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ABSTRACT This study aimed to evaluate the prevalence and genetic characteristics
of carbapenemase-producing Enterobacteriaceae (CPE) in hospital sewage and river
water in the Philippines, which has a typical tropical maritime climate. We collected
83 water samples from 7 hospital sewage and 10 river water sites. CPE were identi-
fied using CHROMagar mSuperCARBA, and Gram-negative strains were identified us-
ing matrix-assisted laser desorption ionization–time of flight mass spectrometry
(MALDI-TOF MS) or 16S rRNA gene sequencing. Resistance genes in Enterobacteria-
ceae strains were identified using PCR and DNA sequencing, and transferability of
carbapenemase genes from the CPE was investigated with conjugation experiments.
Genotyping was performed using multilocus sequence typing (MLST) for Escherichia
coli and Klebsiella pneumoniae. Out of 124 Enterobacteriaceae isolates, we identified
51 strains as CPE and divided these into 7 species, 11 E. coli, 14 Klebsiella spp., 15
Enterobacter spp., and 11 others, including 4 additional species. Conjugation experi-
ments via broth mating and using E. coli J53 revealed that 24 isolates can transfer
carbapenemase-encoding plasmids. MLST analysis showed that 6 of 11 E. coli iso-
lates belonged to clonal complex 10 (CC10). Of 11 K. pneumoniae strains, 9 unique
sequence types (STs) were identified, including ST147. Five types of carbapenemase
genes were identified, with the most prevalent being NDM (n � 39), which is epi-
demic in clinical settings in the Philippines. E. coli CC10 and K. pneumoniae ST147,
which are often detected in clinical settings, were the dominant strains. In summary,
our results indicate that hospital sewage and river water are contaminated by CPE
strains belonging to clinically important clonal groups.

IMPORTANCE Carbapenemase-producing Enterobacteriaceae (CPE) cause severe
health care-associated infections, and their increasing prevalence is a serious con-
cern. Recently, natural ecosystems have been recognized as important reservoirs of
antibiotic resistance genes. We investigated the prevalence and genetic characteris-
tics of CPE isolated from the environment (hospital sewage and river water) in the
Philippines and found several CPE, including Escherichia coli and other species, with
different carbapenemases. The most prevalent carbapenemase gene type was NDM,
which is endemic in clinical settings. This study revealed that isolates belonging to
carbapenemase-producing E. coli CC10 and K. pneumoniae sequence type 147
(ST147), which are often detected in clinical settings, were dominant in the natural
environment. Our work here provides a report on the presence and characteristics of
CPE in the environment in the Philippines and demonstrates that both hospital sew-
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age and river water are contaminated by CPE strains belonging to clinically impor-
tant clonal groups.

KEYWORDS Carbapenemase-producing Enterobacteriaceae, hospital sewage, river
water, the Philippines

Antibiotic resistance, in particular to carbapenems, is a threat to global health.
Infections caused by carbapenemase-producing Enterobacteriaceae (CPE) have

limited treatment options and are associated with high mortality rates (1). CPE cause
severe health care-associated infections, and their increasing prevalence is a serious
concern (2).

Carbapenemase genotypes originally differed geographically, as the U.S. epidemic
was associated with KPC (class A in the Ambler classification) (3), the European
epidemic with VIM (class B) and OXA-48-like (class D), and the Asian epidemic with NDM
and IMP (class B). The NDM type was first detected in India in tap water and sewage and
has now spread to clinical settings worldwide (4, 5). Carbapenemase genes are fre-
quently located on plasmids and mobile genetic elements that can be transmitted
between species and often coexist with other classes of antibiotic resistance genes,
such as aminoglycosides and fluoroquinolones (6).

The “One Health” approach is a strategic framework for reducing the risk of
infectious diseases at the animal-human-environment interface and was officially ad-
opted by international organizations and professional bodies in 2008 (7). Antibiotic
resistance has traditionally been viewed as a clinical problem, but within the last
decade, natural ecosystems have been recognized as important reservoirs of antibiotic
resistance genes (8). CPE have been reported in the natural environment (9), and
previous studies have reported the presence of carbapenemase- and/or extended-
spectrum �-lactamase-producing Enterobacteriaceae in rivers, effluent, and hospital
sewage systems worldwide (10–12), highlighting the interrelationship between human
infection and water sources (13). It can thus be inferred that the primary origin of these
bacteria is humans, from clinical settings and community settings, and that these
bacteria are disseminated to the environment.

The CPE epidemic gene type in clinical settings in the Philippines is NDM (NDM-1 and
NDM-7) (14, 15); however, the prevalence of CPE in the natural environment and the
molecular relatedness between CPE in human settings and CPE in the natural environment
are unclear. Therefore, we investigated the prevalence and genetic characteristics of CPE
isolated from the environment (hospital sewage and river water) in the Philippines.

RESULTS AND DISCUSSION
Identification and characterization of CPE isolates. We collected 83 water

samples from 7 hospital and 10 river sites and then plated them on CHROMagar
mSuperCARBA plates to select CPE. High-density colonies grew on all CHROMagar
mSuperCARBA plates incubated with the hospital sewage and river water samples. This
agar plate inhibits extended spectrum �-lactamase (ESBL)/AmpC producers, and CPE
can be selected based on the morphology of red or blue colonies that is characteristic
of Enterobacteriaceae. In total, 124 Enterobacteriaceae isolates were obtained from 83
samples (Table 1), of which 33 were Escherichia coli, 35 Klebsiella spp., 28 Enterobacter
spp., 24 Citrobacter spp., 1 Serratia marcescens, 1 Kluyvera ascorbata, 1 Raoultella
ornithinolytica, and 1 Providencia stuartii. Among the 124 isolates, 51 were identified as
CPE using PCR, and of these, 11 were E. coli, 14 Klebsiella spp., 15 Enterobacter spp., 8
Citrobacter spp., 1 S. marcescens, 1 K. ascorbata, and 1 R. ornithinolytica. CPE were
recovered from five hospital sewage sites (including pretreatment) and four river sites.
Of the four hospitals with treatment systems, CPE were detected only from pretreat-
ment samples. Of the 51 CPE, 27 isolates were found in hospital sewage and 24 in river
water. For CPE analysis, we removed isolates that have the same antimicrobial suscep-
tibility, resistance genes, and sequence type (ST) patterns to reduce the possibility of
having duplicate strains and, finally, obtained 51 CPE. The other 73 isolates were
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identified as non-CPE as evidenced by negative PCR for carbapenemase; these isolates
possibly include duplicate isolates, but further analysis was not performed. Further-
more, we also selected white colonies that were non-Enterobacteriaceae and identified
them as Acinetobacter spp. and/or Pseudomonas spp. using matrix-assisted laser de-
sorption ionization–time of flight mass spectrometry (MALDI-TOF MS). PCR analysis
indicated that they possessed some carbapenemases, such as NDM-1, OXA-58, and
OXA-72 (16). We would like to further analyze this in detail in the future.

Table 2 lists the MICs for antimicrobial agents against the 51 CPE. A total of 44
isolates were nonsusceptible to carbapenems (imipenem or meropenem, �2 mg/liter),
and 7 were susceptible (4 KPC-2, 2 OXA-48-like, and 1 GES-20 producer). Regarding
non-�-lactams, 28 isolates were nonsusceptible to levofloxacin (MIC, �4 mg/liter) and
25 were nonsusceptible to gentamicin (MIC, �8 mg/liter). A total of 32 isolates with
resistance to carbapenems were also resistant to levofloxacin and/or aminoglycosides,
and 15 isolates were resistant to carbapenems, fluoroquinolones, and aminoglycosides.
The distribution of carbapenemase genes is shown in Table 2. Among the 51 CPE, 39
isolates were positive for NDM (NDM-1, NDM-5, and NDM-7), 7 were positive for KPC
(KPC-2), 2 were positive for OXA-48-like (OXA-48 and OXA-181), 2 were positive for GES
(two GES-20), and 1 was positive for IMI (IMI-18). In addition, 24 isolates were positive
for the CTX-M gene (CTX-M-1G), including CTX-M-15 (22 isolates) and CTX-M-3 (2
isolates). Moreover, NDM producers also carried the CTX-M gene (20/24 isolates). Seven
isolates were positive for the 16S rRNA methylase gene RmtC and were highly resistant
to aminoglycosides (gentamicin and amikacin MICs, �256 mg/liter); these isolates were
all positive for NDM-1. Of the 15 isolates that were resistant to carbapenems, fluoro-
quinolones, and aminoglycosides, 14 were positive for NDM (4 Enterobacter spp., 4
Citrobacter spp., 3 E. coli, and 3 Klebsiella spp.).

Many CPE, including E. coli and other species, possessed different types of carbap-
enemase. The most prevalent carbapenemase gene type was NDM (n � 39; Table 2);
NDM-1 and NDM-7 producers are endemic in clinical settings in the Philippines (14). We
found that CPE isolates that are often found in clinical settings were also present in the
environment. KPC, GES, and OXA-48 producers, which have not yet been detected in
clinical settings in the Philippines (14, 15, 17), were detected in both hospital sewage
and river water. Although it is unclear whether these CPE isolates originated from
humans or the natural environment, it is possible that they may spread from the natural
environment to clinical settings in the future.

Genotypes of CPE isolated from the environment (E. coli and K. pneumoniae).
Various sequence types (STs) were identified from multilocus sequence typing (MLST)

TABLE 1 Prevalence of Gram-negative bacteria and carbapenemase-producing Enterobacteriaceae (CPE) in the environment

Sampling site (area)
Sewage treatment
plant

No. of samples
(pretreatment)

No. of Enterobacteriaceae isolates
grown on CHROMagar mSuperCARBA

No. of isolated CPE
(isolates from pretreatment)

Hospital A (Metro Manila) Yes 2 (12) 33 0 (10)
Hospital B (Metro Manila) Yes 1 (4) 11 0 (6)
Hospital C (Metro Manila) Yes 2 (5) 2 0 (2)
Hospital D (Metro Manila) Yes 1 (3) 3 0 (3)
Hospital E (Metro Manila) No 3 18 6
Hospital F (Biliran) No 3 12 0
Hospital G (Leyte) No 4 16 0
River Q (Metro Manila) - 5 0 0
River R (Metro Manila) - 1 2 1
River S (Metro Manila) - 1 9 9
River T (Metro Manila) - 3 0 0
River U (Metro Manila) - 1 1 1
River V (Metro Manila) - 8 17 13
River W (Rizal) - 4 0 0
River X (South Cotabato) - 4 0 0
River Y (Pampanga) - 4 0 0
River Z (Benguet) - 12 0 0

Total 83 124 51
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analysis of E. coli and Klebsiella pneumoniae (Table 2). Six E. coli isolates belonged to
clonal complex 10 (CC10; ST10, ST44, ST48, ST167, and ST617). Moreover, 9 STs were
identified, including 2 novel STs, in 11 K. pneumoniae isolates (2 ST147, 2 ST978, 1 ST11,
1 ST16, 1 ST37, 1 ST231, and 1 ST3026).

Carbapenemase-producing E. coli isolates were divided into nine unique MLST types
based on MLST analysis. E. coli belonging to ST131 is a major ST of ESBLs and/or
carbapenemase-producing isolates in humans (18, 19); however, it was not detected in
this study. Six isolates belonging to CC10 contained the carbapenemase gene types
NDM (NDM-1, NDM-5, and NDM-7), KPC-2, and OXA-48-like (OXA-48 and OXA-181). A
study conducted in the Netherlands found that ESBL-producing E. coli belonging to
CC10 is present in a broad range of hosts, including humans, animals, and environ-
mental surface water, with almost the same frequency (10%) (20). Moreover, CC10 has
also been reported in the Danube River (Europe) (21), the Yamato River (Japan) (22),
and sewage in Pakistan (23). A possible explanation is that CC10 circulates easily among
different hosts and contains different types of carbapenemase genes. Therefore, the
presence of carbapenemase-producing E. coli belonging to CC10 in the environment is
a concern, because it can spread among humans, animals, and the environment.

Of the 11 K. pneumoniae strains identified, 2 isolates belonged to ST147 (1 NDM-1
producer and 1 NDM-7 producer) and 1 belonged to ST11 (a KPC-2 producer). In clinical
settings worldwide, K. pneumoniae strains that belong to ST11, ST14, ST101, ST147, and
ST258 are major carbapenemase-producing clones (24). K. pneumoniae strains that
produce NDM-1 belonging to ST147 and KPC-2 belonging to ST11 are predominant in
Germany and China in clinical settings, respectively (25, 26). We found that CPE isolated
from clinical settings were also present in the natural environment, suggesting that CPE
isolated from humans and the environment may be connected.

We found carbapenemase-producing E. coli belonging to CC10 and K. pneumoniae
belonging to ST147 and ST11 in hospital sewage as well as in river water. It is probable
that some hospital and domestic sewage is directly discharged into municipal sewage,
and thus CPE were detected in river water. The Global Water Intelligence report states
that the sewage system coverage rate is 31.2% in the Philippines, which is similar to
that in other Southeast Asian countries (30 to 40%) (27); meanwhile, the coverage in
Europe and North America is 70 to 80% (27). A previous study reported that CPE are
spread throughout a community area by direct discharge (11); therefore, a broad
sewage system coverage rate may prevent human contact with CPE-contaminated
water. Increasing the sewage system coverage rate is expected to reduce the presence
of CPE in the environment; however, a more in-depth understanding is needed because
there are various factors at play, such as climate and regionality. Given the observed
prevalence of CPE in river water and hospital sewage, transmission to humans through
water contact is a realistic possibility. The probability of transmission depends upon the
function and frequency of contact between humans and contaminated water bodies,
e.g., whether for recreational activity or irrigation. In this study, CPE were detected only
in pretreatment sewage, and not in posttreatment sewage, of four hospitals (hospitals
A to D in Table 1). These hospitals treat sewage via aeration, chlorine treatment, and
filtration. We theorized that CPE were not detected in posttreatment sewage due to the
treatment process, which reduces the number of sewage bacteria. These findings
highlight the need for constant monitoring of hospital sewage for antibiotic-resistant
bacteria and for efficient sewage treatment plants in health care settings as part of
biosecurity programs. Moreover, the findings support the importance and urgency of
action needed to reduce environmental contamination by CPE.

Characteristics of carbapenemase-encoding plasmids and their transferability.
Replicon typing revealed variability in the types of carbapenemase-encoding plasmids
encountered in terms of incompatibility groups. Of the 51 isolates, 23 and 19 possessed
X3 (circulating among Enterobacteriaceae) and A/C (broad-host-range) replicon regions,
respectively, including E. coli, Enterobacter spp., and Klebsiella spp., whereas 3 isolates
possessed nontypeable plasmids. Of the 23 IncX3-possessing isolates, 21 were NDM
producers. All CPE isolates were tested for transferability of carbapenemase gene
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determinants by conjugation with E. coli J53, and transconjugants containing
carbapenemase-encoding plasmids were obtained from 24 (47.0%) isolates, with an
average transfer frequency of 3.1 � 10�6 (range, 10�5 to 10�8). Of the 24 transconju-
gants, 20 were positive for NDM and 4 were positive for KPC. There was no significant
difference in transfer frequency between NDM and KPC producers.

Among the 20 transferable NDM producers, the most prevalent plasmid incompat-
ibility types were IncA/C (n � 9) and IncX3 (n � 8), which have a broad host range (28).
Of the NDM-positive transconjugants, IncX3 and A/C plasmids were obtained from 7
and 1 isolate, respectively, while the remaining 12 transconjugants had nontypeable
plasmids (Table 2). Although the transfer frequency was not high (average transfer
frequency, 10�6), it is possible that the NDM-encoded plasmids are transferred to other
species and strains. Indeed, IncX3 plasmids carrying various carbapenemases, such as
NDM and KPC, were isolated from both clinical settings and sewage in the United Arab
Emirates (UAE) (29), Myanmar (30), and China (31). Therefore, monitoring the preva-
lence of IncX3 plasmids in clinical settings and in sewage is necessary. Regarding the
ESBL genes, conjugation experiments revealed that 6 of 24 CTX-M-1G-positive isolates
were able to transfer their CTX-M-encoded plasmids to E. coli J53 (Table 2). It is possible
that the carbapenemase and CTX-M genes are located on nontransferable plasmids or
chromosomes of isolates that were not able to transfer both resistance genes. A
previous study reported the presence of CTX-M and carbapenemase genes on chro-
mosomes, raising concerns that these strains may disseminate worldwide (32–34).
Nevertheless, it is not clear whether resistant genes that are not transferred are located
on plasmids or chromosomes, and thus further analysis of the genome via next-
generation sequencing is warranted.

In addition, we identified species rarely reported in clinical settings, such as K. ascorbata
and R. ornithinolytica, which produce NDM. This suggests that carbapenemase-
encoding genes are spreading to nonconventional organisms and may be more
widespread in the environment than previously thought.

Conclusion. Our study reports the presence and genetic characteristics of CPE in
the environment (hospital sewage and river water) in the Philippines. Various species
produced different carbapenemases, with the most prevalent gene type being NDM,
which is epidemic in clinical settings. We found that isolates belonging to
carbapenemase-producing E. coli CC10 and K. pneumoniae ST147, which are also often
detected in clinical settings, were dominant in the natural environment. Further studies
are warranted for investigating the epidemiological links between isolates from the
natural environment and humans.

MATERIALS AND METHODS
Collection of environmental samples. We collected water samples from 7 hospital sewage and 10

river sites between August 2016 and August 2018. The study area included Metropolitan Manila,
Benguet, South Cotabato, Pampanga, Rizal, Leyte, and Biliran, Philippines, which have a typical tropical
maritime climate (Table 1, Fig. 1). For hospital sewage, pretreatment samples were collected from seven
hospitals. Moreover, four of the seven hospitals had sewage treatment systems, and thus posttreatment
samples were also collected.

CPE selection and species identification. To select for CPE, 100 �l of each water sample was plated
on CHROMagar mSuperCARBA (Kanto Chemical, Tokyo, Japan) and incubated at 35°C for 24 to 48 h. We
selected 20 to 50 colonies that differed in form and color and gave priority to red and blue colonies with
morphology characteristic of Enterobacteriaceae, according to the manufacturer’s instructions. Primary
identification was conducted with MALDI-TOF MS using a Vitek MS system (bioMérieux, Marcy-l’Étoile,
France). Isolates that could not be identified using MALDI-TOF MS were identified using 16S rRNA gene
sequencing (35).

Antimicrobial susceptibility testing. The antimicrobial susceptibility of various antimicrobial agents
was determined using the agar dilution method (36), and quality control was performed using E. coli
ATCC 25922. MICs were interpreted according to the breakpoints defined by the Clinical and Laboratory
Standards Institute (37).

Detection of antimicrobial resistance genes. PCR was performed for all isolates from the environ-
mental samples using AmpliTaq Gold 360 master mix (Thermo Fisher Scientific, Waltham, MA) to detect
the carbapenemase genes blaIMP, blaVIM, blaKPC, blaOXA-48-like, blaNDM, blaGES, blaIMI, and blaSME (38–44).
Carbapenemase-positive isolates were also tested for other resistance genes using PCR, including
CTX-M-type ESBL (blaCTX-M-1Group, blaCTX-M-2G, blaCTX-M-9G, and blaCTX-M-8/25G) and 16S rRNA methylase
genes (armA, rmtA, rmtB, rmtC, rmtD, and npmA) (45–47).
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DNA sequencing was conducted using BigDye Terminator version 3.1 (Applied Biosystems, Foster
City, CA) and an ABI3730xl analyzer (Applied Biosystems). BLAST version 1.12 (https://blast.ncbi.nlm.nih
.gov/Blast.cgi) was used to process the sequencing data and to identify genes.

Plasmid characterization and conjugation experiments. Plasmid incompatibility groups were
identified using the PCR-based replicon-typing method (48, 49). Conjugation experiments were con-
ducted with the broth mating method using CPE isolates as the donor and sodium azide-resistant E. coli
J53 as the recipient as previously described (50). Exponential-phase Luria-Bertani broth cultures of donor
strains and recipient E. coli J53 were mixed at a ratio of 1:1 (by volume); these mating mixtures were
incubated overnight at 35°C. Transconjugants were selected on Luria-Bertani agar plates containing
cefpodoxime (8 �g/ml) and sodium azide (100 �g/ml).

MLST. MLST was performed using Achtman’s (51) and Institut Pasteur’s (52) schemes for E. coli and
K. pneumoniae isolates, respectively. Housekeeping genes in E. coli (adk, fumC, gyrB, icd, mdh, purA, and
recA) and K. pneumoniae (rpoB, phoE, infB, gapA, mdh, pgi, and tonB) were sequenced. DNA sequence
variations were analyzed using an MLST database for E. coli and K. pneumoniae (https://pubmlst.org/
bigsdb?db�pubmlst_mlst_seqdef) to determine STs.
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