C plots ΔΨj for ADAD vs. ΔΨj for LOAD to address 

the question of differential component specificity in ADAD vs. LOAD at CDR 1+. The 

relatively tight correlation (Pearson correlation = 0.944, p < 10−6) suggests that ADAD and 
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LOAD comparably affect covariance FC components. In other words, there is no evidence of 

differential focality in the effects of ADAD vs. LOAD on whole-brain FC.

Panels D - F show correlation component results. Panel D relates change in component 

value per year (βj
Age) to baseline component values extrapolated to age 0 (βj

Int) in a 

manner parallel to panel A. Panels D and E show correlation component differences 

(CDR 1+ minus control) for LOAD ΔΨj  and ADAD Δψj  parallel to panels B and C. 

Correlation components depart from the regression line more than corresponding covariance 

components. Quantitative measures of departure from the fitted line (squared Pearson 

correlation) are reported as insets in each panel. These results indicate that correlation FC 

shows more evidence of focality in AD than does covariance FC. However, plotting ADAD 

Δψj vs. LOAD Δψj (panel F) reveals little evidence of differential ADAD vs. LOAD focality 

(Pearson correlation = 0.872), as in panel C. However, the difference in slopes of the fitted 

lines (1.17 vs. 0.75) suggests that, as assessed at CDR 1+, ADAD leads to more pronounced 

correlation FC differences relative to controls than does LOAD. A direct test of this contrast 

yielded a formally significant result (Table 4, uncorrected for multiple comparisons).

4. Discussion

4.1. Results overview

We contrasted age, ADAD, and LOAD using dimensionality reduced covariance FC 

and correlation FC projections onto fixed bases. Comparison of dimensionally reduced 

covariance vs. correlation FC at the group level revealed that these two measures are, to 

a good approximation, related by a scalar proportionality factor, in controls as well as 

AD-affected participants. Three principal results emerged: (1) Healthy aging leads to global 

loss of rs-fMRI covariance with little or no evidence that specific RSNs are particularly 

affected. Hence, conventional correlation FC is comparatively unaffected by healthy aging, 

as previously reported (Brier et al., 2014). (2) In contrast, both LOAD and ADAD lead 

to marked changes in both correlation and covariance FC, but only at CDR 1+. The 

global covariance:correlation ratio (υ) systematically declines in association with clinical 

progression. (3) 3-way ANOVA of covariance FC ΔΨ* , parametric in CDR stage returned 

no statistically significant difference between ADAD and LOAD (Table S2). This result 

supports a schema in which ADAD is regarded as a model of LOAD (Bateman et al., 2011). 

However, systematic evaluation of the global covariance:correlation proportionality ratio 

(υ∗) suggests that loss of BOLD signal amplitude is accelerated in ADAD relative to LOAD 

(Tables 3 and 4).

4.2. Methodology

Computing both covariance and correlation FC confers enhanced interpretability of resting 

state fMRI studies (Cole et al., 2016; Duff et al., 2018). This principle has been applied 

mostly in studies contrasting task or arousal states within individuals, e.g., (Bijsterbosch 

et al. 2017, Duff et al. 2018). We have recently applied parallel covariance + correlation 

analysis to a longitudinal study of the effects of mindfulness training and exercise in older 

individuals (Snyder et al., 2022). Here, we apply this methodology to a cross-sectional study.
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Our approach to covariance analysis assumes a common structure across individuals 

(Varoquaux et al., 2010), which corresponds to the “average” model in the classification 

scheme of Madsen et al. (2017). Thus, the methodology per se is not novel. However, 

It is noteworthy that group-averaged covariance and correlation matrices exhibit similar 

structure (Figs. 4; S4; S5), a result that has been obtained before (Cole et al., 2016). 

It is this similarity that enables defining the global covariance:correlation proportionality 

scalar (υ). In should be noted that covariance FC theoretically is sensitive to individual 

variability in the anatomical distribution of functional systems in a manner that correlation 

FC is not. Potential mechanisms include anatomical variability (despite non-linear atlas 

registration), individual differences in the representation of function in relation to gyral 

anatomy (Gordon et al., 2017) and variation in neurovascular coupling (Hillman 2014). 

Appendix C models this effect as inter-individual differences in “ROI-level gain variability”. 

Numerical simulations over a range additive noise levels empirically show that such 

differences average out at the group level (Fig. S6).

The present work applies well-established linear algebraic tools (dimensionality reduction 

and projection) to FC analysis. The principal advantage of analyzing group differences in 

terms of components is dimensionality reduction, hence, preservation of statistical power in 

data-driven analyses. Fig. 2 shows that a 30-component basis provides a nearly complete 

representation rs-fMRI covariance at the level of functional systems. Projection of FC onto 

a space of relatively low dimension should be distinguished from dimensionality-preserving 

approaches to FC analysis that require regularization of matrix inversion (Brier et al., 2015; 

Rahim et al., 2017). Figs. 2 and 3 suggest that 30 components are sufficient to capture the 

principal features of resting state fMRI covariance matrices, i.e., hierarchical structure of 

limited dimensionality (Cordes and Nandy 2006; Laumann et al., 2017; Gotts et al., 2020). 

The projection strategy reduces the computational complexity of cross-group comparisons 

(Figs. 5–8) and enables use of straightforward regression techniques to separate the effects 

of age vs. pathology while controlling for technical differences between participant cohorts 

(e.g., scanners and sequences). While the analysis algebra (principal component analysis 

and linear regression) is not novel, parallel covariance/correlation analysis facilitates new 

inferences concerning aging vs. AD.

4.3. Covariance and correlation FC functional connectivity in healthy aging

Perhaps the most striking present finding is the uniformity, i.e., non-focality, of the age 

effect across covariance components (Fig. 5C). Across all components, change per year 

relative to value extrapolated to age 0 (Bj
Age/Bj

Int) is remarkably constant across components. 

The fitted line indicates ~1.69% loss per year relative to starting value, estimated on basis 

of data in participants over the age range contributing to the model (Fig. S3). We recently 

reported similarly broad, age-related reductions in BOLD fMRI signal variability in the 

cognitively intact subset of the LOAD cohort (Millar et al., 2020). The present analysis 

differs in that we include the control component of the DIAN cohort as well and, crucially, 

exclude from the aging analysis participants with imaging evidence of pre-clinical AD 

(Brier et al., 2014). Age-related loss of BOLD signal covariance is consistent with previous 

findings reported as multifocal changes in the temporal standard deviation of fMRI data 

(SDBOLD) (Garrett et al., 2010; Grady and Garrett 2014; Vieira et al., 2020; Hrybouski 

Strain et al. Page 13

Neuroimage. Author manuscript; available in PMC 2022 December 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



et al., 2021). Fig. 5C suggests that this phenomenon is anatomically global as opposed to 

multifocal.

Theoretically, if all covariance components proportionally attenuate with age, there should 

be no effect of age on correlation FC, as discussed in Appendix B. Fig. 5 shows that there is 

an effect of age on correlation FC but it is quantitatively minor in comparison to the effect 

of moderately advanced AD (see Section 4.4). This result essentially confirms our prior 

finding that correlation FC is minimally affected by age in older individuals without imaging 

evidence of preclinical AD (Brier et al., 2014). Modest focality in age-related change in 

correlation components may be present in the control participants (Fig. 5D). Screening for 

preclinical AD on the basis of Aβ and tau does not exclude other predisposing factors, e.g., 

family history of AD (Wang et al., 2012). Thus, it is possible that low doses of pathology 

with effects similar to Aβ/tau or any age-associated condition, e.g., vascular disease, also 

affected the control participants. Viewed from this perspective, the results shown Fig. 5D 

are consistent with prior reports of age-related changes in correlation FC in cognitively 

normal older adults, none of which included any screening to exclude sub-clinical AD 

(Andrews-Hanna et al., 2007; Dennis and Thompson 2014; Sala-Llonch et al., 2015).

Several potential mechanisms may account for age-related loss of spontaneous BOLD 

signal fluctuation amplitude. In principle, age-related atrophy could be a contributing factor. 

However, cross-sectional anatomical studies of healthy young vs. older adults report that 

cortical thickness changes by only ~0.1–0.2% per year over the lifespan (Salat et al., 2004; 

Bakkour et al., 2013). This small figure does not account for age-related loss of BOLD 

signal fluctuations even if the present finding of signal power loss is expressed in terms of 

amplitude (divide 1.69% by 2). Whole brain atrophy has been estimated as 0.5% volume 

loss per year between ages 59 and 85 (Resnick et al., 2003). This figure comes closer to 

accounting for loss of intrinsic BOLD signal fluctuations but raises the question of whether 

age-associated white matter atrophy and cerebrovascular disease play a role. Indeed, it 

has been reported that white matter disease degrades FC within specific RSNs (Teipel et 

al., 2010; Fjell et al., 2017). It appears likely that age-related changes in metabolic and 

molecular processes are related to loss of BOLD signal fluctuations (Bishop et al., 2010; 

Peng et al., 2014). Whole brain glucose utilization is about ~20% lower in cognitively intact 

older adults (age ~75 years) as compared to young adults (age ~25 years) (Goyal et al., 

2017).

4.4. Covariance and correlation functional connectivity in LOAD and ADAD

In contrast to healthy aging, AD (both variants) leads to markedly altered correlation FC 

(Figs. 6–8). We find no statistically reliable FC abnormalities at CDR stage < 1 (Ibrahim 

et al., 2021). This result supports the growing consensus that, unlike Aβ/tau PET and 

structural imaging (Gordon et al., 2019), conventional correlation analysis of resting state 

fMRI is unlikely to provide an early biomarker of AD. This perspective is implicit in 

a recent authoritative review of the topic (Hampel et al., 2021). On the other hand, the 

close temporal association of FC abnormalities with clinical dementia implies that resting 

state BOLD fMRI is useful in assessing the functional status of the brain, albeit with 

limited etiologic specificity: AD is only one of any number of diverse entities that impair 
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cognition in association with FC abnormalities (Zhang et al., 2021). Apart from altered FC, 

rs-fMRI features that distinguish CDR 1+ participants from controls include a lower value 

of the global covariance:correlation proportionality scalar (υ; Table 3) and departures from 

proportional correlation FC component changes relative to controls (Δψ; Fig. 8D,E). A low 

value of υ with maintained 〈C〉k: 〈r〉k correlation (η; Table 3) implies loss of BOLD signal 

fluctuation amplitude in excess of degraded RSN structure. This finding is consistent with 

prior reports of reduced ALFF in AD (Yang et al., 2018; Zeng et al., 2019). BOLD signal 

fluctuation amplitude, cerebral blood flow, and glucose metabolism all are closely linked 

in healthy brains (Wang et al., 2021) as well as in brains affected by AD (Marchitelli et 

al., 2018). Thus, loss of BOLD signal fluctuation amplitude is an expected correlate of 

reduced metabolism in AD. Pathology and atrophy are quantitatively greater and spatially 

more extensive in ADAD in comparison to LOAD (Cairns et al., 2015; Ringman et al., 

2016; Dincer et al., 2020). This difference may underlie the ADAD vs. LOAD Δψ*  finding 

(Table 4) and possibly the accelerated change in υ∗ (Table 3). The results reported in Table 

3 reinforce the recent observation that loss of ALFF is correlated with Aβ burden (Scheel et 

al., 2022).

Fig. 8 suggests that there exists a dissociation between correlation vs. covariance FC in 

the degree of non-uniformity over components (i.e., departure from linear fit; panels D,E 

vs. A,B). This finding implies that RSN-specific abnormalities are more prominent in 

conventional correlation FC as opposed to covariance FC. This inference is consistent with 

the existence of multiple prior papers describing focal or RSN-specific FC abnormalities 

in AD, e.g., (Buckner et al. 2005, Brier et al. 2012, Toepper 2017, Chhatwal et al. 2018, 

Lin et al. 2018). A parsimonious account of differential correlation vs. covariance focality 

can be formulated by invoking a distinction between widely shared vs. locally restricted 

signals (Cole et al., 2016)(Appendix B). This approach to disambiguating FC has been 

alternatively articulated in terms of Additive Signal Change theory (Duff et al., 2018). Thus, 

because locally restricted signals (in the nomenclature of Appendix B) do not contribute 

to covariance but do depress Pearson correlation, differential correlation vs. covariance FC 

focality can arise from an uneven distribution of locally restricted signals over the brain. The 

results shown in Fig. 8 suggest that this may occur in moderately advanced AD. We do not 

attempt here to detail which RSNs or brain regions are particularly susceptible to developing 

locally restricted signals as that analysis, as well as detailing local deviations from scalar 

covariance:correlation proportionality (Fig. 4C), falls outside the scope of the present work.

4.5. rs-fMRI functional connectivity as a means of localizing pathology

The notion that there exists an topographic correspondence between AD histopathology and 

FC changes arguably dates back to 2004, when Greicius and colleagues reported that AD 

patients could be separated from non-demented controls on the basis of DMN functional 

connectivity (Greicius et al., 2004). The inference was compelling as impaired memory is 

the hallmark of AD while the DMN is the RSN most associated with memory (Buckner and 

DiNicola 2019). The link was subsequently reinforced by several papers highlighting the 

spatial overlap between the DMN and Aβ accumulation as imaged by PiB-PET (Buckner 

et al., 2005). Importantly, Greicius and colleagues did not claim that AD affects only the 
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DMN. It has since become clear that multiple RSNs are affected (Sheline et al., 2010; Brier 

et al., 2012; Fjell et al., 2015; Franzmeier et al., 2020; Ripp et al., 2020).

Nevertheless, the topographic correspondence between histopathology and FC abnormalities 

in AD is not as straightforward as once seemed. The staging of neuropathology in AD 

is well documented (Braak et al., 2011). Crucially, primary sensory cortices are spared 

until later stages of the disease. The distribution of pathology in both LOAD and ADAD 

(Aβ/tau deposition, lower flouro-deoxyglucose uptake, atrophy) similarly spares primary 

sensorimotor areas (Brier et al., 2016; Hansson and Gouras 2016; Gordon et al., 2019). 

This does not match rs-fMRI findings (Figs. 6 and 7, panels D and H). Although the DMN 

is affected at CDR 1+ in both LOAD and ADAD, somatomotor, cingulo-opercular and 

auditory cortices are comparably affected and the greatest loss of covariance FC occurs 

in visual areas. Thus, there exists a substantial discrepancy between the distribution of 

histopathology vs. the distribution of FC changes. A similar discrepancy exists in Parkinson 

disease (Gratton et al., 2019). The physiological significance of this discrepancy remains to 

be determined but the available evidence excludes a straightforward relationship between FC 

changes and the anatomical distribution of histopathology.

4.6. Caveats and limitations

Projection of rs-fMRI data onto a fixed space of reduced dimensionality constitutes a 

key feature of the present analysis. This approach implicitly ignores features of rs-fMRI 

correlation structure outside the fixed projection (formally, the column space of W  and w). 

However, as shown in Fig. S5, the fixed bases reasonably well represent the covariance 

and correlation structures of participant subgroups. Hypothetically, the present approach to 

dimensionality reduction could miss meaningful group differences outside the projection. 

However, Fig. 2 shows that the hierarchical structure of group-level RSNs is almost 

completely captured by 30 components representing 222 ROIs. Thus, if the present analysis 

has missed important FC features, they would have to exist at a granularity finer than 

the block structure illustrated in Fig. 2. Additionally, we note that the effects of aging in 

healthy individuals as well as CDR stage have been inferred on the basis of exclusively 

cross-sectional data. Finally, the sensitivity of certain group comparisons is limited by the 

sample size of CDR 1+ participants (Table 1). We plan to update the analyses as larger 

samples become available.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Regions of Interest. Centers of the 222 regions of interest (ROI) used in this work 

are projected onto an average anatomical surface (Seitzman et al., 2020). Cortical and 

subcortical ROIs are spheres, 10mm and 8mm in diameter, respectively. Color indicates 

resting state network membership.
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Fig. 2. 
Dimensionality reduction preserves resting state network-dependent features of covariance 

and correlation matrices. Panel A shows the covariance matrix mean in the control subjects 

(CCONT) before dimensionality reduction. The key feature of this matrix is consistently 

positive covariance within network (diagonal blocks) and between network covariance of 

either sign (off diagonal blocks). Panel B shows the dimensionality reduced covariance 

matrix mean in control subjects (CCONT). It is evident that CCONT and CCONT are 

remarkably similar. Quantitatively minor, within block differences between CCONT vs. 

CCONT could represent subnetwork structure outside the fixed basis but could also arise 

from sampling error. To demonstrate that dimensionality reduction minimally impacts 

network structure, the mean within-block covariance values in CCONT and CCONT are 

shown as a scatter plot in panel C; these values closely approximate the line of identity. 

Panels D-F show parallel results for the corresponding correlation matrices, before (rCONT)
and after (rCONT) dimensionality reduction. Note different covariance vs. correlation scales. 

These scale differences reflect crucial features of the present data, as detailed in subsequent 
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figures. Network label abbreviations: SM – sensorimotor, SM (lat) – lateral sensorimotor, 

DMN – default mode network, FP – frontoparietal, Attn – attention.
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Fig. 3. 
Principal component analysis of (CCONT) and correlation (rCONT) matrices obtained in 

the control participants. Scree plots are shown above corresponding eigenvectors. The 

correlation eigenvectors have been multiplied by the scalar constant (υCONT = 2.98) that 

minimizes error in the proportionality model, 〈CCONT〉k = υCONT〈rCONT〉k. The first few 

eigenvectors exhibit clustered, large loadings within resting state networks, e.g., the DMN. 

Network structure becomes fragmented at higher eigenvector indices in both the covariance 

and correlation representations of FC.
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Fig. 4. 
Blockwise scalar proportionality between covariance and correlation matrices in the 

control population. Panel A shows CCONT. Panel B shows υCONTrCONT. Panel C 

shows the difference, CCONT − υCONTrCONT, i.e., focal deviations from block-wise scalar 

proportionality. These deviations account for only 6% of total variance (ηCONT
2 = 0.94). Note 

scale change in panel C.
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Fig. 5. 
Effect of age in the control participants. Panel A shows the effects of age on covariance 

FC, evaluated as W[diagBage]WT
. Panel B shows the corresponding correlation FC result, 

evaluated as υCONTw[diagβage]wT. The scales are identical. The effect of cohort has been 

removed by regression. Panel C shows Bj
Age plotted against Bj

Int, the intercept term, i.e., 

the value of covariance component j extrapolated to age 0. Note approximately uniform 

proportional effect of age across components (r2=0.970). The slope the fitted line indicates 

−1.69% covariance component change per year relative to value at age 0. Panel D shows 

υCONTβj
Age plotted against υCONTβj

Int, i.e., correlation result parallel to panel C. The slope 

the fitted line is −0.48% correlation component change per year relative to value at age 0. r2 

values (variance accounted for by the linear model) are included in insets in panels C and D 

for comparison to r2 values reported in Fig. 8.
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Fig. 6. 
Covariance FC matrix changes with age, ADAD, and LOAD. In Panel A, the effect of age 

(Fig. 5A) has been multiplied by 35 years, which is the mean age difference in the DIAN vs. 

WUSM controls. Panels B-D and F-H show Aβ positive CDR 0, CDR 0.5 and CDR 1+ vs. 

control, dimensionality reduced, difference matrices in the WUSM and DIAN participants, 

respectively, evaluated as WΔΨ*WT
. The effects of age and cohort have removed from 

the AD results. Note consistent “matrix topography” with variable scaling, i.e., absence of 

CDR-dependent focality evident on inspection. Corresponding undifferenced covariance and 

correlation matrices are shown in Fig. S4. Matrix block labels are identical to those in Figs. 

3 and 4; they are omitted here to optimize use of space.
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Fig. 7. 
Correlation FC matrix changes with age, ADAD, and LOAD. This figure is parallel to 

Fig. 6. The effect of age (Panel A) has been multiplied by 35 years as in Fig. 6. Panels 

B-D and F-H show Aβ positive CDR 0, CDR 0.5 and CDR 1+ vs. control, dimensionally 

reduced, difference matrices in the WUSM and DIAN participants, respectively, evaluated 

as WΔΨ*WT
. Correlation values have been scaled by υCONT = 2.98 to facilitate comparison 

with parallel covariance results shown in Fig. 6. Again, note consistent “matrix topography” 

with variable scaling. Corresponding undifferenced covariance and correlation matrices are 

shown in Fig. S5.
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Fig. 8. 
Change in covariance and correlation component values with LOAD and ADAD at CDR 

1+. Each panel includes 30 symbols corresponding to the dimensionality of the fixed bases. 

Panels A and B show CDR 1+ LOAD and ADAD covariance component differences relative 

to controls. ΔΨj is the mean CDR1+ vs. mean control difference in the jth covariance 

component. Plotting ΔΨj vs. Ψj, CONT visualizes differences relative to controls vs. the 

control mean, i.e., proportional differences. Insets report r2 (fraction of variance accounted 

for by the linear model), i.e., extent to which all components exhibit the same proportional 

difference at CDR 1+ relative to controls. Non-proportional differences indicate the presence 

of focality. Panel C plots ΔΨj for ADAD vs. ΔΨj for LOAD. The effects of LOAD and 

ADAD on covariance FC are very strongly correlated (r2=0.891). The line of identity is 

dotted. Panels D - F show correlation component results parallel to panels A - C (omitting 

υ∗). ΔΨj is the mean CDR1+ vs. mean control difference in the jth correlation component. 

Deviation from the linear fit in panels D and E is evident, most markedly in the strongest 

two correlation components. Thus, focality in the effects of AD on functional connectivity 

is more evident in correlation FC as opposed to covariance FC. Panel F is exactly parallel 

to panel C. The strong Pearson correlation (r2=0.760) suggests approximately comparable 

effects of LOAD and ADAD on correlation FC.
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Table 3

Global covariance:correlation ratios (υ*) and fraction of explained variance (η*
2) for ADRC and DIAN 

participants stratified by CDR.

υ * η*
2

WUSM cohort LOAD Aβ− Control 2.90 0.966

LOAD CDR 0 2.84 0.967

Aβ+ CDR 0.5 2.82 0.965

CDR ≥ 1 2.09 0.965

DIAN cohort Mutation− Aβ− Control 2.41 0.962

Mutation+ Aβ− CDR 0 3.14 0.969

Aβ+ CDR 0 2.48 0.955

CDR 0.5 1.99 0.961

CDR ≥ 1 1.28 0.973
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