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Abstract: Railway point devices act as actuators that provide different routes to trains by driving
switchblades from the current position to the opposite one. Point failure can significantly affect
railway operations, with potentially disastrous consequences. Therefore, early detection of anomalies
is critical for monitoring and managing the condition of rail infrastructure. We present a data
mining solution that utilizes audio data to efficiently detect and diagnose faults in railway condition
monitoring systems. The system enables extracting mel-frequency cepstrum coefficients (MFCCs)
from audio data with reduced feature dimensions using attribute subset selection, and employs
support vector machines (SVMs) for early detection and classification of anomalies. Experimental
results show that the system enables cost-effective detection and diagnosis of faults using a cheap
microphone, with accuracy exceeding 94.1% whether used alone or in combination with other
known methods.

Keywords: railway point machine; railway condition monitoring system; audio data; support
vector machine

1. Introduction

Railway points provide different routes to trains, by driving switchblades between various
predetermined positions. The failure of railway points can significantly affect train operations [1].
Consequently, early detection of anomalies is critical for managing railway condition monitoring
systems. Technologies for collecting and analyzing data from railway point machinery should be
developed in order to minimize detrimental effects of point failure.

Many railway condition monitoring systems are equipped with alarms that apply thresholds
to electrical sensor readings. However, the application of thresholds does not ensure early detection
of faults [2]. In addition to techniques based on electrical thresholds, the literature includes a wide
variety of methods for detecting faults in railway points, including statistical analysis, classification,
and model-based methods [3–7]. In particular, classification methods are widely used for detecting
faults in a variety of point machinery [2].

Several recent studies reported on SVM-based classification methods [8–10] using electrical signals.
Eker et al. [11] detected faults using principal component analysis together with SVM based on the
measurements of a linear ruler, and classified 20 railway point system operations as either fault-free or
indicative of drive misalignment. Asada et al. [1] showed that current and voltage sensors can be used
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to collect electrical active power data for railway condition monitoring systems. They reported that
the combined use of wavelet transforms and SVMs enabled quite accurate detection and diagnosis of
misalignment faults in electrical railway point machinery. Vileiniskis et al. [2] presented a methodology
for early warning of possible point failure through early detection of changes in the current drawn by
the point motor, which was more accurate than commonly used threshold-based methods. Although
there has been some recent progress in monitoring railway point systems using electrical signals such
as current and voltage, to the best of our knowledge no previous studies have employed audio sensors
for automated investigation of anomalies.

Unlike other current research approaches, this paper puts forth a data mining solution that
employs audio data to detect faults in railway condition monitoring systems. Firstly, in the
data-preprocessing phase, MFCC is extracted and feature dimensions are reduced. Two SVMs are
used to detect and diagnose fault sounds, respectively. Experimental results show that this method
enables cost-effective detection and diagnosis of faults achieving high accuracy levels of 94.1% for
detection, and 97.0% for diagnosis using a cheap microphone. This is the first study on the detection
and diagnosis of faults in railway condition monitoring systems via audio data. The results indicate
that acoustic analysis of railway sounds can be a reliable method for understanding the condition of
railway point machinery. The remainder of this article is structure as follows: Section 2 describes the
proposed fault detection and diagnosis of railway point machines, Section 3 presents the results of
simulations, and Section 4 draws the conclusions.

2. Fault Detection and Diagnosis of Railway Point Machines by Audio Analysis

The proposed real-time system consists of four modules: two online process modules consisting
of a feature extraction module and a fault detector module, and two offline process modules consisting
of an attribute subset-selection module and an SVM training module (refer to Figure 1). The feature
extraction module is based on the MFCC algorithm [12–17] (refer to Figure 2).
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The attribute subset-selection module is used to select the optimal feature subset with a view
to improving the detection and classification speed of the entire diagnosis system. This study uses
correlation-based feature selection (CFS), which is one of the most popular attribute subset-selection
methods [18–21] (Figure 3). Following training, the fault detection and classification module detects
fault sounds by identifying incoming audio signals and classifying them as subsidiary fault-sound
types such as “ice obstruction”, “ballast obstruction”, or “slackened nut”. Although the SVM training
module is intended to perform training offline based on the MFCC and CFS, the process is not necessary
during the online process.
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2.1. Mel-frequency Cepstrum Coefficients

The main purpose of feature extraction is to obtain the sequence of feature vectors, thereby
providing a compact representation from the raw input signal [12]. Sound analysis research has
investigated various acoustic features for use in signal analysis, such as perceptual linear prediction
(PLP) features, linear prediction cepstral coefficients (LPCC), and MFCC. In particular, MFCC is widely
used in automatic speech recognition and audio analysis, with its simple processing, outstanding
ability, containing both time and frequency information, and other advantages [12–17]. Additionally,
MFCC has been successfully applied to fault diagnosis of engines [22], early classifications of bearing
faults [23], and quality assurance of sound signaling devices [24]. Figure 2 shows a structure diagram
for MFCC extraction. Firstly, pre-emphasis filtering is used to spectrally flatten the signal. Secondly,
the short-time Fourier transform (STFT) is applied to extract information on time and frequency from
the input signal. In the mel-frequency wrapping step, the frequency is changed from Hz to mel scale.
Then, the mel-frequency signal is converted by the logarithmic mel-spectrum back to the time domain.
Finally, discrete cosine transform (DCT) is applied to the log-mel-frequency.

2.2. Correlation-Based Feature Selection

The literature includes a wide variety of feature-selection methods, including CFS, gain ratio
(GR), principal component analysis (PCA), etc. This study uses CFS, which is one of the most popular
attribute subset-selection methods [18–21]. The main objective of CFS is to obtain the highly relevant
subset of features, which are uncorrelated to each other [18–21]. In this way, the dimensionality of
data sets can be drastically reduced and the performance of learning algorithms can be maintained or
improved. CFS employs heuristic evaluation of the worth or merit of a subset of features. The merit
function considers the usability of individual features for predicting the class label, along with the level
of inter-correlation among them [18–21] (refer to Equation (1)). Figure 3 shows a structure diagram of
CFS processing. Firstly, feature correlations between feature–class and feature–feature are calculated
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using symmetrical uncertainty, and then search the feature subset space. After estimating symmetrical
uncertainty, the merit of a subset is calculated to find the subset with the highest-ranked merit value:

MeritF “
nrc f

b

n` n pn´ 1q r f f

(1)

In Equation (1), a feature subset F contains n features; rc f and r f f represent average feature–class
correlation and average feature–feature correlation, respectively.

2.3. Support Vector Machine

This section presents a brief review of SVMs [8–11]. Figure 4 shows the approach to identifying
the optimal hyperplane (wtx ` b “ 0q with maximum margin for linearly separable classifier in a
geometrical view of SVM.
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In the linearly separable case, let tx1, x2, . . . , xzu be the training set and let yi P t`1, ´1u be
the class label of a D-dimensional feature vector xi. The margin maximization problem corresponds
to [8–11]:

min
„

1
2 wTw` C

z
ř

i“1
ξi



s.t.yi
`

wTxi ` b
˘

ě 1´ ξi; ξi ě 0; i “ 1, . . . , z
(2)

Here, ξi is a penalty for misclassification or classification within the margin, and CpC ą 0q is a
tradeoff parameter between error term and margin. The approach described here for a linear SVM can
be extended to the creation of a nonlinear SVM in order to classify linearly inseparable data.

Figure 5 illustrates a solution to the non-linearly separable problem to obtain linear separation
by mapping the input training data into the higher-dimensional feature space [8–11]. In the general
mathematical formulation, the kernel function, K, is defined as K

`

xi, xj
˘

” φ pxiq
T φ

`

xj
˘

. In particular,
the commonly used kernel function is a radial basis function (RBF) as follows:

K
`

xi, xj
˘

“ exp
´

´γ ||xi ´ xj ||
2
¯

, γ ą 0 (3)
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Here, γ is a standard deviation parameter [25,26].

3. Results

3.1. Data Collection

Audio data were collected from an NS-AM-type railway point machine at Sehwa Company in
Daejeon, South Korea, on 1 January 2016. Figure 6 shows a picture of an NS-AM-type railway point
machine, which is installed with an audio sensor for this data collection experiment. Figure 7 provides
a schematic of the type of NS-AM railway points used in Korea. In general, several types of fault can
lead to point failure.
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Figure 8 shows a fishbone diagram for point failure [7]. As shown in Figure 8, we collected
audio data while simulating three fault conditions that include normal data: “ice obstruction”, “ballast
obstruction”, and “slackened nut” (see Figure 9). The first two cases concern obstructions between
the stock rail and switchblade of the track points. The “slackened nut” scenario may occur when nuts
become loose due to a natural process, through train vibration, or maintenance misalignment. Apart
from the faults simulated during data collection, to avoid significant faults, a maintenance task was
performed before collecting the data.
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The sounds emitted by the railway points were recorded using a SHURE SM137 microphone
(Shure Inc., Niles, IL, USA) positioned within one meter of the points (see Figure 6), and recorded onto
a Samsung NT-SF310 notebook computer. Adobe Audition 3.0 and R package “tuneR” [17] software
were used to digitize the recorded signals in a personal computer with an AC97 soundcard (Realtek,
Hsinchu, Taiwan) at 16 bits/44.1 kHz sampling rates. Empirical analysis of the sound spectrogram
revealed that ambient (or background) noise existed mainly between 0 and 300 Hz, and that the
operational noise of the point machine occurred from 300 to 13,000 Hz. Thus, noise filtering process
was performed in a passband of 300–13,000 Hz. Figure 10 illustrates the spectrograms and waveforms
of standard and various fault sound models using Praat software (Ver. 6.0.05) [27].Sensors 2016, 16, 549 7 of 11 
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3.2. Fault Sound Detection and Classification Results

Two different experiments were performed (i.e., one for fault detection with the whole data set, the
other for fault classification only using the data labelled as faulty). Figures 11 and 12 show the overall
architecture of the SVM-based fault sound detection (a binary-class SVM) and classification system
(a multi-class SVM), respectively. The proposed system was implemented using a PC (Intel i7-3770K,
16 GB memory), and the experiments used the Weka [28]. In addition, ten-fold cross-validation with
ten repetitions was used. The experiment used 430 fault sound data (140 for “ice obstruction”, 140 for
“ballast obstruction”, and 150 for “slackened nut”) and 150 normal sound data. The data set is divided
into a training set consisting of half of the original set (randomly chosen), with the other half used as a
validation set.Sensors 2016, 16, 549 8 of 11 
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For the MFCC features, 60 frames per sound and 12 cepstral coefficients were used, and
720-dimensional features (12 ˆ 60 = 720) were yielded by using tuneR. The lowest and highest
band frequencies were set to 300 and 13,000 Hz respectively, whereas the other parameters were set to
default values. In the case of CFS, the dimension of the selected optimal-attribute subsets was reduced
to 133 using “CfsSubsetEval” in Weka.

First, an identification test of the proposed mechanism was conducted, to distinguish between
fault and normal sounds (see Figure 11). The performance of the proposed system was evaluated via
fault detection rate (FDR), false positive rate (FPR), and false negative rate (FNR) [29,30]: True positive
(TP: fault sound correctly identified as fault), False positive (FP: normal sound incorrectly identified as
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fault), True negative (TN: normal sound correctly identified as normal), and False negative (FN: fault
sound incorrectly identified as normal):

Fault Detection Rate pFDRq “
TP

TP` FN
ˆ 100 (4)

False Positive Rate pFPRq “
FP

FP` TN
ˆ 100 (5)

False Negative Rate pFNRq “
FN

TP` FN
ˆ 100 (6)

A summary of detection results for fault sounds is shown in Table 1. According to the experimental
results, when using 720 feature vectors, the fault detection accuracy of the proposed system is 94.1%,
and FPR and FNR are 0.6% and 5.9% respectively. Even when only 133 attributes are used, the accuracy
is confirmed as satisfactory. We used the corrected resampled t-test provided by Weka, with a 95%
confidence level, to compare the methods based on the FDR. The results show no significant difference
between the 133 and the 720 features. Figure 11 indicates that the detector used in this experiment is a
binary SVM. In case of using the entire feature-set, an RBF kernel with 0.0275 gamma was used and
C was set at 1.7 for this cross-validation experiment. For CFS, an RBF kernel with 0.061 gamma was
used and C was set at 1.91. These values were independently chosen by a GridSearch method in a
training phase [28]. Our review of the literature did not identify any previous attempts to detect and
classify fault sounds, thus a performance comparison cannot be made.

Table 1. Performance of proposed system in fault sound detection.

CFS (133 Features Used) All Features (720 Used)

FDR FPR FNR FDR FPR FNR
94.3% 2.7% 5.6% 94.1% 0.6% 5.9%

Secondly, we classified fault sound data into three types: “ice obstruction”, “ballast obstruction”,
and “slackened nut” (see Figure 12). In order to measure the classification accuracy of the proposed
system, the precision and recall are used as the performance measurements [29,30]:

Precision “
TP

TP` FP
ˆ 100 (7)

Recall “
TP

TP` FN
ˆ 100 (8)

A summary of the classification results for the studied fault sounds is shown in Table 2.
The experimental results show that the precision and recall of the proposed system approach 97.0%
when using 720 feature vectors, compared with 93.1% and 93.0% when only 133 features are used.
The corrected resampled t-test provided by Weka (95% confidence level) was used to compare the
methods, showing that precision and recall were significantly better when using the entire features-set
than with the 133 features used by CFS. The classifiers were branded as a multi-class SVM (Figure 12).
When using the entire feature-set, an RBF kernel with 0.0157 gamma was used and C was set at 1.42.
For CFS, an RBF kernel with 0.1073 gamma was used and C was set at 5.45. These values were also
independently chosen by a GridSearch method in a training phase.



Sensors 2016, 16, 549 10 of 12

Table 2. Performance measurement for fault-sound classification.

Faults
CFS(133 Features Used) All Features (720 Used)

Precision Recall Precision Recall

Ice obstruction 90.8% 88.1% 94.2% 97.3%
Ballast obstruction 91.1% 91.1% 97.2% 93.7%

Slackened nut 97.4% 99.9% 99.7% 100%
Average 93.1% 93.0% 97.0% V 97.0% V

V The method is significantly better.

4. Conclusions

The early discovery of anomalies is critical for systems that monitor the condition of railway
infrastructure. Failure to uncover faults in a timely and precise manner can become a critical limiting
factor in efficiently managing such systems. This work thus presents a timesaving data mining
solution for identifying faults through the use of audio data. The railway sound-acquisition process
was performed first, while MFCC was isolated from the data-preprocessing segment. Two SVMs
were used in the detection and classification of fault sounds, respectively. The experimental results
demonstrated cost-effective, automatic detection and diagnosis of railway faults through the analysis
of audio data. The combination of MFCC and SVM identified and classified the sounds of railway
faults with accuracies of 94.1% and 97.0% respectively. The results confirm that the proposed method
provides a credible means of investigating railway sounds for understanding the condition of rail
points, whether used alone or in combination with other known methods. Broader testing of the
proposed system in commercial production conditions is a purposeful avenue. A complete real-time
system is part of our ongoing research.
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