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Abstract: Complement component 3 (C3) contributes to neurogenesis, neural migration, and synaptic
elimination under normal and disease conditions of the brain, even though it has not been studied
in the enteric nervous system (ENS). To determine the role of C3 in the regulatory mechanism
of ENS during C3 deficiency-induced constipation, the changes in the markers of neuronal and
interstitial cells of Cajal (ICCs), the markers for excitatory and inhibitory transmission of ENS, and
expression of C3 receptors were analyzed in the mid colon of C3 knockout (KO) mice at 16 weeks of
age. Prominent constipation phenotypes, including the decrease in stool parameters, changes in the
histological structure, and suppression of mucin secretion, were detected in C3 KO mice compared
to wildtype (WT) mice. The expression levels of the neuron specific enolase (NSE), protein gene
product 9.5 (PGP9.5), and C-kit markers for myenteric neurons and ICCs were lower in the mid
colon of C3 KO mice than WT mice. Excitatory transmission analysis revealed similar suppression of
the 5-hydroxytryptamine (5-HT) concentration, expression of 5-HT receptors, acetylcholine (ACh)
concentration, ACh esterase (AChE) activity, and expression of muscarinic ACh receptors (mAChRs),
despite the mAChRs downstream signaling pathway being activated in the mid colon of C3 KO
mice. In inhibitory transmission analysis, C3 KO mice showed an increase in the nitric oxide (NO)
concentration and inducible nitric oxide synthase (iNOS) expression, while neuronal NOS (nNOS)
expression, cholecystokinin (CCK), and gastrin concentration were decreased in the same mice.
Furthermore, the levels of C3a receptor (C3aR) and C3bR expression were enhanced in the mid colon
of C3 KO mice compared to the WT mice during C3 deficiency-induced constipation. Overall, these
results indicate that a dysregulation of the ENS may play an important role in C3 deficiency-induced
constipation in the mid colon of C3 KO mice.

Keywords: C3; constipation; enteric nervous system; myenteric neuron; ICC; 5-HT; Ach; NO

1. Introduction

C3, the most abundant complement protein, plays an important role in activating the
complement system during the formation of membrane attack complex (MAC) to lyse
the target pathogens [1,2]. In the complement activation process, this protein is cleaved
into C3a and iC3b and C3f by C3 convertase via the classical, alternative, and lectin
pathways [3]. The resulting fragments derived from C3 proteins bind to several receptors,
such as CR1, CR2 (CD21), CR3 (CD11b/CD18), and CR4 (CD11c/CD18), and stimulate
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various immune responses, including phagocytosis, solubilization of the immune complex,
and neutralization of viruses via direct recognition and interaction [4]. In addition, C3
proteins help regulate development in the normal and pathological brain. This role is
associated with protein expression in most brain cells, including astrocytes, microglia,
oligodendrocytes, and neurons, during the classical and alternative pathway, even though
the primary source of C3 is astrocytes [5,6]. In these cells, C3 fragments and their receptors
mediate neurogenesis, neuronal migration, and synaptic pruning [7–9]. Furthermore, C3
proteins have been implicated in a few brain disorders. Synaptic terminal elimination
induced by a neuroinvasive infection with West Nile Virus was decreased significantly in
C3- and C3R-deficient mice [10]. The synaptic loss and neuronal loss, as well as microglial
activation, are positively correlated with increased levels of C3 and C3aR expression [11,12].
On the other hand, the above functions of C3 and their receptors have not been fully studied
in the nervous system of other organs except the brain.

Indirect evidence first suggested the role of C3 in constipation. The level of C3
mRNA was upregulated in inflammatory bowel disease (IBD) and Crohn’s disease (CD)
patients [13,14]. Similar increases in the concentrations of C3 and C3b fragments were
observed. An intensive level of C3 proteins was detected in the small and large intes-
tine in CD patients, ulcerative colitis (UC) patients, and dextran sodium sulfate-treated
mice [15–19]. Recently, the potential of C3 as a cause of constipation was proven using C3
KO mice. Sixteen week old C3 KO mice exhibited significant changes in the constipation
phenotypes, including the stool excretion parameters, gastrointestinal transit, intestine
length, histological structure of the colon, and mucin secretion during C3 deficiency [20]. In
addition, C3 deficiency-induced constipation of these mice was associated with dysbiosis
of 12 genera of bacteria among the total fecal microbiota [21]. Furthermore, significant
inflammatory responses were induced during C3 deficiency in the mid colon of C3 KO
mice. This response was mediated by activating the apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC) inflammasome pathway, NF-κB signaling
pathway, and iNOS-mediated COX-2 induction pathway [22]. On the other hand, whether
C3 deficiency-induced constipation can be accompanied by a dysfunction of the ENS in the
mid colon of C3 KO mice remains to be determined.

This study examined alterations on markers associated with excitatory and inhibitory
transmission of the ENS in the mid colon of C3 KO mice with the constipation phenotypes.
In particular, this study focused on the markers for ICC and neuron cells, markers for the
excitatory and inhibitory transmission in ENS, and the mAChR downstream signal pathway.

2. Results
2.1. Confirmation of the Constipation Phenotypes in C3 KO Mice

In a previous study, 16 week old C3 KO mice exhibited constipation phenotypes,
including a decrease in excretion parameters, disruption of the colon histological structure,
and decline in mucin secretion ability [20]. Therefore, these phenotypes were first confirmed
in 16 week old C3 KO mice before analyzing the dysregulation of ENS in the mid colon.
Three stool parameters, including the number, weight, and water content, were decreased
remarkably in the C3 KO mice compared to those of WT mice. The water volume lost
per hour in stools from C3 KO mice (0.225 mL/h) was less than 15% of that lost from
WT mice (1.52 mL/h) (Figure 1a). The cause of this difference is considered to be related
to the decrease in water intake at 14–16 weeks of age because the urine volume was
constantly maintained (Supplementary Figure S1). Similar alterations were observed on
the histological structure, including the thickness of the mucosal layer and muscle layer
and mucin secretion of the mid colon (Figure 1b,c). These results suggest that 16 week old
C3 KO mice show constant phenotypes for chronic constipation, allowing an investigation
of the ENS dysfunction.
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Figure 1. Determination of the constipation phenotypes in C3 KO mice. (a) Stool parameters. After 
collecting the stools from a metabolic cage, their number, weight, and water contents were 
measured, as described in Section 4. Seven mice per group were used for stool collection, and each 
parameter was assayed in duplicate. The data are reported as the mean ± SD values. * p < 0.05 
compared with the WT group. (b) Histological structure of the mid colon. H&E-stained sections of 
the mid colon from WT and KO mice were observed at 100× and 400× magnification using a light 
microscope. Five mice per group were used to prepare the H&E-stained slides, and the 
histopathological structures were observed in duplicate in each slide. (c) Mucin staining of the mid 
colon. Alcian blue-stained sections of the mid colon from WT and KO mice were observed at 100× 
and 400× magnification using an optical microscope. Three mice per group were used to prepare 
Alcian blue-stained slides, and density changes were observed in duplicate in each slide. 
Abbreviations: WT, wildtype; KO, knockout; H&E, hematoxylin and eosin. 

2.2. Alteration of the Makers for Neuronal Cells and ICC in the Mid Colon of C3 KO Mice 
The expression levels of the markers, including C-kit, NSE, and PGP9.5 proteins, 

were measured in the mid colon of C3 KO mice to indirectly determine if C3 deficiency-
induced constipation was accompanied by the decreased density of neuronal cells and 
ICC in the mid colon of C3 KO mice. The expression levels of three proteins were 
significantly lower in the mid colon of C3 KO mice than WT mice. The largest decrease 
was detected in the expression level of C-kit, followed by PGP9.5 and NSE (Figure 2a). 
Furthermore, the distribution of PGP9.5 proteins in the morphometric analysis of the 
neural population was observed to confirm whether the results of Western blot were well 
reflected. The PGP9.5-stained subpopulation was lower in the mid colon of C3 KO mice 
than in WT mice. Furthermore, they were majorly packed between muscle layers, while 
weak intensity of fluorescence was observed between submucosal layer and muscle layer. 
Therefore, fewer PGP9.5 proteins in Western blot were considered to be associated with a 
decrease in muscle layer (Figure 2b). Overall, the above results show that C3 deficiency-

Figure 1. Determination of the constipation phenotypes in C3 KO mice. (a) Stool parameters. After
collecting the stools from a metabolic cage, their number, weight, and water contents were measured,
as described in Section 4. Seven mice per group were used for stool collection, and each parameter
was assayed in duplicate. The data are reported as the mean ± SD values. * p < 0.05 compared with
the WT group. (b) Histological structure of the mid colon. H&E-stained sections of the mid colon
from WT and KO mice were observed at 100× and 400×magnification using a light microscope. Five
mice per group were used to prepare the H&E-stained slides, and the histopathological structures
were observed in duplicate in each slide. (c) Mucin staining of the mid colon. Alcian blue-stained
sections of the mid colon from WT and KO mice were observed at 100× and 400× magnification
using an optical microscope. Three mice per group were used to prepare Alcian blue-stained slides,
and density changes were observed in duplicate in each slide. Abbreviations: WT, wildtype; KO,
knockout; H&E, hematoxylin and eosin.

2.2. Alteration of the Makers for Neuronal Cells and ICC in the Mid Colon of C3 KO Mice

The expression levels of the markers, including C-kit, NSE, and PGP9.5 proteins, were
measured in the mid colon of C3 KO mice to indirectly determine if C3 deficiency-induced
constipation was accompanied by the decreased density of neuronal cells and ICC in the
mid colon of C3 KO mice. The expression levels of three proteins were significantly lower
in the mid colon of C3 KO mice than WT mice. The largest decrease was detected in
the expression level of C-kit, followed by PGP9.5 and NSE (Figure 2a). Furthermore, the
distribution of PGP9.5 proteins in the morphometric analysis of the neural population
was observed to confirm whether the results of Western blot were well reflected. The
PGP9.5-stained subpopulation was lower in the mid colon of C3 KO mice than in WT mice.
Furthermore, they were majorly packed between muscle layers, while weak intensity of
fluorescence was observed between submucosal layer and muscle layer. Therefore, fewer
PGP9.5 proteins in Western blot were considered to be associated with a decrease in muscle
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layer (Figure 2b). Overall, the above results show that C3 deficiency-induced constipation
may be tightly linked to the decrease in the markers for neuronal cells and ICC in the mid
colon of C3 KO mice.
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reported as the mean ± SD. * p < 0.05 compared with the WT group. (b) Tissue distribution of PGP9.5 
proteins. This level was detected in the mid colon using an immunofluorescence (IF) staining assay. 
Three mice per group were used in the slide section, and IF staining was assessed in duplicate in 
two different slides. Arrowheads indicate PGP9.5-stained subpopulations. Abbreviations: WT, 
wildtype; KO, knockout; C-kit, receptor tyrosine kinase; NSE, neuron-specific enolase; PGP9.5, 
protein gene product 9.5; HRP, horseradish peroxidase; IgG, immunoglobulin G. 
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C3 KO mice with constipation to determine if C3 deficiency-induced constipation was 
accompanied by an alteration on the excitatory function of ENS in the mid colon. The 
concentration of 5-HT significantly decreased by 18% in C3 KO mice compared to WT 
mice (Figure 3a). In addition, a similar decrease was detected in four types of 5-HT 
receptors, namely, 2AR, 2BR, 3AR, and 3BR, even though their rate of decrease was varied. 
These rates were greater in the levels of 2BR and 3BR expression than those of 2AR and 
3AR (Figure 3b,c). The concentration of ACh was lower in the mid colon of C3 KO mice 
than the wildtype mice, while the activity of AChE was remarkably higher in the same 

Figure 2. Expression levels of C-kit, NSE, and PGP9.5 in the mid colon of C3 KO mice. (a) Expression
levels of C-kit, NSE, and PGP9.5 proteins. The expression level of the three proteins was determined by
Western blot analysis using the specific primary antibody and HRP-labeled anti-rabbit IgG antibody.
The band intensities were determined using an imaging densitometer, and protein expressions were
calculated relative to the intensity of β-actin. Four mice per group were used to prepare the tissue
lysates, and Western blots were assayed in duplicate for each sample. Data are reported as the
mean ± SD. * p < 0.05 compared with the WT group. (b) Tissue distribution of PGP9.5 proteins. This
level was detected in the mid colon using an immunofluorescence (IF) staining assay. Three mice per
group were used in the slide section, and IF staining was assessed in duplicate in two different slides.
Arrowheads indicate PGP9.5-stained subpopulations. Abbreviations: WT, wildtype; KO, knockout;
C-kit, receptor tyrosine kinase; NSE, neuron-specific enolase; PGP9.5, protein gene product 9.5; HRP,
horseradish peroxidase; IgG, immunoglobulin G.

2.3. Changes in the Excitatory Function of ENS in the Mid Colon of C3 KO Mice

The regulatory factors for 5-HT and ACh function were analyzed in the mid colon
of C3 KO mice with constipation to determine if C3 deficiency-induced constipation was
accompanied by an alteration on the excitatory function of ENS in the mid colon. The
concentration of 5-HT significantly decreased by 18% in C3 KO mice compared to WT mice
(Figure 3a). In addition, a similar decrease was detected in four types of 5-HT receptors,
namely, 2AR, 2BR, 3AR, and 3BR, even though their rate of decrease was varied. These
rates were greater in the levels of 2BR and 3BR expression than those of 2AR and 3AR
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(Figure 3b,c). The concentration of ACh was lower in the mid colon of C3 KO mice than
the wildtype mice, while the activity of AChE was remarkably higher in the same sample
(Figure 4a,b). A similar decreasing pattern was observed in the expression of mAChRs.
These mAChR M2 and M3 levels were remarkably lower in the mid colon of the C3 KO
mice than the WT mice (Figure 5a). On the other hand, a reverse pattern was detected for
the expression of a key member in the signaling pathway of mAChR downstream. The
levels of Gα expression and PKC and PI3K phosphorylation were significantly higher in
the mid colon of C3 KO mice than the WT mice (Figure 5b,c). These signals were ultimately
reflected in the level of MLC phosphorylation, but the rate of the increase was different
(Figure 5c). These results suggest that C3 deficiency-induced constipation may be tightly
linked to a dysregulation of the excitatory function of ENS in the mid colon of C3 KO mice.
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HT. Five mice per group were used to prepare tissue homogenate, and the 5-HT concentration was 
assayed in duplicate. (b) Expression of 5-HT 2AR and 2BR. The levels of 5-HT 2AR and 2BR mRNA 
expression in the total mRNA of colon tissue were measured by qRT-PCR analyses using the specific 
primers. The mRNA level of each gene was calculated on the basis of the intensity of β-actin as an 
endogenous control. (c) Expression of 5-HT 3AR and 3BR. The levels of 5-HT 3AR and 3BR mRNA 
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primers. The mRNA level of each gene was calculated on the basis of the intensity of β-actin as an 
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Figure 3. Levels of 5-HT and its receptors in the mid colon of C3 KO mice. (a) 5-HT concentration.
The concentration of 5-HT was measured in the mid colon homogenate using an enzyme-linked
immunosorbent assay. The minimum detectable concentration of each kit was 1.5–250 ng/mL of
5-HT. Five mice per group were used to prepare tissue homogenate, and the 5-HT concentration was
assayed in duplicate. (b) Expression of 5-HT 2AR and 2BR. The levels of 5-HT 2AR and 2BR mRNA
expression in the total mRNA of colon tissue were measured by qRT-PCR analyses using the specific
primers. The mRNA level of each gene was calculated on the basis of the intensity of β-actin as an
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endogenous control. (c) Expression of 5-HT 3AR and 3BR. The levels of 5-HT 3AR and 3BR mRNA
expression in the total mRNA of colon tissue were measured by qRT-PCR analyses using the specific
primers. The mRNA level of each gene was calculated on the basis of the intensity of β-actin as an
endogenous control. Four mice per group were used to prepare the tissue homogenate, and the total
RNA, 5-HT concentration, and qRT-PCR analysis were assayed in duplicate for each sample. Data are
reported as the mean ± SD. * p < 0.05 compared to the WT group. Abbreviations: WT, wildtype; KO,
knockout; 5-HT, 5-hydroxytryptamine; qRT-PCR, quantitative real-time polymerase chain reaction;
5-HT 2AR, 5-hydroxytryptamine 2A receptor; 5-HT 2BR, 5-hydroxytryptamine 2B receptor; 5-HT
3AR, 5-hydroxytryptamine 3A receptor; 5-HT 3BR, 5-hydroxytryptamine 3B receptor.
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Figure 4. ACh concentrations and AChE activity in the mid colon of C3 KO mice. (a) ACh concentra-
tions. The concentration of ACh was measured in the mid colon homogenate using an Acetylcholine
Assay Kit. The minimum detectable concentration of this kit is 0.078–20 µM of ACh. (b) AChE
activity. After homogenizing the mid colon tissue, the AChE activity was measured using an Acetyl-
cholinesterase Assay Kit that could detect as little as 0.01 mU AChE in a 100 µL assay volume
(0.1 mU/mL). Five mice per group were used to prepare tissue homogenate, and the ACh concentra-
tion and AChE activity were assayed in duplicate. Data are reported as the mean ± SD. * p < 0.05
compared to the WT group. Abbreviations: WT, wildtype; KO, knockout; ACh, acetylcholine;
AChE, acetylcholinesterase.
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Figure 5. Expressions of mAChRs and key mediators within mAChRs downstream signaling 
pathway in the mid colon of C3 KO mice. (a) mAChR M2 and M3 expression. The expression levels 
of mAChR M2 and M3 were measured by Western blot analysis using the specific primary 
antibodies and HRP-labeled anti-rabbit IgG antibody. (b) Gα expression. The expression levels of 
G𝛼 in the mAChR M2 and M3 downstream signaling pathway were measured by Western blot 
analysis using the specific primary antibodies and HRP-labeled anti-rabbit IgG antibody. (c) PKC, 
p-PKC, PI3K, p-PI3K, MLC, and p-MLC expression. The expression levels of six proteins in the 
mAChR M2 and M3 downstream signaling pathway were measured by Western blot analysis using 
the specific primary antibodies and HRP-labeled anti-rabbit IgG antibody. After the intensity of 
each band was determined using an imaging densitometer, the relative levels of the four proteins 
were calculated on the basis of the intensity of β-actin. Four mice per group were used to prepare 
the total tissue homogenate, and Western blot analyses were assayed in duplicate. Data are reported 
as the mean ± SD. * p < 0.05 compared to the WT group. Abbreviations: WT, wildtype; KO, knockout; 
mAChR, muscarinic acetylcholine receptors; Gα, G-protein alpha subunit; PKC, protein kinase C; 
PI3K, phosphoinositide 3-kinase; MLC, myosin light chain; HRP, horseradish peroxidase; IgG, 
immunoglobulin G. 
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This section investigates whether C3 deficiency-induced constipation was 
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regulatory factors for NO functions were analyzed in the mid colon of C3 KO mice. The 
NO concentration was remarkably higher at 41% in C3 KO mice than WT mice (Figure 
6a). A similar increase pattern was detected in the expression of iNOS protein, but the 
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Figure 5. Expressions of mAChRs and key mediators within mAChRs downstream signaling pathway
in the mid colon of C3 KO mice. (a) mAChR M2 and M3 expression. The expression levels of mAChR
M2 and M3 were measured by Western blot analysis using the specific primary antibodies and HRP-
labeled anti-rabbit IgG antibody. (b) Gα expression. The expression levels of Gα in the mAChR M2
and M3 downstream signaling pathway were measured by Western blot analysis using the specific
primary antibodies and HRP-labeled anti-rabbit IgG antibody. (c) PKC, p-PKC, PI3K, p-PI3K, MLC,
and p-MLC expression. The expression levels of six proteins in the mAChR M2 and M3 downstream
signaling pathway were measured by Western blot analysis using the specific primary antibodies
and HRP-labeled anti-rabbit IgG antibody. After the intensity of each band was determined using
an imaging densitometer, the relative levels of the four proteins were calculated on the basis of the
intensity of β-actin. Four mice per group were used to prepare the total tissue homogenate, and
Western blot analyses were assayed in duplicate. Data are reported as the mean ± SD. * p < 0.05
compared to the WT group. Abbreviations: WT, wildtype; KO, knockout; mAChR, muscarinic
acetylcholine receptors; Gα, G-protein alpha subunit; PKC, protein kinase C; PI3K, phosphoinositide
3-kinase; MLC, myosin light chain; HRP, horseradish peroxidase; IgG, immunoglobulin G.

2.4. Change in the Inhibitory Function of ENS in the Mid Colon of C3 KO Mice

This section investigates whether C3 deficiency-induced constipation was accompa-
nied by an alteration in the inhibitory function of ENS in the mid colon. The regulatory
factors for NO functions were analyzed in the mid colon of C3 KO mice. The NO concen-
tration was remarkably higher at 41% in C3 KO mice than WT mice (Figure 6a). A similar
increase pattern was detected in the expression of iNOS protein, but the magnitude of the
increase was different (Figure 6b). By contrast, nNOS expression showed a reverse pattern
to iNOS expression (Figure 6b). Therefore, C3 deficiency-induced constipation may be
associated with a dysregulation of the excitatory function of ENS through upregulation of
the NO concentration and iNOS expression in the mid colon of C3 KO mice.
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The concentration of NO was determined using the Griess reagent. Five mice per group were
used to prepare the tissue lysates, and the NO concentration was assayed in duplicate for each
sample. (b) nNOS and iNOS expression. The expression levels of the nNOS and iNOS proteins were
determined by Western blot analysis using the specific primary antibody and HRP-labeled anti-rabbit
IgG antibody. The band intensities were determined using an imaging densitometer, and protein
expressions were calculated relative to the intensity of β-actin. Four mice per group were used to
prepare the tissue lysates, and Western blots were assayed in duplicate. Data are reported as the mean
± SD. * p < 0.05 compared to the WT mice. Abbreviations: WT, wildtype; KO, knockout; NO, nitric
oxide; nNOS, neuronal nitric oxide synthase; iNOS, inducible nitric oxide synthase; HRP, horseradish
peroxidase; IgG, immunoglobulin G.

2.5. Alterations on the Concentration of GI Hormones in the Mid Colon of C3 KO Mice

ENS plays a key role in the secretion of gastrointestinal hormones, including CCK
and gastrin, to control the digestive process, such as gut motility, enzyme secretion, and
energy homeostasis [23]. The concentrations of CCK and gastrin hormone were measured
in the mid colon of C3 KO mice to determine if the dysregulation of ENS function was
accompanied by a change in the regulation of GI hormones in the mid colon of C3 KO
mice. These levels were remarkably lower in the mid colon of C3 KO mice than in WT mice
(Figure 7). Hence, dysregulation of the ENS function is associated with the downregulation
of GI hormones in the mid colon of C3 KO mice.
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Figure 7. Concentrations of GI hormones. The concentrations of CCK and gastrin were measured in
the mid colon homogenate using an enzyme-linked immunosorbent assay. The minimum detectable
concentration of each kit was 0.1–1000 pg/mL of CCK and 0.312–20 pg/mL of gastrin. Five mice per
group were used to prepare tissue homogenate, and the hormone levels were assayed in duplicate for
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2.6. Verification of the Correlation between ENS Function and C3R

Alteration of C3R expression is associated with synaptic loss and microglial activation
in the brain of immune disorders with West Nile virus infection and neurodegenerative
disorder model [9,12]. Hence, we examined the expression of C3Rs in the colon tissue of C3
KO mice to verify the involvement of C3R during dysregulation of ENS. The levels of C3aR
and C3bR expression were remarkably higher in the mid colon of C3 KO mice (47% and
82%, respectively) than WT during complete downregulation of the C3 proteins (Figure 8).
Therefore, these results suggest that C3aR and C3bR may be associated with dysregulation
of the ENS function in the mid colon of C3 KO mice.
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Figure 8. Expression of C3aR and C3bR proteins in the mid colon of C3 KO mice. The expression
levels of the C3, C3aR, and C3bR proteins in the mid colon were measured by Western blot analysis
using the anti-C3aR and anti-C3bR antibodies. After determining the intensity of each band using
an imaging densitometer, the relative levels of the C3, C3aR, and C3bR protein were calculated on
the basis of the intensity of β-actin. Four mice per group were used to prepare the tissue lysates,
and Western blots were assayed in duplicate for each sample. Data are reported as the mean ± SD.
* p < 0.05 compared to the WT group. Abbreviations: WT, wildtype; KO, knockout; C3aR, C3a
receptor; C3bR, C3b receptor; HRP, horseradish peroxidase; IgG, immunoglobulin G.

3. Discussion

A dysfunction of ENS can be considered one of the causes of constipation, reflux,
and delayed gastric emptying because it plays a key role in regulating the GI tract motil-
ity, movement of water and electrolyte, gastric and pancreatic secretion, and defense
reactions [24–26]. Therefore, it is very important to verify the dysfunction of ENS in the C3
KO mice as a new constipation model. This study examined whether C3 deficiency-induced
constipation can be accompanied by a dysfunction of the ENS in the mid colon of C3 KO
mice. These results provide the first evidence that C3 deficiency-induced constipation may
be associated with an abnormality in the density of neurons and ICC in ENS, excitatory
and inhibitor function of the ENS, and C3R expression in the mid colon of C3 KO mice.

The gut motility is regulated by a complex collaboration and communication of various
ENS-related cells, including enteric neurons, ICC, and smooth muscle [27]. During the
pathogenesis of constipation, significant alterations were detected in the number of enteric
neurons and ICC in animal models and human patients. Slow-transit constipation (STC)
patients showed a significant decrease in the number of ICC and PGP9.5 reactive cells of
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the sigmoid colon or across the whole colon [28–30]. In addition, the number of enteric
neurons was lower in the submucosal plexus of patients with intractable constipation [31].
Furthermore, a similar decrease pattern was detected in constipated animal models. The
levels of NSE, PGP9.5, and C-kit expression were statistically significantly lower in the
mid colon of 16 week old Lep KO mice with the constipation phenotypes [32]. ICR mice
and SR rats with loperamide (Lop)-induced constipation exhibited a decrease in the level
of two ICC markers (C-kit and SCF) and the other enteric nerve-related factors (PGP9.5,
brain-derived neurotrophic factor (BDNF), and GNDT) [33,34]. This study measured the
expression levels of NSE, PGP9.5, and C-kit markers in the mid colon of C3 KO mice to
indirectly determine if C3 deficiency-induced constipation is accompanied by changes in
the density of enteric neurons and ICC. Most results from the current study for the specific
markers of enteric neurons and ICC in C3 KO mice were similar to previous studies that
directly examined the number of the enteric neuron and ICC in patients and animal models
with the constipation phenotypes. However, the above comparisons have limitations
because our study did not directly count the numbers of two cells and measured them
indirectly using specific markers. Furthermore, it should be fully considered that the
amount of C-kit protein does not absolutely reflect the amount of ICC because it is a marker
of other than ICC. Therefore, further studies will be needed to directly count and identify
the number of enteric neurons and ICC through full immunohistochemical characterization
and quantification using Western blot.

The present study investigated alterations in the excitatory function of ENS in the
mid colon of C3 KO mice during C3 deficiency-induced constipation. The concentration of
two neurotransmitters (5-HT and ACh) and the expression level of their associate receptors
were remarkably lower in the mid colon of C3 KO mice than the WT mice, as shown in
Figures 3–5. Generally, the motility and transit of the GI tract are regulated spatiotempo-
rally by ENS activities using several neurotransmitters, such as 5-HT and ACh. During
constipation, the concentrations of these neurotransmitters were changed statistically sig-
nificantly in human patients and rodent models. The 5-HT concentration was reduced
significantly in patients with functional constipation (FC), constipation-predominant irri-
table bowel syndrome during normal feeding, and alternating diarrhea and constipation
symptoms [35–37]. A similar decrease pattern in the 5-HT concentration was observed in
the serum of Lop-induced constipation SD rats and the constipation population fecal fluid
gavage group, while the expression level of the 5-HT receptor was lower in the distal colon
of Lop-induced STC mice than WT mice [38–41]. On the other hand, only a few opposite
results were reported in patients. The overall mean 5-HT concentrations in the colonic
mucosal specimens were higher in patients with constipation-predominant irritable bowel
syndrome (IBS) than the control subjects and patients with diarrhea-predominant IBS [42].
Overall, these results are consistent with previous results that detected 5-HT concentrations
in patients, rats, and mice, even though there are differences in the causes of constipa-
tion. Significant alterations in ACh concentration, AChE activity, and AChR downstream
signaling were detected. Lop-induced constipation rat and CRISPR/Cas9-generated Lep
KO mice with obesity-induced constipation exhibited a decrease in mAChRM2 and M3
expression level, as well as activation of their downstream signaling [32,43,44]. In addition,
the AChE activity was statistically significantly lower in the colon tissue of Lop-induced
constipation rats and the serum of activated carbon-induced constipation mice than their
untreated counterparts [44,45]. These findings are consistent with previous studies in
mAChR expression and their downstream signaling pathway, but AChE activity tended to
be opposite in previous studies. The difference between the results of the present study and
previous studies was attributed to differences in the cause of constipation because there are
many differences in the types of causative proteins or substances that induce this disease.

NO is one of the major non-andrenergic noncholinergic (NANC) inhibitory neurotrans-
mitters that relax the GI smooth muscle to regulate physiologic peristalsis [46–48]. A dis-
ruption of the NO concentration can alter normal GI motility, but this molecule is produced
by nNOS in the gut [49,50]. In particular, the pathological phenotypes of constipation were
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tightly linked to the changes in the NO contents and NOS expression. NO nerves strongly
innervated in the colons of patients with STC compared to those of normal individuals [51].
The level of NOS mRNA was significantly higher in the colon of STC rats established by
gastric irrigation of rhubarb and the small intestine of activated carbon-induced constipated
mice [52,53]. In addition, the NO and NOS concentrations in plasma were increased in the
Lop-induced functional constipation rats [54]. Atropine–diphenoxylate-induced STC rats
showed higher NO and NOS values in the serum than normal rats [53]. This study exam-
ined whether C3 deficiency-induced constipation may be accompanied by NO-mediated
inhibitory function of ENS in the mid colon. The NO concentration and nNOS expression
were lower in the mid colon of C3 KO mice, while iNOS expression was higher in the same
mice. The NO concentration increased similarly in this study using C3 KO mice and in
previous studies using Lop-induced rats. On the other hand, there was a difference in the
results of the NOS mRNA levels. This study revealed an increase in iNOS and a decrease
in nNOS, where previous studies reported an increase in the NOS mRNA level regardless
of their type. This disparity results from differences in the causes of constipation, tissue
samples analyzed, and the subtypes of NOS detected.

Lastly, the C3 receptors, including CR1, CR2, CR3, and CR4, contribute to the mi-
gration and phagocytosis of cells and immune regulation through binding with several
C3 fragments, such as C3a, iC3b, C3d, and C3f [54,55]. Significant alterations in the ex-
pression of these receptors have been detected in various diseases, such as inflammatory
diseases [56,57], vascular disease [58], and microbial infection, even though C3bα and
β-protein were maintained consistently in several strains of mice [59,60]. On the other
hand, these changes in constipation conditions have been examined in limited studies. The
levels of C3 expression were increased significantly, whereas expressions of C3aR and C3bR
were decreased during Lop-induced constipation [61]. The present study investigated the
levels of C3a and C3bR expression in the mid colon of C3 KO mice during C3 deficiency-
induced constipation. These mice showed the upregulation of C3aR and C3bR expression
during the complete downregulation of the C3 protein. The results of the present study in
C3 KO mice tended to be opposite those of Lop-induced constipation rats. This is thought
to be due to the differences in the action mechanism that induces the constipation pheno-
types. Additional studies on the transcriptional regulation mechanisms of C3R during two
constipation induction process will be helpful in the study to identify these differences.
Therefore, these findings provide additional evidence for the close interactions between
constipation and C3Rs expression, but more studies will be needed to explain the clear
difference in both studies. Furthermore, our study had some limitations in that it did not
examine clinical observations due to the fact that human disease etiopathogenesis is much
more complex. Moreover, the lack of any comparison in relation to other animal models
with similar phenotypes and sex specificity, as well as data normalization using only one
housekeeping gene, should be considered as a drawback of our study.

4. Materials and Methods
4.1. Management and Breeding of C3 KO Mice

The protocol for the animal study was approved by the Pusan National University-
Institutional Animal Care and Use Committee (PNU-IACUC; Approval Number PNU-
2020-2657). All mice were handled at the Pusan National University Laboratory Animal
Resources Center, which is accredited by the Korea Food and Drug Administration (FDA)
(Accredited Unit Number: 000231) and AAALAC International (Accredited Unit Number:
001525). They were provided with a standard irradiated chow diet (Samtako BioKorea Co.,
Osan, Korea) ad libitum consisting of moisture (12.5%), crude protein (25.43%), crude fat
(6.06%), crude fiber (3.9%), crude ash (5.31%), calcium (1.14%), and phosphorus (0.99%).
The animals were maintained in a specific pathogen-free (SPF) state under a strict light
cycle (lights on at 6:00 a.m. and off at 6:00 p.m.) at 22 ± 2 ◦C and relative humidity of
50% ± 10%.
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Eight week old C3 KO mice with CRISPR/Cas9-mediated C3 mutant genes and WT
FVB/N background strains were kindly provided by the Department of Laboratory Animal
Resources (Laboratory Animals Resources Bank) at the National Institute of Food and
Drug Safety Evaluation (NIFDS, Chungju, Korea). The KO mice were confirmed by DNA-
Polymerase Chain Reaction (PCR) analysis of the genomic DNA using the specific primers
described elsewhere [20]. Sixteen week old WT (n = 7) and KO (n = 7) mice were bred in
a metabolic cage to analyze the excretion parameters. Moreover, the total sample size of
14 was calculated using G-POWER 3.1.9.7 software in order to determine the sufficient
number of mice per group. Subsequently, they were euthanized in a chamber filled with
CO2 gas. The mid colon tissue was selected on the basis of its role in the peristalsis,
defecation, water absorption, and stool formation, and it was collected for further analysis,
including histological structure, Western blot, Quantitative Real-Time PCR (qRT-PCR), and
Enzyme-linked immunosorbent assay (ELISA).

4.2. Stool Parameter Analysis

Briefly, WT (n = 7) and C3 KO (n = 7) mice were bred individually in metabolic cages
(Daejong Instrument Industry Co., LTD, Seoul, Korea) for 12 h to obtain uncontaminated
stool samples. After collecting the total stools, their weights were measured three times
using an electronic balance, while the number was counted twice. The moisture content of
stool was calculated as follows:

Stool moisture content = (A − B)/A × 100, (1)

where A is the weight of fresh stools immediately collected from mice, and B is the weight
of stools after drying at 60 ◦C for 12 h.

4.3. Histopathological Analysis

The mid colon tissues collected from WT (n = 5) and C3 KO (n = 5) mice were fixed
in 10% formalin for 48 h, embedded in paraffin wax, and sectioned into 4 µm thick slices
that were stained with hematoxylin and eosin (H&E; Sigma-Aldrich Co., St. Louis, MO,
USA). Finally, morphological structures of these sections were observed at 100× and 400×
magnification under an optical microscope (Leica Microsystems, Herbrugg, Switzerland).

The level of PGP9.5 was detected by immunofluorescence staining analysis. The mid
colon tissues of mice (n = 3) in subset group were fixed in 10% formalin for 48 h, embedded
in paraffin blocks, and sliced into 4 µm thick sections. The sections (n = 5) were then
deparaffinized with xylene, rehydrated with different EtOH concentrations, and pretreated
with a blocking buffer containing 10% goat serum (Vector Laboratories, Inc., Burlingame,
CA, USA) in a 1× PBS solution for 30 min at room temperature. The pretreated sections
were then incubated with anti-PGP9.5 (Abcam Com., Cambridge, UK; ab108986) antibodies
diluted 1:200 in a blocking buffer. After thorough washing in 1× PBS solution, the sections
were incubated with goat fluorescein isothiocyanate (FITC)-labeled anti-rabbit IgG (1:200,
Thermo Fisher Scientific Inc., Wilmington, MA, USA) for 45 min, washed three times in
1× PBS for 30 min each, and mounted with a vector shield mounting medium. Finally, the
green fluorescence intensity on the tissue section of the mid colon was detected using a
Motic AE31 Inverted Phase Contrast Fluorescence Microscope (Motic Incorporation Ltd.,
Causeway Bay, Hong Kong, China).

Mucin-staining analysis was achieved by fixing the mid colons collected from the mice
(n = 3) of all subset groups in 10% formalin for 48 h, embedding the samples in paraffin
wax, and sectioning them into 4 µm thick slices that were then deparaffinized with xylene
and rehydrated. The mounted tissue sections were rinsed with distilled water and stained
using an Alcian blue stain kit (IHC WORLD, Woodstock, MD, USA). The stained patterns
in the mid colon sections were observed by optical microscopy (Leica Microsystems).
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4.4. Western Blotting Analysis

The total tissue proteins were collected from the mid colons of WT (n = 4) and C3
KO (n = 4) mice using a Pro-Prep Protein Extraction Solution (Intron Biotechnology Inc.,
Seongnam, Korea), according to the manufacturer’s protocol. The acquired proteins were
then centrifuged at 13,000 rpm at 4 ◦C for 5 min, after which the total protein concentra-
tions were determined using a SMARTTM Bicinchoninic Acid Protein assay kit (Thermo
Fisher Scientific Inc.). The proteins (30 µg) were subjected to 4–20% sodium dodecyl sul-
fate polyacrylamide gel electrophoresis (SDS-PAGE) for 3 h. The resolved proteins were
transferred to nitrocellulose membranes for 2 h at 40 V. The membranes were then probed
with the following primary antibodies overnight at 4 ◦C: anti-Gα (Abcam Com.; ab283266),
anti-mAChR M2 (Alomone Labs, Jerusalem, Israel; AMR-002), anti-mAChR M3 (Alomone
Labs; AMR-006), anti-PKC (Cell Signaling Technology Inc., Cambridge, MA, USA; #2056),
anti-p-PKC (Cell Signaling Technology Inc.; #9375), anti-PI3K (Cell Signaling Technology
Inc.; #4292), anti-p-PI3K (Cell Signaling Technology Inc.; #4228), anti-MLC (Abcam Com.;
ab79935), anti-p-MLC (Abcam Com.; ab2480), anti-nNOS (Abcam Com.; ab3511), anti-NSE
(Abcam Com.; ab79757), anti-C-kit (DAKO, Kyoto, Japan; A4502), anti-PGP9.5 (Abcam
Com.; ab108986), or anti-actin (Cell Signaling Technology Inc.; #4967). The membranes were
then washed with a washing buffer (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 2 mM
KH2PO4, and 0.05% Tween-20), followed by incubation with 1:1,000 diluted horseradish
peroxidase-conjugated goat anti-rabbit IgG (Zymed Laboratories, South San Francisco,
CA, USA) for 2 h at room temperature, after which the blots were developed using a
Chemiluminescence Reagent Plus kit (Pfizer Inc., Gladstone, NJ, USA). The signal images
of each protein were then acquired using a digital camera (1.92 MP resolution) of the
FluorChem® FC2 Imaging system (Alpha Innotech Corporation, San Leandro, CA, USA).
The protein densities were semi-quantified using the AlphaView Program, version 3.2.2
(Cell Biosciences Inc.).

4.5. qRT-PCR Analysis

The total RNA molecules were isolated from the mid colon of mice (n = 4) in subset
group using an RNA Bee solution (Tet-Test, Friendswood, TX, USA). After homogenizing
the frozen mid colon tissue, RNA molecules were isolated by centrifugation at 15,000 rpm
for 15 min, and their concentration was measured using the Nano Drop Spectrophotometer
(Allsheng, Hangzhou, China). The total RNA (5 µg) from the mid colon tissue was annealed
with 500 ng of oligo-dT primer (Thermo Fisher Scientific Inc.) at 70 ◦C for 10 min to examine
the transcription level of each gene. The complementary DNA (cDNA) was synthesized
using the Invitrogen Superscript II reverse transcriptase (Thermo Fisher Scientific Inc.).
qRT-PCR was performed using the cDNA template obtained (2 µL) and 2× Power SYBR
Green (6 µL; Toyobo Life Science, Osaka, Japan) containing the following specific primers:
5-HT 2AR, sense primer 5′–CCGGG AGCCT CTTGA TACAG–3′ and antisense primer
5′–AGCCC CTCTC AAAGT CACAC A–3′; 5-HT 2BR, sense primer 5′–GCAGA TTTGC
TGGTT GGATT G–3′ and antisense primer 5′–GGCCA TATAG CCTCA AACAT GAT–3′;
5-HT 3AR (5-hydroxytryptamine receptor 3A) sense primer 5′–CTGAG GCCCT CCCAC
ATCT–3′ and antisense primer 5′–GGAAA GGAAC AAGGC CAACA–3′; 5-HT 3BR (5-
hydroxytryptamine Receptor 3B) sense primer 5′–TGCCG AGGAG TCTAG ATTGT ACCT–
3′ and antisense primer 5′–ACCCG ATGCT CCTGA TGGA–3′; β-actin sense primer 5′–
ACGGC CAGGT CATCA CTATT G–3′ and antisense primer 5′–CAAGA AGGAA GGCTG
GAAAA GA–3′. qRT-PCR was performed for 40 cycles using the following sequence:
denaturation at 95 ◦C for 15 s, followed by annealing and extension at 70 ◦C for 60 s.
The fluorescence intensity was measured at the end of the extension phase of each cycle.
The threshold value for the fluorescence intensities of all samples was set manually. The
reaction cycle at which the PCR products exceeded this fluorescence intensity threshold
during the exponential phase of PCR amplification was considered the threshold cycle
(Ct). The expression of the target gene was quantified relative to that of the housekeeping
gene β-actin on the basis of a comparison of the Cts at constant fluorescence intensity,
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as per Livak and Schmittgen’s method [18]. The relative quantification formula was the
2−∆∆Ct method proposed by Livak and Schmittgen. In C3 KO mice, the Ct value of target
gene mRNA was normalized (Ct target gene − Ct β-actin) as the β-actin mRNA Ct value,
which was called ∆Ct. The Ctcalibrator (mean target gene −mean β-actin) was calculated by
calculating the average of the target gene mRNA Ct value and the β-actin mRNA Ct value
of WT groups (n = 4). With this ∆Ctcalibrator, the ∆Ct of C3 KO mice was normalized again,
which was called ∆∆Ct (∆Ct − ∆Ctcalibrator). This ∆∆Ct was expressed as a final relative
quantitative value of 2−∆∆Ct.

4.6. Measurement of 5-HT Concentrations

The concentration of 5-HT was quantified in the mid colon mice (n = 5) in subset group
using ELISA kits (ImmuSmol, Pessac, France) according to the manufacturer’s instructions.
Briefly, the mid colon tissues (20 mg) were homogenized in ice-cold 1× PBS (pH 7.2–7.4)
using a glass homogenizer (Sigma-Aldrich Co.). The resulting tissue lysates were then
centrifuged at 10,000× g for 10 min at 4 ◦C, after which the supernatant was collected for
analysis. First, diluted standards and samples were acylated for 30 min at room temperature
(RT) on a shaker, after which serotonin antiserum was added to the acylated standards and
samples for 15–20 h at 2–8 ◦C. After conjugating enzyme in each well for 30 min at RT, the
substrate reagent was added and incubated further for 30 min at RT. Finally, the reaction
was then quenched using the stop solution, and the absorbance of the reaction mixture was
read at 450 nm using the VersaMax Plate Reader (Molecular Devices, Sunnyvale, CA, USA).

4.7. Determination of ACh Concentration

The concentration of ACh was quantified using an Acetylcholine Assay Kit (Cell
Biolabs Inc., San Diego, CA, USA) in accordance with the manufacturer’s protocols. Briefly,
the mid colon from mice (n = 5) in subset group was homogenized in ice-cold 1× PBS
(pH 7.2–7.4) using a glass homogenizer (Sigma-Aldrich Co.); the homogenate was stored at
−70 ◦C prior to ACh analysis. For analysis, the homogenate sample (or standards) and the
ACh reaction mixture were incubated on an orbital rotator for 45 min at RT in a 96-well
plate protected from light. Color alteration within the plate wells was determined using a
Vmax plate reader (Molecular Devices) at 570 nm (excitation) and 600 nm (emission).

4.8. Determination of AChE Activity

The level of AChE activity was determined using an Acetylcholinesterase Assay Kit
(Abcam Com.) in accordance with the manufacturer’s protocols. Briefly, the mid colon
tissue from mice (n = 5) in subset group was homogenized in ice-cold 1× PBS (pH 7.4); the
homogenate was stored at −70 ◦C prior to AChE analysis. For analysis, the homogenate
sample (or standards) and the AChE reaction mixture were incubated for 20 min at RT in a
96-well plate protected from light. Color alteration within the plate wells was determined
using a Vmax plate reader (Molecular Devices) at 405 nm.

4.9. Determination of the NO Concentration

The level of nitrite, which is the stable reaction product generated from NO with
molecular oxygen, was used to indicate NO production. The mid colon tissue (20 mg) from
mice (n = 5) in subset group was homogenized in ice-cold 1× PBS (pH 7.4) and centrifuged
at 14,000 rpm for 5 min at 4 ◦C. The supernatants of the tissues were collected from mid
colon and kept at −80 ◦C until use. Duplicates of 100 µL of the supernatant of homogenate
were added to 96-well plates and mixed with 100 µL modified Griess reagent (Invitrogen,
Carlsbad, CA, USA). The absorbance of each well was measured at 540 nm using a Versa
max plate reader (Molecular Devices). A standard curve with increasing sodium nitrite
concentrations was generated in parallel and used for quantification.
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4.10. Measurement of GI Hormone Concentrations

The concentrations of CCK and gastrin were quantified using ELISA kits (Cusabio
Biotech Co., Ltd., Wuhan, China), according to the manufacturer’s instructions. Briefly,
mid colon tissues (50 mg) from mice (n = 5) in subset group were homogenized in ice-cold
1× PBS (pH 7.2–7.4) using a glass homogenizer (Sigma-Aldrich Co.). The resultant tissue
lysates were then centrifuged at 1000× g for 5 min at 4 ◦C, after which the supernatant was
collected for analysis. After adding the two specific hormone antibodies (separately in each
well), the supernatant was incubated for 1 h at 37 ◦C, to which HRP–streptavidin solution
was then added and incubated further for 1 h at 37 ◦C. This was followed by adding the
TMP One-Step Substrate Reagent, followed by incubation of the mixture for 30 min at 37 ◦C.
The reaction was terminated by adding the stop solution. Finally, the absorbance of the
reaction mixture was read at 450 nm using the Molecular Devices VersaMax Plate Reader
(Sunnyvale, CA, USA).

4.11. Statistical Analysis

The statistical significance was evaluated using one-way analysis of variance (ANOVA)
(SPSS for Windows, Release 10.10, Standard Version, Chicago, IL, USA), followed by Tukey
post hoc t-test for multiple comparisons. All values are expressed as the means ± SD, and
p-values < 0.05 were considered significant.

5. Conclusions

This study investigated whether C3 deficiency-induced constipation is accompanied
by alterations in the excitatory and inhibitory function of ENS in the mid colon of C3
KO mice. The present study first suggests that C3 deficiency-induced constipation is
associated with a decrease in the density of enteric neurons and ICC, a decline in 5-HT and
ACh concentration, and an increase in the NO concentration for ENS function in the mid
colon. In addition, the results suggest that this type of constipation is associated with the
upregulation of C3aR and C3bR expression during the complete downregulation of the C3
protein. Furthermore, these results provide novel evidence of the potential for therapeutic
targets to prevent and treat patients with C3-related constipation.
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