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ABSTRACT Bacteria live in spatially organized aggregates during chronic infections,
where they adapt to the host environment, evade immune responses, and resist
therapeutic interventions. Although it is known that environmental factors such as
polymers influence bacterial aggregation, it is not clear how bacterial adaptation
during chronic infection impacts the formation and spatial organization of aggre-
gates in the presence of polymers. Here, we show that in an in vitro model of cystic
fibrosis (CF) containing the polymers extracellular DNA (eDNA) and mucin, O-specific
antigen is a major factor determining the formation of two distinct aggregate assem-
bly types of Pseudomonas aeruginosa due to alterations in cell surface hydrophobic-
ity. Our findings suggest that during chronic infection, the interplay between cell
surface properties and polymers in the environment may influence the formation
and structure of bacterial aggregates, which would shed new light on the fitness
costs and benefits of O-antigen production in environments such as CF lungs.

IMPORTANCE During chronic infection, several factors contribute to the biogeography of
microbial communities. Heterogeneous populations of Pseudomonas aeruginosa form
aggregates in cystic fibrosis airways; however, the impact of this population heterogene-
ity on spatial organization and aggregate assembly is not well understood. In this study,
we found that changes in O-specific antigen determine the spatial organization of P. aer-
uginosa cells by altering the relative cell surface hydrophobicity. This finding suggests a
role for O-antigen in regulating P. aeruginosa aggregate size and shape in cystic fibrosis
airways.

KEYWORDS lipopolysaccharide, O-antigen, Pseudomonas aeruginosa, cystic fibrosis,
hydrophobicity, depletion aggregation

During chronic infection, biofilm-forming cells are often more tolerant to antibiotics
and the host immune response than planktonic cells (1–3). Biofilms also allow indi-

vidual cells the physical proximity to engage in and benefit from social behaviors such
as quorum sensing (QS) and the production of secreted common goods (4–9). Biofilms
formed during infection often take the form of cellular aggregates (8, 10–12). In the flu-
ids of wounds and airways of cystic fibrosis (CF) patients, the opportunistic pathogen
Pseudomonas aeruginosa frequently grows as freely suspended aggregates of ;10 to
10,000 cells (6, 8, 10, 11). The mechanisms that govern the shape and size of bacterial
aggregates during infection are not well defined. In polymer-rich environments, aggre-
gates have been shown to form by either (i) an increase in entropic force (depletion
aggregation) (13, 14) or (ii) electrostatic interactions between bacterial cell surfaces
and polymers in the environment (bridging aggregation) (15–18).

P. aeruginosa populations become phenotypically and genetically diverse over time
in the complex microenvironments found in CF airways (19–22), and the importance of
this heterogeneity for the formation and organization of aggregates has not been
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assessed. To resolve this, we evaluated aggregate formation in seven genetically
diverse isolates sourced from heterogeneous populations of the P. aeruginosa strain
PAO1 previously evolved in biofilms for 50 days (23). We assessed how each isolate
formed aggregates in a polymer-enriched, spatially structured CF growth medium
(SCFM2; containing mucin and extracellular DNA [eDNA] polymers), which has previ-
ously been used as an in vitro CF model to study the biogeography and physiology of
P. aeruginosa (8, 24–26).

We found that the PAO1 ancestor and five isolates formed a stacked pattern (stacked
aggregates), where cells closely packed lengthwise, similar to those identified in previous poly-
mer-driven depletion-aggregation studies (27). Two isolates formed distinct disorganized
aggregates of various sizes (clumped aggregates), similar to aggregates previously observed
in CF sputum samples (10, 28). Whole-genome sequencing showed that the two clumping
isolates had alterations in the ssg gene (PA5001), which has previously been shown to be
involved in lipopolysaccharide (LPS) core and O-antigen biosynthesis (29–32). In P. aeruginosa,
LPS contains three major components: the lipid A layer of the outer membrane, a core oligo-
saccharide, and O-antigen components. O-antigens are further subdivided into a D-rhamnose
homopolymer found in most strains called the common polysaccharide antigen (CPA) (for-
merly A-band) and a variable heteropolymer of 3 to 5 sugars called the O-specific antigen
(OSA) (formerly B-band) that confers serotype specificity (29, 32).

We hypothesized that changes in O-antigen glycoforms capping LPS would lead to
different aggregate assembly types by altering the physicochemical properties of the
bacterial cell surface. This could result in new interactions (e.g., between the bacteria
or the bacteria and polymers) that compete with the entropic force that otherwise
leads to stacked aggregation in this polymer-rich environment. To elucidate the contri-
bution of LPS-capping glycoforms to aggregate assembly, we assessed the aggregate
formation of clean deletion mutants of OSA and CPA. We found that the loss of OSA
and changes in the capped LPS core glycoforms led to increased hydrophobicity of the
cell surface that overcame the entropic force imposed by host polymers, resulting in
disorganized, irreversible clumping. Most importantly, we demonstrate that aggregate
shape and structure are dependent on the interplay between the physical properties
of the environment and the biological mediation of bacterial cell surface properties
governed by the LPS core and OSA.

RESULTS
Distinct aggregate assembly types in genetically diverse P. aeruginosa isolates.

Genetically and morphologically heterogeneous isolates of P. aeruginosa are com-
monly collected from expectorated CF sputum samples (20, 21, 33, 34). Since it is
known that several lineages of P. aeruginosa can stably coexist in CF airways, we tested
whether population heterogeneity impacted aggregate formation. We chose seven
distinct morphotypes isolated from a previous study where we evolved biofilms of
PAO1 in synthetic polymer-free sputum medium (SCFM) for 50 days (23, 35, 36) (see
Fig. S1A in the supplemental material). We assessed aggregate formation in a spatially
structured iteration of SCFM termed SCFM2, which contains mucin and eDNA polymers
(24). We identified two distinct types of aggregate assembly where PAO1 and five of
the evolved isolates (A2, B8, B13, C25, and D4) were assembled into stacked aggre-
gates, where cells were closely aligned side by side by entropic force, similar to previ-
ous reports (27) (Fig. 1A; Fig. S1B and C). In contrast, two of the evolved isolates (A9
and B9) formed clumped aggregates that appeared as disorganized small and large
groups of cells, similar to bridging aggregation (15) (Fig. 1A). We also investigated the
growth of A9 and B9 in SCFM (no addition of eDNA or mucin) and observed that both
strains formed clumps even in a polymer-free environment, while the other isolates
did not form any aggregates (Fig. S2A).

To identify the genetic determinants of clumping assembly in the evolved isolates,
we performed whole-genome sequencing on each isolate using the Illumina MiSeq
platform. We used breseq (0.34.0) for variant calling between the evolved isolates and
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the PAO1 ancestor (37). While we found differential levels of genetic variation in each
isolate compared to PAO1, we observed that A9 and B9 each contained a 1-bp deletion
in the ssg gene (PA5001) (Data Set S1). To confirm that mutation of ssg results in
clumped aggregate assembly, we complemented A9 and B9 with an intact ssg gene in
trans. We found that in both isolates, ssg complementation restored the stacked aggre-
gate assembly seen in PAO1 (Fig. 1B; Fig. S2B), suggesting that Ssg plays a role in the
aggregate assembly type.

A distinct feature of the stacked versus clumped aggregates was the average vol-
ume. We found that stacked aggregate volumes were 2 to 4 times larger (median ag-
gregate sizes of ;63 mm3 and 89 mm3 for PAO1 and A2, respectively, and ;200 mm3

for ssg-complemented A9 and B9) than those of clumped aggregates (median aggre-
gate sizes of ;23 and 30 mm3 for A9 and B9, respectively) (Fig. 1B). To quantify these
observed differences in the distribution of aggregate biomass in cells with stacked and
clumped aggregate assembly types, we compared the distributions of biovolume (ratio
of the aggregate volume to the surface area) for each type of aggregate assembly in
SCFM2. We found that regardless of the size, the median biovolume in stacked aggre-
gates was significantly larger than that in clumped aggregates (Table S1).

OSA and not other biofilm traits determines aggregate assembly type. The pro-
posed function of Ssg is a glycosyltransferase, involved in LPS and exopolysaccharide
(EPS) biosynthesis (30, 38). P. aeruginosa strains with mutations in ssg have previously
been shown to display decreased motility, enhanced phage resistance, and a lack of O-
antigen (30, 31, 39). We next determined whether the different aggregate assemblies

FIG 1 The two types of aggregate assemblies formed by P. aeruginosa isolates in SCFM2 are due to ssg gene mutation. (A) In PAO1 and
evolved isolates, aggregates assembled into either organized stacked structures (labeled S) or disorganized clumps (labeled C). (B) Stacked
aggregates of PAO1 and A2 were significantly larger than aggregates formed by A9 and B9, and complementation with an intact ssg gene
significantly increased the aggregate volume (P, 0.0001 by Kruskal-Wallis and Dunn’s multiple-comparison tests; error bars are median
aggregate volumes with interquartile ranges, and each data point is representative of an aggregate). ns, not significant.
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(due to the loss of ssg in our evolved PAO1 isolates) were because of differences in O-
antigen production. We constructed a clean ssg gene deletion in PAO1 (PAO1 Dssg)
and a range of isogenic LPS synthesis or O-antigen assembly mutants. These were (i)
mannose reductase (PAO1 Drmd [OSA1 {OSA positive} CPA2 {CPA negative}]), (ii) epi-
merase (PAO1 DwbpM [OSA2 CPA1]), (iii) OSA polymerase (PAO1 Dwzy [OSA2 CPA1]),
(iv) common initiating glycosyltransferase (PAO1 DwbpL [OSA2 CPA2]), and (v) O-anti-
gen ligase (PAO1 DwaaL [OSA and CPA were still made but not attached to LPS in the
periplasm]). In addition, we made mutants in the long (PAO1 Dwzz1 [OSA1 CPA1]) and
very long (PAO1 Dwzz2 [OSA1 CPA1]) OSA chain length regulators (40, 41) (Fig. S3). We
then determined the aggregate assembly type of the O-antigen mutants in SCFM2. We
found that ssg, wbpL, and wbpM mutants with no OSA formed clumped aggregates,
but the lack of CPA alone (PAO1 Drmd) did not change the aggregate assembly type
(Fig. 2A and B).

Biofilm formation by P. aeruginosa is regulated by several well-described mecha-
nisms such as exopolysaccharide production, adhesins, and quorum sensing (QS) (6, 9,
42, 43). To determine whether any of these factors interfered with stacked aggregation
in SCFM2, we examined the aggregate assembly of defined mutants in exopolysac-
charide production (PAO1 Dpel Dpsl) and lectins (PAO1 DlecA and PAO1 DlecB) and a
mutant lacking a major QS regulator (PAO1 DlasR). Although the role of QS and biofilm
formation remains controversial, we assessed this mutant because LasR regulates sev-
eral pathways that could impact the aggregation type (7, 44). We found that all these
mutants displayed stacked aggregate assemblies like PAO1 (Fig. 3). This indicated that
changes in the aggregate assembly type were not due to alterations in common phe-
notypes associated with biofilm formation; only the loss of OSA was important.

FIG 2 Loss of OSA leads to clumped aggregate assembly. (A) The loss of CPA (Drmd) did not alter the type of aggregate assembly, and the
loss of OSA (DwbpM) led to dispersed small aggregates. The loss of both CPA and OSA (DwbpL) changed the aggregate assembly type
similarly to the ssg mutant. (B) There was a significant reduction in the aggregate volume in ssg, wbpL, and wbpM mutants, but only the loss
of ssg and wbpL displayed large, clumped aggregates (P, 0.0001 by Kruskal-Wallis and Dunn’s multiple-comparison tests; error bars are
median aggregate volumes with interquartile ranges, and each point is representative of an aggregate).
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Loss of OSA leads to clumped aggregates, independent of polymer and cell
density. To determine differences in stacked and clumped aggregate assemblies in
SCFM2, despite the presence of polymers, we monitored aggregate assemblies of
PAO1 and PAO1 DwbpL over time. We found that an increase in the initial cell density
resulted in the rapid formation of stacked aggregates, while there were no changes in
clumped aggregate assembly (Movies S1 and S2).

When we monitored the aggregate formation of PAO1 and PAO1 DwbpL over 6 h,
we found that there was a significant change in the PAO1 aggregate biovolume after
180min of cell growth in SCFM2 and when the stacks were assembled (Fig. 4A),
whereas regardless of cell density, the biovolume of PAO1 DwbpL aggregates
remained constant over time (Fig. 4B). We also found that reducing the concentration
of both polymers in SCFM2 led to the dissolution of stacked aggregates, as expected,
while it did not affect the formation of PAO1 DwbpL clumped aggregates (Fig. S4).
These findings suggest that the loss of OSA prevents entropically derived stacked ag-
gregate assembly, and the associated mechanism is independent of the polymer con-
centration and/or cell density. This is a well-studied manifestation of the aggregation
of hydrophobic particles in colloidal environments (45, 46).

Aggregate assembly of P. aeruginosa is not serotype specific but dependent on
cell surface relative hydrophobicity. There are 20 serotypes of P. aeruginosa based
on the glycosyl groups of OSA (38). As our findings were limited to PAO1 (serotype
O5), we examined the aggregate formation of PA14 (serotype O10), PAK (serotype O6),
and STO1 (serotype O1), which all differ in the oligosaccharide units of OSA (38). In all
serotypes, we observed a stacked assembly similar to that of PAO1, but in an STO1
strain lacking OSA (DwbpM), we identified small clumped aggregates, with the

FIG 3 The aggregate assembly type is independent of exopolysaccharide production, lectins, and quorum sensing. (A) Loss of lectins (DlecA
and DlecB), quorum sensing (DlasR), and exopolysaccharide components (Dpel Dpsl) did not change the aggregate assembly type, and
aggregates were assembled in stacked forms similar to those seen in PAO1. (B) Stacked aggregates formed by cells lacking lectins (DlecA
and DlecB), quorum sensing (DlasR), and exopolysaccharide components (Dpel Dpsl) were the same size as PAO1 aggregates (P=0.1, P= 0.6,
P. 0.999, and P. 0.999 by Kruskal-Wallis and Dunn’s multiple-comparison tests when aggregate volumes of DlecA, DlecB, DlasR, and Dpel
Dpsl cells were compared to those of PAO1; error bars are median aggregate volumes with interquartile ranges).
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restoration of stacks when wbpM was complemented in trans (Fig. 5A and B). These
data confirm that the aggregate assembly type is not serotype specific.

Previously, it has been shown that the lack of OSA increases the hydrophobicity of
the P. aeruginosa cell surface (30). To determine whether hydrophobicity correlated
with aggregate type, we assessed the relative surface hydrophobicity of OSA1 and
OSA2 strains. We found a significant increase in surface hydrophobicity in OSA mutants
(Fig. 6A), which corresponded with a clumping aggregate phenotype (Fig. 2). The loss
of OSA is a common adaptive trait of P. aeruginosa in CF airways, possibly leading to
an increase in cell surface hydrophobicity that could alter the spatial organization of P.
aeruginosa cells in CF airways. We therefore evaluated the relative hydrophobicity of
11 P. aeruginosa isolates collected from the expectorated sputa of 2 individuals with
CF. We observed heterogeneity in the cell surface relative hydrophobicity of the CF iso-
lates across the two patients (Fig. 6B).

DISCUSSION

Despite a large body of work showing how P. aeruginosa adapts to the CF lung
environment (19–21, 33, 47, 48) and population heterogeneity during chronic infection
(20, 21, 23, 49, 50), little is known about the impact of this intraspecific heterogeneity
on the formation of P. aeruginosa aggregates. To test whether genetic heterogeneity
impacts aggregation, we investigated the aggregate formation of selected evolved iso-
lates from a previous 50-day biofilm evolution experiment of PAO1 (23) in SCFM2 (24).
We found that (i) there are two distinct types of aggregate assemblies formed by P.
aeruginosa in SCFM2, (ii) the OSA impacts the aggregate assembly type, and (iii) the
loss of OSA and LPS core 11 increases the hydrophobicity of the bacterial surface,
which prevents depletion aggregation.

Previously, it was shown that the aggregation of P. aeruginosa cells in a polymer-
rich environment can be due to depletion forces, where the reduction of the free
energy by increased entropy of the whole system leads to stacked aggregation of bac-
terial cells (27). The change of the polymer electrostatic properties in the same study
altered the aggregate assembly to bridging assembly, suggesting that the aggregate
assembly type is driven by physical properties of the environment and that the biologi-
cal properties of the cells assume little or no role in the aggregate assembly type (27).
However, we observed two distinct types of aggregate assemblies by genetically
diverse PAO1 isolates in SCFM2. Stacked aggregation is dependent on the cell density

FIG 4 Clumped aggregate assembly is not dependent on cell density. (A) The aggregate biovolume of PAO1 significantly increased after 180min of
growth (median biovolume of 0.34 to 0.75 over time). (B) In PAO1 DwbpL (lacking OSA), the biovolume remained the same over time (median biovolume
of 0.33 to 0.27 over time).
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and polymer concentration, and the increase in entropy is the driving force behind
these assemblies. In contrast, clumping assembly is driven by changes in the surface
properties of P. aeruginosa cells. This indicates that although aggregate formation is
influenced by physical forces, OSA strongly impacts the spatial organization enforced
by the physical properties of the environment.

Other studies have suggested that during CF infection, polymers like mucin can dis-
perse cells in established biofilms (51), although our work suggests that polymers are
more likely to influence the spatial arrangement of the cells. The clumping aggregate
assembly was not influenced by factors that have previously been shown to be
involved in biofilm and aggregate formation, including lectins (42, 52), QS (6, 9, 53),
and EPS (54–57). While we found that stacked aggregates had a larger biovolume than
clumped aggregates and that this can be explained by depletion aggregation, other
explanations also exist. First, stacked aggregates might be more likely to support
growth within the aggregate, leading to larger aggregates. Second, as clumped aggre-
gates become larger, they may be more prone to disaggregation, leading to them
never achieving a larger size even if there was cellular division occurring in the
aggregate.

It remains to be determined whether stacked aggregates are found during human
CF infection, although a recent study demonstrated that in CF airways, eDNA sur-
rounds aggregates, suggesting that in CF lungs, eDNA could increase entropic force
and form aggregates via depletion aggregation (58). It is noteworthy that stacked

FIG 5 Clumped aggregate assembly of P. aeruginosa is not serotype specific. (A) P. aeruginosa PA14, PAK, and STO1 formed stacked
aggregates in SCFM2, and OSA2 mutant STO1 (STO1 DwbpM) led to a clumped assembly of aggregates. (B) The loss of OSA altered
aggregate assembly from stacked to clumped in STO1 and significantly decreased the aggregate volume (P= 0.0048 by Kruskal-Wallis and
Dunn’s multiple-comparison tests; error bars are median aggregate volumes with interquartile ranges, and each data point is representative
of an aggregate).
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aggregates form in other species of bacteria such as Rhizobium leguminosarum, which
was dependent on LPS core and O-antigen (59). Furthermore, honeycomb structures
of P. aeruginosa (multilayers of stacks) were shown to form in the crops of Drosophila
melanogaster, highlighting that stacked aggregates are found in some types of infec-
tion (60).

By assessing the relative hydrophobicity of cells forming different aggregate types,
we found that P. aeruginosa cells that form clumped aggregates have surfaces with
higher relative hydrophobicity. In agreement with previous studies (29, 61–63), we
showed that this was due to a loss of OSA and the exposure of uncapped LPS core.
Regulating the aggregate assembly type by directly altering OSA expression levels in
environments containing differential levels of cells and polymers (such as CF sputum)
may allow cells to better resist environmental stressors such as the host immune
response, antibiotics, or phage. The loss of OSA has been reported in P. aeruginosa
strains isolated from CF sputum, suggesting that finding small, clumped aggregates in
CF sputum and CF airways (64) might be directly due to the loss of OSA. As our work
was performed in vitro, further studies are required to determine how OSA and surface
hydrophobicity impact aggregate formation in P. aeruginosa isolates growing in CF
lungs.

Overall, our findings highlight that the surface properties of P. aeruginosa cells
determine how they form aggregates in environments with different physicochemical
properties, providing potential benefits from social interactions with highly related
cells. Our findings also highlight that changes in the cell surface properties may influ-
ence how aggregates form in other species of bacteria and provide explanations as to
how different P. aeruginosa strains and species can stably coexist in microbiomes.

MATERIALS ANDMETHODS
Bacterial strains and culture conditions. We selected 7 evolved isolates of PAO1 from 50-day-

evolved populations in SCFM (23). We transformed all P. aeruginosa strains used in this study with the
pME6032:gfp plasmid (65) using electroporation (66). Briefly, to prepare electrocompetent P. aeruginosa
cells, we grew the bacterial cells in LB broth overnight, washed the cultures grown overnight with a
300mM sucrose solution at room temperature, and then resuspended the bacterial pellets in 1ml of
300mM sucrose. We then electroporated 50ml of electrocompetent cells with 2ml of purified plasmid
and recovered the cells by the addition of 950ml of LB broth and incubation at 37°C at 200 rpm for 30
min. We selected the transformed cells by plating out the electroporated bacteria onto LB agar plates

FIG 6 Cell surface hydrophobicity determines the aggregate assembly type. (A) The relative cell surface hydrophobicity was dependent on OSA, and
mutations in ssg, wbpL, and wbpM led to an increase in the relative hydrophobicity of PAO1 and STO1 (green bars). (B) There was heterogeneity in the
relative hydrophobicity of cell surfaces of P. aeruginosa isolates collected from two CF expectorated sputum samples (CFP1 and CFP2).
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supplemented with 200mg/ml of tetracycline. We obtained the clinical isolates from the Emory
CF@LANTA Research Center. Patients in this study were aged between 21 and 29 years at the time of
collection of the sputum samples. This study was approved by the Institutional Review Boards (IRBs) at
the Georgia Institute of Technology and Emory University Hospital. A list of all bacterial strains used in
this study is available in Table S2 in the supplemental material.

Determining diversity in colony morphologies. To determine diversity in colony morphology in
evolved populations (23), we used a Congo red-based agar medium (1% agar, 1� M63 salts [3 g mono-
basic KHPO4, 7 g K2PO4, and 2 g NH4�2SO4, with the pH adjusted to 7.4], 2.5mM magnesium chloride,
0.4mM calcium chloride, 0.1% Casamino Acids, 0.1% yeast extract, 40mg/liter Congo red solution,
100mM ferrous ammonium sulfate, and 0.4% glycerol) (67). We inoculated each evolved isolate in LB
broth, incubated the colony for 6 h at 37°C at 200 rpm, and then spotted 10ml of the culture onto
Congo red agar plates. We incubated the plates at 37°C for 24 h and a further 4 days at room
temperature.

Genomic DNA extraction and whole-genome sequencing.We plated each of the selected evolved
isolates on LB agar plates, picked single colonies of each isolate, inoculated the colonies in 5ml of SCFM
(35), and incubated the isolates overnight at 37°C at 200 rpm. We extracted the genomic DNA using the
Qiagen DNeasy blood and tissue kit. We prepared sequencing libraries using the Nextera XT protocol
(Illumina) and sequenced the libraries in a 24-plex format on the Illumina MiSeq platform to obtain an
approximate calculated level of coverage of 50� for each evolved isolate. For single nucleotide polymor-
phism (SNP) calling, we used breseq analysis (consensus mode) (37, 68, 69) and compared the genetic
variation in each evolved isolate to the PAO1 ancestral strain.

Image acquisition and analysis. For imaging aggregates in SCFM2 (24), we inoculated each bacte-
rial isolate into tryptic soy broth (TSB) supplemented with 200mg/ml of tetracycline and incubated the
mixture at 37°C at 200 rpm overnight. We inoculated 50ml of the culture grown overnight into 5ml of
SCFM and incubated the culture at 37°C at 200 rpm for 5 to 6 h until the cultures reached mid-log phase
(optical density at 600 nm [OD600] = 0.5). We then adjusted the OD600 to 0.05 in 400ml of freshly made
SCFM2 containing 0.6mg/ml of DNA and 5mg/ml of mucin (8, 24). We incubated the cultures at 37°C
for 16 h in chamber slides (Lab-Tek) before image acquisition. We used an LSM880 confocal microscope
equipped with a 63� oil immersion lens for image acquisition, scanned the aggregates using a diode
laser at 488 nm, and collected the fluorescence emission between 480 and 530 nm for image acquisition.
For imaging the cells grown in SCFM, we adjusted the OD600 of cells from mid-log-phase growth to 0.05
in 400ml of freshly made SCFM. We incubated the cultures at 37°C for 16 h in chamber slides before
image acquisition. For image analysis, we used Imaris 9.0.1 image analysis software to analyze the mor-
phological properties of the aggregates and measured the surface area and volume of each aggregate
using a surface model algorithm. We used the same parameters for particle and voxel sizes. We meas-
ured the aggregate volume and surface area in 10 images acquired for each strain in three independent
experiments (over 1,000 aggregates were measured in total under each condition). For time course
experiments, we used the same image acquisition parameters, using the time series option and imaging
as Z stacks every 20min for up to 10 h. To assess the role of bacterial cell density in aggregation, we
adjusted the OD600 to 0.1 in 400ml of SCFM2 and imaged the cells every 20min for 6 h. We prepared
time series videos using the three-dimensional (3D) plug-in in Fiji (70) and Adobe Lightroom.

Gene deletion and complementation. We used standard genetic techniques for the construction
of P. aeruginosa mutants. To delete ssg, rmd, wbpL, wbpM, waaL, wzy, wzz1, and wzz2, we PCR amplified
600-bp DNA sequences flanking the open reading frame of each gene using Q5 DNA polymerase (New
England BioLabs). We then cloned these sequences into EcoRI-XbaI-digested pEXG2 by Gibson assembly
using NEBuilder HiFi assembly master mix (New England BioLabs) and transformed them into Escherichia
coli S17 lpir. We verified cloned inserts by colony PCR and Sanger sequencing (Eurofins Genomics). We
introduced the deletion constructs into PAO1 by electroporation and selected strains carrying single-
crossover insertions of the deletion constructs on LB agar plates supplemented with 100mg/ml gentami-
cin. We cultured gentamicin-resistant colonies in LB without antibiotic and plated the colonies on LB
agar plates with 0.25% NaCl and 5% sucrose. We then selected sucrose-resistant colonies, screened
them for gentamicin sensitivity to ensure the loss of the pEXG2 construct, and assessed them for the
desired gene deletion by colony PCR and Sanger sequencing of the PCR product. For ssg complementa-
tion, we PCR amplified the ssg coding sequence and 100 bp of upstream sequence (including the ssg
native promoter) using Q5 DNA polymerase (New England BioLabs). We cloned this 1,057-bp product
into KpnI-BamHI-digested pUC18T-miniTn7-Gent by Gibson assembly using NEBuilder HiFi assembly
master mix (New England BioLabs) and transformed it into E. coli S17 lpir. We verified the cloned insert
by colony PCR and Sanger sequencing (Eurofins Genomics). We cotransformed the complementation
construct with the Tn7 helper plasmid pTNS3 into PAO1 Dssg, evolved isolates by electroporation, and
selected isolates on LB agar plates supplemented with 100mg/ml gentamicin. We verified the strains for
ssg1 complementation by colony PCR and for the loss of the pUC18-miniTn7-Gent vector and pTNS3 by
screening for carbenicillin sensitivity.

LPS extraction. We isolated bacterial lipopolysaccharide by the hot phenol extraction method (71).
Briefly, we pelleted 5ml of cultures of PAO1 and PAO1-derived strains grown overnight in LB broth by
centrifugation for 10min at 4,200� g. We resuspended the pellets in 200ml 1� SDS buffer (2% b-mer-
captoethanol [BME], 2% SDS, 10% glycerol, 50mM Tris-HCl [pH 6.8]) and incubated them at 99°C for
15min. Next, we added 5ml of 20mg/ml proteinase K (Sigma) to each tube and incubated the cell
lysates at 59°C for 3 h. Next, we added 200ml of ice-cold Tris-saturated phenol to each sample, vortexed
the mixture for 10min, added 1ml diethyl-ether, and vortexed the mixture for a further 10 s. We centri-
fuged the samples for 10min at 16,000� g and extracted the bottom layer. We performed a second
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extraction with phenol and diethyl-ether as described above. We mixed an equal volume of the
extracted LPS samples with an equal volume of 2� SDS buffer and electrophoresed 10ml of each sample
on Novex 4 to 20% polyacrylamide gradient gels (Thermo Fisher) in Tris-glycine-SDS buffer. Following
electrophoresis, we visualized LPS with a ProQ Emerald lipopolysaccharide staining kit (Thermo Fisher).

Assessing cell surface hydrophobicity. To assess the levels of cell surface hydrophobicity, we used
hydrophobic interaction chromatography (29). Briefly, we grew bacterial cells for 6 to 8 h at 37°C at
200 rpm to reach mid-log phase. We harvested the cells, washed the cells three times with ice-cold 3 M
NaCl (pH 7), and resuspended the cells in 3 M NaCl. We used octyl-Sepharose CL-4C beads (Sigma) to
assess the interaction of hydrophobic cells with these beads compared to control Sepharose CL-4C
beads (Sigma). We prepared bead columns by three washes of the beads with Milli-Q water and then
three washes with 3 M NaCl (pH 7) (at 4°C). We then prepared 1-ml columns of both beads by using 3-
mm-diameter filter paper. We added 100ml of the bacterial suspension and incubated the mixture at
room temperature for 15min. We measured the OD450 of the flowthrough from each column. We calcu-
lated the relative hydrophobicity based on the ratio of the OD450 octyl-Sepharose CL-C4 column flow-
through to that of the control column.

Statistical analysis. For statistical analysis of the aggregate volume and biovolume distribution, we
used GraphPad Prism 8.0.

Data availability. The sequences in this study are available at the NCBI SRA database (accession
number PRJNA702741).
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