
ll
OPEN ACCESS
iScience

Article
Toward deep observation: A systematic survey on
artificial intelligence techniques to monitor fetus
via ultrasound images
Mahmood

Alzubaidi, Marco

Agus, Khalid

Alyafei, ...,

Mohammed

Anbar, Michel

Makhlouf, Mowafa

Househ

maal28902@hbku.edu.qa

(M.A.)

mhouseh@hbku.edu.qa (M.H.)

Highlights
Artificial intelligence

studies to monitor fetal

development via

ultrasound images

Fetal issues categorized

based on four categories

— general, head, heart,

face, abdomen

The most used AI

techniques are

classification,

segmentation, object

detection, and RL

The research and practical

implications are included.

Alzubaidi et al., iScience 25,
104713
August 19, 2022 ª 2022

https://doi.org/10.1016/

j.isci.2022.104713

mailto:maal28902@hbku.edu.qa
mailto:mhouseh@hbku.edu.qa
https://doi.org/10.1016/j.isci.2022.104713
https://doi.org/10.1016/j.isci.2022.104713
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104713&domain=pdf


ll
OPEN ACCESS
iScience
Article
Toward deep observation: A systematic
survey on artificial intelligence techniques
to monitor fetus via ultrasound images

Mahmood Alzubaidi,1,5,* Marco Agus,1 Khalid Alyafei,2,3 Khaled A. Althelaya,1 Uzair Shah,1 Alaa Abd-Alrazaq,1,2

Mohammed Anbar,4 Michel Makhlouf,3 and Mowafa Househ1,*
SUMMARY

Several reviews have been conducted regarding artificial intelligence (AI) tech-
niques to improve pregnancy outcomes. But they are not focusing on ultrasound
images. This survey aims to explore how AI can assist with fetal growth moni-
toring via ultrasound image. We reported our findings using the guidelines for
PRISMA. We conducted a comprehensive search of eight bibliographic data-
bases. Out of 1269 studies 107 are included.We found that 2D ultrasound images
were more popular (88) than 3D and 4D ultrasound images (19). Classification is
the most used method (42), followed by segmentation (31), classification inte-
grated with segmentation (16) and other miscellaneous methods such as ob-
ject-detection, regression, and reinforcement learning (18). The most common
areas that gained traction within the pregnancy domain were the fetus head
(43), fetus body (31), fetus heart (13), fetus abdomen (10), and the fetus face
(10). This survey will promote the development of improved AI models for fetal
clinical applications.
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INTRODUCTION

Background

Artificial intelligence (AI) is a broad discipline that aims to replicate the inherent intelligence shown by peo-

ple via artificial methods (Hassabis et al., 2017). Recently, AI techniques have been widely utilized in the

medical sector (Miller and Brown, 2018). Historically, AI techniques were standalone systems with no direct

link to medical imaging. With the development of new technology, the idea of ‘joint decision-making’ be-

tween people and AI offers the potential of boosting high performance in the area of medical imaging (Sa-

vadjiev et al., 2019).

In computer science, machine learning (ML), deep learning (DL), artificial neural network (ANN) and rein-

forcement learning (RL) are subset techniques of AI that are used to perform different tasks on medical im-

ages such as classification, segmentation, object identification, and regression (Fatima and Pasha, 2017;

Kim et al., 2019b; Shahid et al., 2019). Diagnosis using computer-aided detection (CAD) has moved toward

becoming AI automated process in the medical images (Castiglioni et al., 2021), which include most of the

medical imaging data such as X-ray radiography, fluoroscopy, MRI, medical ultrasonography or ultrasound,

endoscopy, elastography, tactile imaging, and thermography (Alzubaidi et al., 2021a, 2021b; Fujita, 2020).

However, digitized medical images come with a plethora of new information, possibilities, and challenges.

Therefore, AI techniques are able to address some of these challenges by showing impressive accuracy and

sensitivity in identifying imaging abnormalities. These techniques promise to enhance tissue-based detec-

tion and characterization with the potential to improve diagnoses of diseases (Tang, 2020).

At present, the use of AI techniques in medical images has been discussed in depth across many medical

disciplines, including identifying cardiovascular abnormalities, detecting fractures and other musculoskel-

etal injuries, aiding in diagnosing neurological diseases, reducing thoracic complications and conditions,

screening for common cancers, and many other prognoses and diagnosis tasks (Castiglioni et al., 2021;

Cheikh et al., 2020; Deo, 2015; Handelman et al., 2018; Miotto et al., 2017). Furthermore, AI techniques

have shown the ability to provide promising findings when utilizing prenatal medical images, such as
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monitoring fetal development at each stage of pregnancy, predicting a pregnant placenta’s health, and

identifying potential complications (Balayla and Shrem, 2019; Chen et al., 2021a; Iftikhar et al., 2020;

Raef and Ferdousi, 2019). AI techniques may assist with detecting several fetal diseases and adverse preg-

nancy outcomes with complex etiologies and pathogeneses such as amniotic band syndrome, congenital

diaphragmatic hernia, congenital high airway obstruction syndrome, fetal bowel obstruction, gastroschisis,

omphalocele, pulmonary sequestration, and sacrococcygeal teratoma (Correa et al., 2016; Larsen et al.,

2013; Sen, 2017). Therefore, more research is needed to understand the role of utilizing AI techniques in

the early stage of pregnancy, both to prevent and reduce unfavorable outcomes as well as provide an un-

derstanding of fetal anomalies and illnesses throughout pregnancy and for drastically reducing the need of

more invasive diagnostic procedures that may be harmful for the fetus (Chen et al., 2021b).

Various imaging modalities (e.g., ultrasound, MRI, and computed tomography (CT)) are available and can

be utilized by AI techniques during pregnancy (Kim et al., 2019b). In medical literature, ultrasound imaging

has become popular and is used during all pregnancy trimesters. Ultrasound is crucial for making diagno-

ses, along with tracking fetal growth and development. In addition, ultrasound can provide both precise

fetal anatomical information as well as high-quality photos and increased diagnostic accuracy (Avola

et al., 2021; Chen et al., 2021a). There are numerous benefits and few limitations when using ultrasound.

Acquiring the device is a very inexpensive process, particularly when compared to other instruments

used on the same organs, such as MRI or positron emission tomography (PET). Unlike other acquisition

equipment for comparable purposes, ultrasound scanners are portable and long-lasting. The second ma-

jor benefit is that unlike MRI and CT the ultrasound machine does not pose any health concerns for preg-

nant women as the produced signals are entirely safe for both the mother and the fetus (Whitworth et al.,

2015). Although the literature exploring the benefits of utilizing AI technologies for ultrasound imaging di-

agnostics in prenatal care has grown, more research is needed to understand the different roles AI can have

in diagnostic prenatal care using ultrasound images.
Research objective

Previous reviews on ultrasound medical images for pregnant women using AI techniques have not been

thoroughly conducted. Early reviews have attempted to summarize the use of AI in the prenatal period

(Al-yousif et al., 2021; Arjunan and Thomas, 2020; Avola et al., 2021; Davidson and Boland, 2021; Garcia-

Canadilla et al., 2020; Hartkopf et al., 2019; Kaur et al., 2017; Komatsu et al., 2021a; Shiney et al., 2017; Tor-

rents-Barrena et al., 2019). However, these reviews are not comprehensive because they only target specific

issues such as fetal cardiac function (Garcia-Canadilla et al., 2020), Down syndrome (Arjunan and Thomas,

2020), and fetal CNS (Hartkopf et al., 2019). Similarly, other reviews have not focused on AI techniques and

ultrasound images as the primary intervention (Kaur et al., 2017; Shiney et al., 2017; Torrents-Barrena et al.,

2019). Two reviews covered the use of general AI techniques utilized in the prenatal period through ultra-

sound. However, they did not focus on the fetus as the primary population in their review (Avola et al., 2021;

Davidson and Boland, 2021). Another systematic review (Al-yousif et al., 2021) addressed AI classification

technologies for fetal health, but it only targeted cardiotocography disease. Other review (Komatsu

et al., 2021a) they introduced various areas of medical AI research including obstetrics but the main focus

on US imaging in general. Therefore, a comprehensive survey is necessary to understand the role of AI tech-

nologies for the entire prenatal care period using ultrasound images. This work will be the first comprehen-

sive study that systematically reviews how AI techniques can assist during pregnancy screenings of fetal

development and improve fetus growth monitoring. In this survey we aim to: (1) Describe the application

of AI techniques on different fetal spatial ultrasound dimensions; (2) Discuss how different methodologies

are used—classification, segmentation, object-detection, regression, and RL, (3) Highlight the dataset

acquisition and availability; (4) Identify practical and research implications and gaps for future research.
RESULTS

Search results

As shown in Figure 1, the search yielded a total of 1269 citations. After excluding 457 duplicates, there were

812 unique titles and abstracts. A total of 598 citations were excluded after evaluating the titles and ab-

stracts. After full-text screening, n = 107 citations were excluded from the remaining n = 214 papers.

The narrative synthesis includes a total of 107 studies. Across screening steps, both authors reported

the excluding reason for each study to ensure reliability of the work. The total excluded studies were n=

704 articles. These studies did not meet selection criteria because of the following reasons: (1) irrelevant,
2 iScience 25, 104713, August 19, 2022



Figure 1. Literature map showing the selected studies in red dot and recommended studies in black dot
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(2) wrong intervention, (3) wrong population, (4) wrong publication type, (5) unavailable, and (6) foreign lan-

guage article. These terminologies are defined in Table 1.
Assessment of bibliometrics analysis

To validate the selected studies, we used a bibliometrics analysis (Kokol et al., 2021) tool that explores the

literature through citations and automatically recommends highly related articles to our scope. This

ensured that we were unlikely to miss any relevant study. Figure 1 provides a citations map between

selected studies over time. The map shows that all selected studies are relevant over time from 2010 to

2021 and recommends nine studies that may be relevant to our scope based on the interactive citation.

However, these studies were excluded because they did not meet our inclusion criteria. Therefore, we

concluded that our search was comprehensive and included most of the relevant studies.
Identification of result themes

In Figure 2, wegrouped the studies by the fetus organ that each study addresses including: 1) Fetus head (n= 43,

40.18%), 2) fetus body (n = 31, 28.97%), 3) fetus heart (n = 13,12.14%), 4) fetus face (n = 10, 9.34%), and 5) fetus

abdomen (n = 10, 9.34%). Each group is classified by sub-group as detailed in Figure 3. In addition, most of

the studies used 2D US (n = 88, 82.24%) and 3D/4D US were rare and reported only in (n = 19, 17.75%). AI tasks

are groupedbasedon themost commonuse.We found that classificationwas used in (n= 42, 39.25%), segmen-

tation was used in (n = 31, 28.97%), both classification and segmentation were used together in (n = 16, 14.95%),

object-detection, regression, and RL were seen as miscellaneous in (n = 18, 16.82%).
Definition of result themes

Ultrasound imaging modalities

There was a total of (n = 88, 82.24%) studies that utilized 2D US images. Therefore, here is a brief about what

the 2D ultrasound is. Sound waves are used in all ultrasounds to produce an image. The conventional ul-

trasound picture of a growing fetus is a 2D image. The fetus’s internal organs may be seen with a 2D ultra-

sound, which provides outlines and flat-looking pictures. 2D ultrasounds have been widely available for a
iScience 25, 104713, August 19, 2022 3



Table 1. Definition of the excluded terminologies

Terminologies Definition

Irrelevant � Publication that is not related to the
scope of this survey

Wrong intervention � Publication that targets fetus health but
not using AI technology and ultrasound
image

Wrong population � Publication that uses AI technology and
ultrasound image but did not target
fetus health

Wrong publication type � Publication that is conference abstract,
review, magazine, or newspaper

Unavailable � Publication that is not accessible or
cannot be found

Foreign language � Publication that is not written in English
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long time and have a very good safety record. These devices do not pose the same dangers as X-rays

because they employ non-ionizing rather than ionizing radiation (Avola et al., 2021). Ultrasounds are typi-

cally conducted at least once throughout pregnancy, most often between 18 and 22 weeks in the second

trimester (Bethune et al., 2013). This examination, also known as a level two ultrasound or anatomy scan, is

performed to monitor the fetus’s development. Ultrasounds may be used to examine a variety of things

during pregnancy, including: 1) How the fetus is developing; 2) The gestational age of the fetus; 3) Any ab-

normalities within the uterus, ovaries, cervix, or placenta; 4) The number of fetuses you are carrying; 5) Any

difficulties the fetus may be experiencing; 6) The fetus’s heart rate; 7) Fetal growth and location in the

uterus, 8) Amniotic fluid level, 9) Sex assignment, 10) Signs of congenital defects, and 11) Signs of Down

syndrome (Driscoll and Gross, 2009; Masselli et al., 2014).

There was a total of (n = 18, 16.8%) studies that utilized 3D. Therefore, here is a brief about what is 3D ul-

trasound. Observing three-dimensional (3D) ultrasound images has increasingly grown in recent years.

Although 3D ultrasounds may be beneficial in identifying facial or skeletal abnormalities (Huang and

Zeng, 2017), 2D ultrasounds are commonly utilized in medical settings because they can clearly reveal

the interior organs of a growing fetus. The picture of a 3D ultrasound is created by putting together several

2D photos obtained from various angles. Many parents like 3D photos because they believe they can see

their baby’s face more clearly than they can with flat 2D images.

Despite this, the Food and Drug Administration (FDA) does not recommend using a 3D ultrasound for

entertainment purposes (Abramowicz, 2010). The ‘‘as low as reasonably attainable’’ (ALARA) approach di-

rects ultrasound technologists to be used solely in a clinical setting in order to reduce exposure to heat and

radiation (Abramowicz, 2015). Although an ultrasound is generally thought to be harmless, there is insuf-

ficient data to determine what long-term exposure to ultrasound may be to a fetus or a pregnant woman.

There is no way of knowing how long a session will take or if the ultrasound equipment will work correctly in

non-clinical situations such as places that give ‘‘keepsake’’ photos (Dowdy, 2016).

4D ultrasound is identical to a 3D ultrasound, but the image it creates is updated constantly – comparable

to a moving image. This sort of ultrasound is usually performed for fun rather than for medical concerns. As

previously mentioned, because ultrasound is medical equipment that should only be used for medical pur-

poses (Kurjak et al., 2007), the FDA does not advocate getting ultrasounds for enjoyment or bonding pur-

poses. Unless their doctor or midwife has recommended it as part of prenatal care, pregnant patients

should avoid non-medical locations that provide ultrasounds (Dowdy, 2016). Although there is no proven

risk, both 3D and 4D ultrasounds employ higher-than-normal amounts of ultrasound energy and the ses-

sions are longer compared to 2D which may have adverse fetal effects (Mack, 2017; Payan et al., 2018).

AI image processing task

There was a total of (n = 42, 39.25%) studies that utilized classification, which is the process of assigning one

or more labels to an image, and it is one of the most fundamental problems concerning accurate computer
4 iScience 25, 104713, August 19, 2022



Figure 2. PRISMA diagram showing our literature search inclusion process
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vision and pattern recognition. It has many applications including image and video retrieval, video surveil-

lance, web content analysis, human-computer interaction, and biometrics. Feature coding is an important

part of image classification, and several coding methods have been developed in recent years. In general,

image classification entails extracting picture characteristics before classifying them (Naeem and Bin-

Salem, 2021). As a result, the main aspect of utilizing image classification is understanding how to extract

and evaluate image characteristics ( Wang et al., 2020).

There was a total of (n = 31, 28.97%) studies that utilized segmentation, which is one of the most complex

tasks in medical image processing involving distinguishing the pixels of organs or lesions from background
iScience 25, 104713, August 19, 2022 5



Figure 3. Summary of AI methods implemented on fetal ultrasound images
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medical images such as CT or MRI scans (Bin-Salem et al., 2022). A number of researchers have suggested

different automatic segmentation methods by using existing technology (Asgari Taghanaki et al., 2021).

Previously, traditional techniques such as edge detection filters and mathematical algorithms were used

to construct earlier systems (Bali and Singh, 2015). After this, machine learning techniques for extracting

hand-crafted characteristics were the dominating method for a substantial time period. The main issue

for creating such a system has always been designing and extracting these characteristics, and the

complexity of these methods has been seen as a substantial barrier to deployment. In the 2000s, deep

learning methods began to grow in popularity because of advancements in technology because this

method had significantly better skills in image processing jobs. Deep learning methods have emerged

as a top choice for image segmentation, particularly medical image segmentation, because of their prom-

ising capabilities (Hesamian et al., 2019).

There was a total of (n = 12, 11.21%) studies that utilized object detection techniques, which is the process

of locating and classifying items. A detection method is used in biomedical images to determine the re-

gions where the patient’s lesions are situated as box coordinates. There are two kinds of deep learning-

based object detection. These region proposal-based algorithms are one example. Using a selective

search technique, this method extracts different kinds of patches from input images. After that, the trained

model determines if each patch contains numerous items and classifies them according to their region of

interest (ROI). In particular, the region proposal network was created to speed up the detection process.

Object identification in the other methods is done using the regression-based algorithm as a one-stage

network. These methods use image pixels to directly identify and detect bounding box coordinates and

class probabilities within entire images (Kim et al., 2019b).
6 iScience 25, 104713, August 19, 2022



Table 2. Characteristics of the included studies (n = 107)

Characteristics Number of studies

Type of publication (n, %)

Journal article (53, 49.53)

Conference proceedings (43, 40.18)

Book chapter (11, 10.28)

Year of publication

2021 (19, 17.75)

2020 (30, 28.03)

2019 (14, 13.08)

2018 (11, 10.28)

2017 (6, 5.60)

2016 (4, 3.73)

2015 (6, 5.60)

2014 (9, 8.41)

2013 (3, 2.80)

2012 (1, 0.93)

2011 (3, 2.80)

2010 (1, 0.93)

Fetal Organ

Fetus body (31, 28.97)

Fetal part structures (13, 12.14)

Anatomical structures (8, 7.47)

Growth disease (6, 5.60)

Gestational age (3, 2.80)

Gender (1, 0.93)

Fetus head (43, 40.18)

Skull localization and measurement (25, 23.36)

Brain standard plane (13, 12.14)

Brain disease (5, 4.67)

Fetus face (10, 9.34)

Fetal facial standard planes (5, 4.67)

Face anatomical landmarks (3, 2.80)

Facial expressions (2, 1.86)

Fetus heart (13,12.14)

Heart disease (7, 6.54)

Heart chambers view (6, 5.60)

Fetus abdomen (10, 9.34)

Abdominal anatomical landmarks (10, 9.34)

Publication Country and top institute

China (41, 38.31)

Shenzhen University (13, 12.14)

Beihang University (5, 4.67)

Chinese University of Hong Kong (4, 3.73)

Hebei University of Technology (2, 1.86)

Fudan University (2, 1.86)

Shanghai Jiao Tong University (2, 1.86)

(Continued on next page)
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Table 2. Continued

Characteristics Number of studies

South China University of Technology (2, 1.86)

Other institutes (11, 10.28)

UK (25, 23.36)

University of Oxford (20, 18.69)

Imperial College London (4, 3.73)

King’s College, London (1, 0.93)

India (14, 13.08)

Japan (4, 3.73)

Indonesia (4, 3.73)

USA (3, 2.80)

South Korea (3, 2.80)

Iran (3, 2.80)

Australia (1, 0.93)

Canada (1, 0.93)

Mexico (1, 0.93)

France (1, 0.93)

Italy (1, 0.93)

Tunisia (1, 0.93)

Spain (1, 0.93)

Iraq (1, 0.93)

Brazil (1, 0.93)

Malaysia (1, 0.93)
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There was a total of (n = 2, 1.8%) studies that utilized RL. The concept behind RL is that an artificial agent

learns by interacting with its surroundings. It enables agents to autonomously identify the best behavior to

exhibit in each situation to optimize performance on specified metrics. The basic concept underlying RLis

made up of many components. The RL agent is the process’s decision-maker, and it tries to perform an ac-

tion that has been recognized by the environment. Depending on the activity performed, the agent re-

ceives a reward or penalty from its surroundings. Exploration and exploitation are used by RL agents to

determine which activities provide the most rewards. In addition, the agent obtains information about

the condition of the environment (Sahba et al., 2006). For medical image analysis applications, RL provides

a powerful framework. RL has been effectively utilized in a variety of applications, including landmark local-

ization, object detection, and registration using image-based parameter inference. RL has also been shown

to be a viable option for handling complex optimization problems such as parameter tuning, augmentation

strategy selection, and neural architecture search. Existing RL applications for medical imaging can be split

into three categories: parametric medical image analysis, medical image optimization, and numerous

miscellaneous applications (Zhou et al., 2021).
Description of included studies

As shown in (Table 2), more than half of the studies (n= 53, 49.53%) were obtained from journal articles

whereas the other half were found in conference proceedings (n= 43, 40.18%) and book chapters (n =

11, 10.28%). Studies were published between 2010 and 2021. The majority of studies were published in

2020 (n = 30, 28.03%), followed by 2021 (n = 19, 17.75%), 2019 (n = 14, 13.08%), 2018 (n = 11, 10.28),

2014 (n = 9, 8.41%), 2017 (n = 6, 5.60%), 2015 (n = 6, 5.60%), 2016 (n = 4, 3.73%), 2013 (n = 3, 2.80%),

2011 (n = 3, 2.80%), 2012 (n = 1, 0.93%), and 2010 (n = 1, 0.93%). In regard to studies examining fetal organs,

fetus skull localization and measurement was reported on in (n = 25, 23.36%) studies, followed by fetal part

structures (n = 13, 12.14%) and brain standard plane in (n = 13, 12.14%) studies. Abdominal anatomical

landmarks were reported in (n = 10, 9.34%) studies. In addition, fetus body anatomical structures were re-

ported in (n = 8, 7.47%) studies, heart disease was reported on in (n = 7, 6.54%) studies, and growth disease

(n = 6, 5.60%) and brain disease were also reported in (n = 5, 4.67%) studies. The view of heart chambers was
8 iScience 25, 104713, August 19, 2022
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reported on in (n = 6, 5.60%) studies, fetal facial standard planes were reported in (n = 5, 4.67%) studies,

gestational age (n = 3, 2.80%) and face anatomical landmarks were reported on in (n = 3, 2.80%) studies,

facial expressions were reported on in (n = 2, 1.86%) studies, and gender identification was reported on

only in (n = 1, 0.93%) study. In addition, most of the studies were conducted in China (n = 41, 38.31%), fol-

lowed by the UK (n = 25, 23.36%), and India (n = 14, 13.08%). Surprisingly, some institutes mainly focused on

this field and contributed a high number of studies. For example, many (n = 20, 18.69%) studies were con-

ducted at the University of Oxford, UK and several (n = 13, 12.14%) were conducted in Shenzhen University,

China.
Artificial intelligence for fetus ultrasound

Fetus body

As shown in (Table 2), the overall purpose of several (n= 31, 28.97%) studies was to identify general char-

acters of the fetus (e.g., gestational age, gender) or diseases such as intrauterine growth restriction

(IUGR). In addition, most of the studies aimed to identify the fetus itself in the uterus or fetus part struc-

ture during different trimesters. The first trimester is from week 1 to the end of week 12. The second

trimester is from week 13 to the end of week 26, and the third trimester is from week 27 to the end

of the pregnancy. We also report on a performance comparison between the various techniques for

each fetus body group including objective, backbone methods, optimization, fetal age, best obtained

result, and observations (see Table 3).

Fetal part structures
Classification. For identification and localization of fetal part structure, image classification was widely

used in (n= 9, 8.41%) studies. Only 2D US images were utilized for classification purposes. Studies (Gao and

Noble, 2019; Maraci et al., 2015; Yaqub et al., 2015) used a classification task to identify and locate fetal

skull, heart, and abdomen from 2D US images in the second trimester. Besides that, in (Cai et al., 2018),

classification was used to locate the exact abdominal circumference plane (ACP), and in (Cai et al.,

2020), more results were obtained by locating head circumference plane (HCP), the abdominal circumfer-

ence plane (ACP), and the femur length plane (FLP). Furthermore, in studies (Chen et al., 2015, 2017; Sridar

et al., 2019) researching the second and third trimester, multi-classes were used to identify and locate

various parts including (1) fetal abdominal standard plane (FASP); (2) fetal face axial standard plane

(FFASP); and (3) fetal four-chamber view standard plane (FFVSP) of the heart. Study (Burgos-Artizzu

et al., 2020) located the mother’s cervix in addition to abdomen, brain, femur, and thorax.

Segmentation. Image segmentation task was used in (n = 3, 2.80%) studies for the purpose of fetal

part structure identification. 2D US imaging (Liu et al., 2021) was used to segment neonatal hip bone

including seven key structures: (1) chondro-osseous border (CB), (2) femoral head (FH), (3) synovial fold

(SF), (4) joint capsule and perichondrium (JCP), (5) labrum (La), (6) cartilaginous roof (CR), and (7) bony

roof (BR). Only one study in (Weerasinghe et al., 2021) provided segmentation model that was able to

segment the fetus kidney using 3D US in the third trimester. Segmentation was used to locate fetal

head, femur, and humerus using 2D US as seen in (Rahmatullah et al., 2014).

Classification and segmentation. In (Ryou et al., 2019), whole fetal segmentation followed by classi-

fication tasks were used to locate the head, abdomen (in sagittal view), and limbs (in axial view) using 3D US

images taken in the first trimester.

Anatomical part structures
Classification. For identification and localization of anatomical structures, image classification was

used in (n= 4, 3.73%) studies. Only one study (Ryou et al., 2016) used 3D US images and other studies

used 2D US (Ravishankar et al., 2016; Toussaint et al., 2018; Wee et al., 2010). In (Ryou et al., 2016), the whole

fetus was localized in the sagittal plane and classifier was then applied to the axial images to localize one of

three classes (head, body and non-fetal) during the second trimester. Multi-classificationmethods were uti-

lized in (Toussaint et al., 2018) to localize head, spine, thorax, abdomen, limbs, and placenta in the third

trimester. Moreover, binary classification was used in (Ravishankar et al., 2016) to identify abdomen versus

non-abdomen. In (Wee et al., 2010), a classification method was used to detection and measure nuchal

translucency (NT) in the beginning of second trimester. Moreover, monitoring NT combined with maternal

age can provide effective insight of screening Down syndrome.
iScience 25, 104713, August 19, 2022 9



Table 3. Articles published using AI to improve fetus body monitoring: objective, backbone methods, optimization, fetal age, and AI tasks

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods Fetal age AI tasks

Fetal Part Structures

(Maraci et al., 2015) To identify the fetal skull, heart

and abdomen from ultrasound

images

SVM as the classifier Gaussian Mixture Model

(GMM)

Fisher Vector (FV)

26th week classification

(Liu et al., 2021) To segment the seven key

structures of the neonatal hip

joint

Neonatal Hip Bone

Segmentation Network

(NHBSNet)

Feature Extraction Module

Enhanced Dual Attention

Module (EDAM)

Two-Class Feature Fusion

Module (2-Class FFM)

Coordinate Convolution

Output Head (CCOH)

16 - 25 weeks. segmentation

(Rahmatullah et al., 2014) To segment organs head,

femur, and humerus in

ultrasound images using

multilayer super pixel images

features

Simple Linear Iterative

Clustering (SLIC)

Random forest

Unary pixel shape feature

image moment

N/A segmentation

(Weerasinghe et al., 2021) To automate kidney

segmentation using fully

convolutional neural networks.

FCNN: U-Net & UNET++ N/A 20 to 40 weeks segmentation

(Burgos-Artizzu et al., 2020) To evaluate the maturity of

current Deep Learning

classification techniques for

their application in a real

maternal-fetal clinical

environment

CNN DenseNet-169 N/A 18 to 40 weeks classification

(Cai et al., 2020) To use the learnt visual

attention maps to guide

standard plane detection on all

three standard biometry

planes: ACP, HCP and FLP.

Temporal SonoEyeNet (TSEN)

Temporal attention module:

Convolutional LSTM

Video classification module:

Recurrent Neural Networks

(RNNs)+

CNN feature extractor: VGG-

16

N/A classification

(Ryou et al., 2019) To support first trimester fetal

assessment of multiple fetal

anatomies including both

visualization and the

measurements from a single

3D ultrasound scan

Multi-Task Fully Convolutional

Network (FCN)

U-Net

N/A 11 to 14 weeks Segmentation Classification

(Continued on next page)
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Table 3. Continued

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods Fetal age AI tasks

(Sridar et al., 2019) To automatically classify 14

different fetal structures in 2D

fetal ultrasound images by

fusing information from both

cropped regions of fetal

structures and the whole image

support vector machine

(SVM)+ Decision fusion

Fine-tuning AlexNet CNN 18 to 20 weeks Classification

(Chen et al., 2017) To automatic identification of

different standard planes from

US images

T-RNN framework:

LSTM

Features extracted using

J-CNN classifier

18 to 40 weeks Classification

(Cai et al., 2018) To classify abdominal fetal

ultrasound video frames into

standard AC planes or

background

M-SEN architecture

Discriminator CNN

Generator CNN N/A Classification

(Gao and Noble, 2019) To detect multiple fetal

structures in free-hand

ultrasound

CNN

Attention Gated LSTM

Class Activation Mapping

(CAM)

28 to 40 weeks classification

(Yaqub et al., 2015) To extract features from

regions inside the images

where meaningful structures

exist.

Guided Random Forests Probabilistic Boosting Tree

(PBT)

18 to 22 weeks Classification

(Chen et al., 2015) To detect standard planes from

US videos

T-RNN

LSTM (Transferred RNN)

Spatio-Semporal Feature

J-CNN

18 to 40 weeks Classification

Anatomical Structures

(Yang et al., 2019) To propose the first and fully

automatic framework in the

field to simultaneously

segment fetus, gestational sac

and placenta,

3D FCN + RNN hierarchical

deep supervision mechanism

(HiDS)

BiLSTM module denoted as

FB-nHiDS

10 - 14 weeks Segmentation

(Looney et al., 2021) To segment the placenta,

amniotic fluid, and fetus.

FCNN N/A 11 - 19 weeks Segmentation

(Li et al., 2017) To segment the amniotic fluid

and fetal tissues in fetal US

images

The encoder-decoder network

based on VGG16

N/A 22ND weeks Segmentation

(Continued on next page)
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Table 3. Continued

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods Fetal age AI tasks

(Ryou et al., 2016) To localize the fetus and extract

the best fetal biometry planes

for the head and abdomen

from first trimester 3D fetal US

images

CNN Structured Random Forests 11 - 13 weeks Classification

(Toussaint et al., 2018) To detect and localize fetal

anatomical regions in 2D US

images

ResNet18 Soft Proposal Layer (SP) 22 - 32 weeks Classification

(Ravishankar et al., 2016) To reliably estimate abdominal

circumference

CNN + Gradient Boosting

Machine (GBM)

Histogram of Oriented

Gradient (HoG)

15 - 40 weeks Classification

(Wee et al., 2010) To detect and recognize the

fetal NT based on 2D

ultrasound images by using

artificial neural network

techniques.

Artificial Neural Network

(ANN)

Multilayer Perceptron (MLP)

Network

Bidirectional Iterations

Forward Propagations Method

(BIFP)

N/A Classification

(Liu et al., 2019) To detect NT region U-Net NT Segmentation

PCA NT Thickness

Measurement

VGG16 NT Region Detection 4 - 12 weeks Segmentation

Growth disease

(Bagi and Shreedhara, 2014) To propose the biometric

measurement and

classification of IUGR, using

OpenGL concepts for extract-

ing the feature values and ANN

model is designed for diag-

nosis and classification

ANN

Radial Basis Function (RBF)

OpenGL 12–40

Weeks

Classification

(Selvathi and Chandralekha,

2021)

To find the region of interest

(ROI) of the fetal biometric and

organ region in the US image

DCNN AlexNet N/A 16 -27 weeks Classification

(Rawat et al., 2016) To detect fetal abnormality in

2D US images

ANN + Multilayered

perceptron neural networks

(MLPNN)

Gradient vector flow (GVF)

Median Filtering

14 - 40 weeks Classification segmentation

(Gadagkar and Shreedhara,

2014)

To develop a computer-aided

diagnosis and classification

tool for extracting ultrasound

sonographic features and

classify IUGR fetuses

ANN Two-Step Splitting Method

(TSSM) for Reaction-Diffusion

(RD)

12–40

Weeks

Classification segmentation

(Continued on next page)

ll
O
P
E
N

A
C
C
E
S
S

1
2

iS
cie

n
ce

2
5
,
1
0
4
7
1
3
,
A
u
g
u
st

1
9
,
2
0
2
2

iS
cience
A
rticle



Table 3. Continued

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods Fetal age AI tasks

(Andriani andMardhiyah, 2019) To develop an automatic

classification algorithm on the

US examination result using

Convolutional Neural Network

in Blighted Ovum detection

CNN N/A N/A Classification

(Yekdast, 2019) To propose an intelligent

system based on combination

of ConvNet and PSO for Down

syndrome diagnosis.

CNN Particle Swarm Optimization

(PSO)

N/A Classification

(Maraci et al., 2020) To automatically detect and

measure the transcerebellar

diameter (TCD) in the fetal

brain, which enables the

estimation of fetal gestational

age (GA)

CNN FCN N/A 16- - 26 weeks Classification segmentation

(Chen et al., 2020a) To accurately estimate the

gestational age from the fetal

lung region of US images.

U-NET N/A 24 - 40 weeks Classification segmentation

(Prieto et al., 2021) To classify, segment, and

measure several fetal

structures for the purpose of

GA estimation

U-NET

RESTNET

Residual UNET (RUNET) 16th weeks Classification segmentation

(Maysanjaya et al., 2014) To measure the accuracy of

Learning Vector Quantization

(LVQ) to classify the gender of

the fetus in the US image"

ANN Learning Vector Quantization

(LVQ)

Moment invariants

N/A Classification
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Segmentation. An image segmentation task was used in (n= 4, 3.73%) studies for the purpose of fetal

mage segmentation was target task anatomical structures identification. In (Looney et al., 2021; Yang et al.,

2019), 3D US were utilized to segment fetus, gestational sac amniotic fluid, and placenta in the beginning of

the second trimester. However, in (Li et al., 2017), 2D US was used to segment amniotic fluid and the fetus in

the late trimester. Finally, 2D US in (Liu et al., 2019) was utilized to segment and measure NT in the first

trimester of pregnancy.

Growth disease diagnosis
Classification. For diagnosis of fetal growth, disease image classification was conducted in (n= 4,

3.73%) studies using 2D US. In (Bagi and Shreedhara, 2014) binary classification was used for early diagnosis

of intrauterine growth restriction (IUGR) at the third trimester of pregnancy. The features considered to

determine a diagnosis of IUGR are gestational age (GA), biparietal diameter (BPD), abdominal circumfer-

ence (AC), head circumference (HC), and femur length (FL). In addition, binary classification was used in the

second trimester of pregnancy to identify normal versus abnormal fetus growth as seen in (Selvathi and

Chandralekha, 2021). In (Andriani and Mardhiyah, 2019), binary classification was used to identify the

normal growth of the ovum by distinguishing blighted ovum from healthy ovum. Lastly, the binary classifi-

cation was used to distinguish between healthy fetuses and those with Down syndrome (Yekdast, 2019).

Classification and segmentation. For diagnosis of fetal growth disease, image classification along

with segmentation were used in (n= 2, 1.86%) studies using 2D US. In (Gadagkar and Shreedhara, 2014;

Rawat et al., 2016), segmentation of the region of interest (ROI), followed by classification to diagnosis

(IUGR) (normal versus abnormal) were carried out. This was done by using US images taken in both second

and third trimesters of pregnancy. This classification relied on the measurement of the following: (1) Fetal

abdominal circumference (AC), (2) Head circumference (HC), (3) BPD, and (4) Femur length.

Gestational age (GA) estimation
Classification and segmentation. Both classification and segmentation tasks were used to estimate GA

in (n= 3, 2.80%) studies using 2DUS taken in the second and third trimester of pregnancy. In (Maraci et al., 2020),

the trans-cerebellar diameter (TCD) measurement was used to estimate GA in week. The TC plane frames are

extracted from the US images using classification. Segmentation then localizes the TC structure and performs

automated TCD estimation, from which the GA can thereafter be estimated via an equation. In (Chen et al.,

2020a), 2D US was used to estimate GA based on region of fetal lung in the second and third trimester. In the

first stage, the segmentation is to learn the recognition of fetal lung region in the ultrasound images. Classifica-

tion is also used to accurately estimate the gestational age from the fetal lung region of ultrasound images.

Several fetal structures were used to estimate GA in (Prieto et al., 2021), which focused on the second trimester.

In this study, 2D US images were classified into four categories: head (BPD and HC), abdomen (AC), femur (FL),

and fetus (crown-rump length: CRL). Then, the regions of interest (i.e., head, abdomen, and femur) were

segmented and the results of biometry measurements were used to estimate GA.

Gender identification
Classification. Binary-classification was used in (Maysanjaya et al., 2014) to identify the gender of the

fetus. Image preprocessing, image segmentation, and feature extraction (shape description) were used to

obtain the value of the feature extraction and gender classification. This task is categorized as classification

because a segmentation task is not clearly defined.

Fetus head

As shown in (Table 2), the primary purpose of (n= 43, 40.18%) studies is to identify and localize fetus skull

(e.g., head circumference), brain standard planes (e.g., Lateral sulcus (LS), thalamus (T), choroid plexus (CP),

cavum septi pellucidi (CSP)) or brain diseases (e.g., hydrocephalus (premature GA), ventriculomegaly, CNS

malformations)). The following subsection discusses each category based on the implemented task. (Ta-

ble 4) presents a comparison between the various techniques for each fetus head group (including objec-

tive, backbone methods, optimization, fetal age, best obtained result, and observations), studies for each

group under the fetus head category, and provides an overview of methodology and observations.

Skull localization and measurement
Classification. Classification tasks for skull localization and HC are rarely used, as seen only in (n = 3,

2.80%) studies. Studies (Li et al., 2018; Nie et al., 2015a) used classification to localize the region of interest
14 iScience 25, 104713, August 19, 2022



Table 4. Articles published using AI to improve fetus head monitoring: objective, backbone methods, optimization, fetal age, and AI tasks

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods Fetal age AI tasks

Skull localization and measurement

(Sobhaninia et al., 2020) To localize the fetal head

region in US imaging

Multi-scale mini-LinkNet

network

N/A 12 - 40 weeks Segmentation

(Nie et al., 2015b) To locate the fetal head from

3D ultrasound images using

shape model

AdaBoost Shape Model

Marginal Space

Haar-like features

11 - 14 weeks Classification

(Nie et al., 2015a) To detect fetal head Deep Belief Network (DBN)

Restricted Boltzmann

Machines

Hough transform

Histogram Equalization

11 - 14 weeks Classification

(Aji et al., 2019) To semantically segment fetal

head from maternal and other

fetal tissue

U-NET Ellipse fitting 12 - 20 weeks Segmentation

(Droste et al., 2020) To automatically discover and

localize anatomical landmarks;

measure the HC, TV, and the

TC

CNN Saliency maps 13 - 26 weeks Miscellaneous

(Desai et al., 2020) To demonstrate the

effectiveness of hybrid method

to segment fetal head

DU-Net Scattering Coefficients (SC) 13 - 26 weeks Segmentation

(Brahma et al., 2021) To segment fetal head using

Network Binarization

Depthwise Separable

Convolutional Neural

Networks DSCNNs.

Network Binarization 12 - 40 weeks Segmentation

(Qiao and Zulkernine, 2020) To segment the fetal skull

boundary and fetal skull for

fetal HC measurement

U-NET Squeeze and Excitation (SE)

blocks

12 - 40 weeks Segmentation

(Sobhaninia et al., 2019) To automatically segment and

estimate HC ellipse.

Multi-Task network based on

Link-Net architecture (MTLN)

Ellipse Tuner 12 - 40 weeks Segmentation

(Zhang et al., 2020b) To capture more information

with multiple-channel

convolution from US images

Multiple-Channel and Atrous

MA-Net

Encoder and Decoder Module N/A Segmentation

(Zeng et al., 2021) To automatically segment fetal

ultrasound image and HC

biometry

Deeply Supervised Attention-

Gated (DAG) V-Net

Attention-Gated Module 12 - 40 weeks Segmentation

(Perez-Gonzalez et al., 2020) To compound a new US

volume containing the whole

brain anatomy

U-NET + Incidence Angle

Maps (IAM)

CNN

Normalized Mutual

Information (NMI)

13 to 26 weeks Segmentation

(Continued on next page)
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Table 4. Continued

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods Fetal age AI tasks

(Zhang et al., 2020a) To directly measure the head

circumference, without having

to resort the handcrafted

features or manually labeled

segmented images.

CNN regressor (Reg-Resnet50) N/A 12 - 40 weeks Segmentation

(Fiorentino et al., 2021) To propose region-CNN for

head localization and

centering, and a regression

CNN to accurately delineate

the HC

CNN regressor (U-net) Tiny-YOLOv2 12 - 40 weeks Miscellaneous

(Li et al., 2020) To present a novel end-to-end

deep learning network to

automatically measure the fetal

HC, biparietal diameter (BPD),

and occipitofrontal diameter

(OFD) length from 2D US

images

FCNN (SAPNet) Regression network 12 - 40 weeks Miscellaneous

(Al-Bander et al., 2020) To segment fetal head from US

images

FCN Faster R-CNN 12 - 40 weeks Miscellaneous

(Fathimuthu Joharah and

Mohideen, 2020)

To deal with a completely

computerized detection device

of next fetal head composition

Multi-Task network based on

Link-Net architecture (MTLN)

Hadamard Transform (HT)

ANN FeedForward (NFFE)

Classifier

N/A Miscellaneous

(Li et al., 2018) To measure HC automatically Random Forest Classifier Haar-like features

ElliFit method

18 - 33 weeks Classification

(Sinclair et al., 2018) To determinemeasurements of

fetal HC and BPD

FNC N/A 18 - 22 weeks Segmentation

(Yang et al., 2020b) To segment the whole fetal

head in US volumes

Hybrid attention scheme (HAS) 3D U-NET + Encoder and

Decoder architecture for dense

labeling

20 - 31 weeks Segmentation

(Xu et al., 2021) To segment fetal head using a

flexibly plug-and-play module

called vector self-attention

layer (VSAL)

CNN Vector Self-Attention Layer

(VSAL)

Context Aggregation Loss

(CAL)

12 - 40 weeks Segmentation

(Cerrolaza et al., 2018) To provide automatic

framework for skull

segmentation in fetal 3D US

Two-Stage Cascade CNN (2S-

CNN) U-NET

Incidence Angle Map

Shadow Casting Map

20 - 36 weeks Segmentation

(Continued on next page)
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Table 4. Continued

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods Fetal age AI tasks

(Skeika et al., 2020) To segment 2D ultrasound

images of fetal skulls based on

a V-Net architecture

Fully Convolutional Neural

Network Combination (VNet-c)

N/A 12 - 40 weeks Segmentation

(Namburete and Noble, 2013) To segment the cranial pixels in

an ultrasound image using a

random forest classifier

Random Forest Classifier Simple Linear Iterative

Clustering (SLIC)

Haar Features

25 - 34 weeks Segmentation

(Budd et al., 2019) To automatically estimate fetal

HC

U-Net Monte-Carlo Dropout 18 - 22 weeks Segmentation

Brain standard plane

(Qu et al., 2020a) To automatically recognize six

standard planes of fetal brains.

CNN+ Transfer learning DCNN N/A 18 - 22 weeks

40th week

Classification

(Cuingnet et al., 2013) To help the clinician or

sonographer obtain these

planes of interest by finding the

fetal head alignment in 3D US

Random forest classifier Shape model and template

deformation algorithm

Hough transform

19 - 24 weeks. Classification segmentation

(Singh et al., 2021b) To segment the fetal

cerebellum from 2D US images

U-NET +ResNet (ResU-NET-C) N/A 18 - 20 weeks Segmentation

(Yang et al., 2021b) To detect multiple planes

simultaneously in challenging

3D US datasets

Multi-Agent Reinforcement

Learning (MARL)

RNN

Neural Architecture Search

(NAS)

Gradient-based Differentiable

Architecture Sampler (GDAS)

19 - 31 weeks Miscellaneous

(Lin et al., 2019b) To detect standard plane and

quality assessment

Multi-task learning Framework

Faster Regional CNN (MF R-

CNN)

N/A 14 - 28 weeks Miscellaneous

(Kim et al., 2019a) To tackle the automated

problem of fetal biometry

measurement with a high

degree of accuracy and

reliability

U-Net, CNN Bounding-box regression

(object-detection)

N/A Miscellaneous

(Lin et al., 2019a) To determine the standard

plane in US images

Faster R-CNN Region Proposal Network

(RPN)

14 - 28 weeks Miscellaneous

(Namburete et al., 2018) To address the problem of 3D

fetal brain localization,

structural segmentation, and

alignment to a referential

coordinate system

Multi-Task FCN Slice-Wise Classification 18 - 34 weeks Classification segmentation

(Continued on next page)
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Table 4. Continued

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods Fetal age AI tasks

(Huang et al., 2018) To simultaneously localize

multiple brain structures in 3D

fetal US

View-based Projection

Networks (VP-Nets)

U-Net

CNN

20 - 29 weeks Classification segmentation

(Qu et al., 2020b) To automatically identify six

fetal brain standard planes

(FBSPs) from the non-standard

planes.

Differential-CNN Modified feature map 16 - 34 weeks Classification

(Wang et al., 2019) To obtain the desired position

of the gate and Middle

Cerebral Artery (MCA)

MCANet Dilated Residual Network

(DRN)

Dense Upsampling

Convolution (DUC) block

28 - 40 weeks Segmentation

(Yaqub et al., 2013) To segment four important

fetal brain structures in 3D US

Random Decision Forests

(RDF)

Generalized Haar-features 18 - 26 weeks Segmentation

(Yang et al., 2021a) To automatically localize fetal

brain standard planes in 3D US

Dueling Deep Q Networks

(DDQN)

RNN-based Active Termination

(AT) (LSTM)

19 - 31 weeks Miscellaneous

(Liu et al., 2020) To evaluate the feasibility of

CNN-based DL algorithms

predicting the fetal lateral

ventricular width from prenatal

US images.

ResNet50 Faster R-CNN

Class Activation Mapping

(CAM)

22 - 26 weeks. Miscellaneous

(Sahli et al., 2020) To recognize and separate the

studied US data into two

categories: healthy (HL) and

hydrocephalus (HD) subjects

CNN N/A 20 - 22 weeks. Classification

(Chen et al., 2020b) To automatically measure fetal

lateral ventricles (LVs) in 2D US

images

Mask R-CNN Feature Pyramid Networks

(FPN)

Region Proposal Network

(RPN)

N/A Miscellaneous

(Xie et al., 2020b) To apply binary classification

for central nervous system

(CNS) malformations in

standard fetal US brain images

in axial planes

CNN Split-view Segmentation 18 - 32 weeks Classification segmentation

(Xie et al., 2020a) To develop computer-aided

diagnosis algorithms for five

common fetal brain

abnormalities.

Deep convolutional neural

networks (DCNNs) VGG-net

U-net

Gradient-Weighted Class

Activation Mapping (Grad-

CAM)

18 - 32 weeks Classification segmentation
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(ROI) and identify the fetus head based on 2D US taken in the first and second trimesters respectively. 3D

US taken in the first trimester were used to detect fetal head in one study (Nie et al., 2015b).

Segmentation. Skull localization and HC in most of the studies (n = 16, 14.81%) used segmentation

task. 2D US was used in 16 studies and one study used 3D US. Various network architecture were used

to segment and locate the skull and perform HC as seen in (Aji et al., 2019; Brahma et al., 2021; Budd

et al., 2019; Desai et al., 2020; Namburete and Noble, 2013; Perez-Gonzalez et al., 2020; Qiao and Zulker-

nine, 2020; Skeika et al., 2020; Sobhaninia et al., 2020,2019; Xu et al., 2021; Zeng et al., 2021; Zhang et al.,

2020b). Besides identifying HC, in (Sinclair et al., 2018) segmentation was also used to find fetal BPD.

Further investigation shows that the work completed in (Cerrolaza et al., 2018) was the first investigation

about whole fetal head segmentation in 3D US. The segmentation network for skull localization in (Xu

et al., 2021) was tested to identify a view of the four heart chambers on different datasets.

Miscellaneous. In addition to segmentation, another method was used to locate and identify the fetus

skull in (n = 6, 5.60%) studies. As seen in (Li et al., 2020), regression was used with segmentation to identify

HC, BPD, and occipitofrontal diameter (OFD). Besides this, in (Droste et al., 2020), neural network was used

to train the saliency predictor and predict saliency maps to measure HC and identify the alignment of both

transventricular (TV) as well as transcerebellar (TC). In addition, an object detection task was used with seg-

mentation in (Al-Bander et al., 2020) to locate the fetal head at the end of the first trimester. In (Fiorentino

et al., 2021), object detection was used for head localization and centering and regression to delineate the

HC accurately. In (Fathimuthu Joharah and Mohideen, 2020), classification and segmentation tasks were

used by utilizing a multi-task network to identify head composition.

Brain standard plane
Classification. The classification was used in (n = 2, 1.86%) studies to identify the brain standard plane,

and both studies used 2D US images taken in the second and third trimesters. In (Qu et al., 2020a; 2020b),

two different classification network architectures were used to identify six fetal brain standard planes.

These architectures include horizontal transverse section of the thalamus, horizontal transverse section

of the lateral ventricle, transverse section of the cerebellum, mid-sagittal plane, paracentral sagittal sec-

tion, and coronal section of the anterior horn of the lateral ventricles.

Segmentation. The segmentation task was used in (n = 3, 2.80%) studies to identify the brain standard

plane. Each of these studies used 2D US images. In (Singh et al., 2021b), 2D US images taken in the second

trimester were used to segment fetal cerebellum structures. In addition, in (Wang et al., 2019), 2D US im-

ages taken in the third trimester were used to segment fetal middle cerebral artery (MCA). Authors in (Ya-

qub et al., 2013) utilized 3D US images in the second trimester to formulate the segmentation as a classi-

fication problem to identify the following brain planes; background, choroid plexus (CP), lateral posterior

ventricle cavity (PVC), the cavum septum pellucidi (CSP), and cerebellum (CER).

Classification and segmentation. Classification with segmentation is employed in (n = 3, 2.80%)

studies to identify the brain standard plane. These studies all used 3D US images. In (Namburete et al.,

2018), both tasks were used to identify brain alignment based on skull boundaries and then head segmen-

tation, eye localization, and prediction of brain orientation in the second and third trimesters. Moreover, in

(Huang et al., 2018), segmentation followed by a classification task was used to detect CSP, Tha, lateral ven-

tricles (LV), cerebellum (CE), and cisterna magna (CM) in the second trimester. Segmentation and classifi-

cation are employed by 3DUS in (Cuingnet et al., 2013) to identify the skull, mid-sagittal plane, and orbits of

the eyes in the second trimester of pregnancy.

Miscellaneous. For brain standard planes identification in (n = 5, 4.62%), methods different than pre-

viously mentioned were used, including; segmentation with object detection, object detection, classifica-

tion with object detection, and RL. As seen in (Yang et al., 2021a), the RL-based technique was employed for

the first time on 3D US images to localize standard brain planes, including trans-thalamic (TT) and trans-

cerebellar (TC) in the second and third trimesters. RL is used in (Yang et al., 2021b) to localize the following:

mid-sagittal (S), transverse (T), and coronal (C) planes in volumes and trans-thalamic (TT), trans-ventricular

(TV), and trans-cerebellar (TC)). Object detection architecture is utilized on 2D US images in (Lin et al.,

2019a) to localize the trans-thalamic plane in the second trimester of pregnancy, including LS, T, CP,

CSP, and third ventricle (TV). In (Lin et al., 2019b), classification with object detection was used to detect
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LS, T, CP, CSP, TV, brain midline (BM). In contrast (Kim et al., 2019a),used classification with object detec-

tion to localize cavum septum pellucidum (CSP) and ambient cistern (AC) and cerebellum), as well as to

measure HC and BPD.

Brain disease
Classification. The binary classification technique utilized 2D US images taken in the second trimester

as seen in (Sahli et al., 2020) to detect hydrocephalus disease using premature GA.

Classification and segmentation. Studies (Xie et al., 2020a, 2020b) both used 2DUS images taken in the

secondand third trimesters to segment craniocerebral and identify abnormalities or specific diseases. As seen in

(Xie et al., 2020b), CNSmalformations were detected using binary classification. Moreover, in (Xie et al., 2020a),

multi-classification was used to identify the following problems: TV planes contained occurrences of ventriculo-

megaly and hydrocephalus, and TC planes contained occurrences of Blake pouch cyst (BPC).

Miscellaneous. In (Chen et al., 2020b; Liu et al., 2020) different methods were used to detect ventricu-

lomegaly disease based on 2D US images taken in the second trimester. In study (R. Liu et al., 2020), object

detection and regression first identify fetal brain ultrasound images from standard axial planes as normal or

abnormal. Second regression was then used to find the lateral ventricular regions of images with big lateral

ventricular width. Then, the width was anticipated with amodest error based on these regions. Furthermore

(Chen et al., 2020b), was the first study to propose an object-detection-based automatic measurement

approach for fetal lateral ventricles (LVs) based on 2D US images. The approach can both distinguish

and locate the fetal LV automatically as well as measure the LV’s scope quickly and accurately.

Fetus face

As shown in (Table 2), theprimarypurposeof (n= 10, 9.34%) studieswas to identify and localize fetus face features

such as the fetal facial standard plane (FFSP) (i.e., axial, coronal, and sagittal plane), face anatomical landmarks

(e.g., nasal bone), and facial expressions (i.e., sad, happy). The following subsection discusses each category

based on the implemented task. (Table 5). presents comparisons between the various techniques for each fetus

face group including objective, backbone methods, optimization, fetal age, best obtained result, and

observations.

Fetal facial standard plane (FFSP)
Classification. Classificationwas used to classify the FFSP using 2DUS Images as seen in (n = 5, 4.67%). Us-

ing 2DUS images that were taken in the second and third trimesters, four studies (Lei et al., 2014, 2015; Yu et al.,

2016, 2018) identify ocularaxial planes (OAP), themediansagittalplanes (MSP), and thenasolabial coronalplanes

(NCP). In addition, authors in (Wang et al., 2021) were able to identify the FFSP using 2D US images taken in the

second trimester.

Face anatomical landmarks
Miscellaneous. Differentmethodswereused to identify faceanatomical landmarks in (n=3, 2.80) studies. In

(Singh et al., 2021a), 3D US images taken in the second and third trimesters were segmented to identify back-

ground, facemask (excluding facial structures), eyes, nose, and lips. Inanother study theobjectdetectionmethod

was usedon3DUS images in (Chen et al., 2020c) todetect the left fetal eye,middle eyebrow, right eye, nose, and

chin. Furthermore, classification used 2D US images taken in the first and second trimesters to detect the nasal

bone. This was done to enhance the detection rate of Down syndrome, as seen in (Anjit and Rishidas, 2011).

Facial expressions
Classification. For the first time, 4D US images were utilized using the multi-classification method to

identify fetus facial expression into Sad, Normal, and Happy as seen in (Dave and Nadiad, 2015). Study

(Miyagi et al., 2021) used 2D US images in the second and third trimesters to classify fetal facial expression

into eye blinking, mouthing without any expression, scowling, and yawning.

Fetus heart

As shown in (Table 2), the primary purpose of (n= 13, 14.04%) studies is to identify and localize fetus heart

diseases and the fetus heart chambers view. The following subsection discusses each category based on

the implemented task. (Table 6). presents comparisons between the various techniques for each fetus heart
20 iScience 25, 104713, August 19, 2022



Table 5. Articles published using AI to improve fetus face monitoring: objective, backbone methods, optimization, fetal age, and AI tasks

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods Fetal age AI tasks

Fetal facial standard plane (FFSP)

(Lei et al., 2014) To address the issue of recognition

of standard planes (i.e., axial,

coronal and sagittal planes) in the

fetal US image

SVM classifier AdaBoost for detect region of

interest, ROI)

Dense Scale Invariant Feature

Transform (DSIFT)

Aggregating vectors for feature

extraction fish vector (FV)

Gaussian Mixture Model (GMM)

20 - 36 weeks Classification

(Yu et al., 2016) To automatically recognize the

FFSP from US images

Deep convolutional networks

(DCNN)

N/A 20 - 36 weeks Classification

(Yu et al., 2018) To automatically recognize FFSP

via a deep convolutional neural

network (DCNN) architecture

DCNN t-Distributed Stochastic Neighbor

Embedding (t-SNE)

20 - 36 weeks Classification

(Lei et al., 2015) To automatically recognize the

fetal facial standard planes (FFSPs)

SVM classifier Root scale invariant feature

transform (RootSIFT)

Gaussian mixture model (GMM)

Fisher Vector (FV)

Principal Component Analysis

(PCA)

20 - 36 weeks Classification

(Wang et al., 2021) To automatically recognize and

classify FFSPs

SVM classifier Local Binary Pattern (LBP)

Histogram of Oriented Gradient

(HOG)

20 - 24 weeks Classification

Face anatomical landmarks

(Singh et al., 2021a) To detect position and orientation

of facial region and landmarks

SFFD-Net (Samsung Fetal Face

Detection Network) multi-class

segmented

N/A 14 - 30 weeks Miscellaneous

(Chen et al., 2020c) To detect landmarks in 3D fetal

facial US volumes

CNN Backbone Network Region Proposal Network (RPN)

Bounding-box regression

N/A Miscellaneous

(Anjit and Rishidas, 2011) To detect nasal bone for US of fetus Back Propagation Neural Network

(BPNN)

Discrete Cosine Transform (DCT)

Daubechies D4 Wavelet transform

11 - 13 weeks Miscellaneous
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Table 5. Continued

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods Fetal age AI tasks

Facial expressions

(Dave and Nadiad, 2015) To recognize facial expressions

from 3D US

ANN Histogram equalization

Thresholding

Morphing

Sampling

Clustering

Local Binary Pattern (LBP)

Minimum Redundancy and

Maximum Relevance (MRMR)

N/A Classification

(Miyagi et al., 2021) To recognize fetal facial

expressions that are considered as

being related to the brain

development of fetuses

CNN N/A 19 - 38 weeks Classification
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Table 6. Articles published using AI to improve fetus heart monitoring: Objective, backbone methods, optimization, fetal age, and AI tasks

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods Fetal age AI tasks

Heart disease

(Yang et al., 2020a) To perform multi-disease

segmentation and multi-

class semantic

segmentation of the five

key components

U-NET + DeepLabV3+ N/A N/A Segmentation

(Gong et al., 2020) To recognize and judge

fetal congenital heart

disease (FHD)

development

DGACNN Framework CNN

Wasserstein GAN +

Gradient Penalty (WGAN-

GP)

DANomaly

Faster-RCNN

18–39 weeks Miscellaneous

(Dozen et al., 2020) To segment the ventricular

septum in US

Cropping-Segmentation-

Calibration (CSC)

YOLOv2 cropping module

U-NET segmentation

Module

VGG-backbone

Calibration Module

18-28 weeks Miscellaneous

(Komatsu et al., 2021b) To detect cardiac

substructures and

structural abnormalities in

fetal US videos

Supervised Object

detection with Normaldata

Only (SONO)

CNN

YOLOv2

18-34 weeks Miscellaneous

(Arnaout et al., 2021) To identify recommended

cardiac views and

distinguish between

normal hearts and complex

CHD and to calculate

standard fetal

cardiothoracic

measurements

Ensemble of Neural

Networks

ResNet and U-Net

Grad-CAM

18-24 weeks Classification

segmentation

(Dinesh Simon and Kavitha,

2021)

To learn the features of

Echogenic Intracardiac

Focus (EIF) that can cause

Down Syndrome (DS)

whereas testing phase

classifies the EIF into DS

positive or DS negative

based

Multi-scale Quantized

Convolution Neural

Network (MSQCNN)

Cross-Correlation

Technique (CCT)

Enhanced Learning Vector

Quantiser (ELVQ)

24–26 weeks Classification

(Continued on next page)
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Table 6. Continued

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods Fetal age AI tasks

(Tan et al., 2020) To perform automated

diagnosis of hypoplastic

left heart syndrome (HLHS)

SonoNet (VGG16) N/A 18–22 weeks Classification

Heart chamber’s view

(Xu et al., 2020b) To perform automated

segmentation of cardiac

structures

CU-NET Structural Similarity Index

Measure (SSIM)

N/A Segmentation

(Xu et al., 2020a) To accurately segment

seven important

anatomical structures in the

A4C view

DW-Net Dilated Convolutional

Chain (DCC) module

W-Net module based on

the concept of stacked U-

Net

N/A Segmentation

(Dong et al., 2020) To automatically quality

control the fetal US cardiac

four-chamber plane

Three CNN-based

Framework

Basic-CNN, a variant of

SqueezeNet

Deep-CNN with

DenseNet-161 as basic ar-

chitecture

The ARVBNet for real-time

object detection.

14 - 28 weeks Miscellaneous

(Pu et al., 2021) To localize the end-systolic

(ES) and end-diastolic (ED)

from ultrasound

Hybrid CNN based

framework

YOLOv3

Maximum Difference

Fusion (MDF)

Transferred CNN

18 - 36 weeks Miscellaneous

(Sundaresan et al., 2017) To detect the fetal heart

and classifying each

individual frame as

belonging to one of the

standard viewing planes

FCN N/A 20 - 35 weeks Segmentation

(Patra et al., 2017) To jointly predict the

visibility, view plane,

location of the fetal heart in

US videos.

Multi-Task CNN Hierarchical Temporal

Encoding (HTE)

20 - 35 weeks Classification
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group including objective, backbone methods, optimization, fetal age, best obtained result, and

observations.

Heart disease
Classification. Two studies used classification methods to identify heart diseases based on 2D US im-

ages taken in the second trimester. In (Dinesh Simon and Kavitha, 2021), binary-classification task was uti-

lized to identify Down syndrome versus normal fetuses based on identifying the echogenic intracardiac foci

(EIF). Furthermore, in (Tan et al., 2020), binary-classification task was utilized to detect hypoplastic left heart

syndrome (HLHS) versus healthy cases based on the four-chamber heart (4CH), left ventricular outflow tract

(LVOT), and right ventricular outflow tract (RVOT).

Segmentation. 2D US images were utilized by multi-class segmentation to identify heart disease,

including: left heart syndrome (HLHS), total anomalous pulmonary venous connection (TAPVC), pulmonary

atresia with intact ventricular septum (PA/IVS), endocardial cushion defect (ECD), fetal cardiac rhabdo-

myoma (FCR), and Ebstein’s anomaly (EA) (Yang et al., 2020a).

Classification and segmentation. Classification and segmentation are used to detect congenital

heart disease (CHD) based on 2D US images taken in the second trimester (Arnaout et al., 2021). Cases

were classified into normal hearts vs CHD. This classification was orchestrated by identifying five views

of the heart in fetal CHD screening, including three-vessel trachea (3VT), three-vessel view (3VV), left-ven-

tricular outflow tract (LVOT), axial four chambers (A4C), and abdomen (ABDO).

Miscellaneous. To identify heart disease, variousmethods were proposed based on the capabilities of

2D US images. Classification with object detection was utilized in (Gong et al., 2020; Komatsu et al., 2021b).

Fetal congenital heart disease (FHD) can be detected in the second and third trimesters based on how

quickly the fetus grows between gestational weeks, and how the shape of the four chambers in the heart

changes over time (Gong et al., 2020). Furthermore, classification with object detection was used to detect

cardiac substructures and structural abnormalities in the second and third trimesters (Komatsu et al.,

2021b). Lastly, segmentation with object detection was used to locate the ventricular septum in 2D US im-

ages in the second trimester, as seen in (Dozen et al., 2020).

Heart chambers view
Classification. 2D US images taken in the second and third trimesters were utilized in (Patra et al.,

2017) to propose a classification task utilized to localize the four chambers (4C), the left ventricular outflow

tract (LVOT), the three vessels (3V), and the background (BG).

Segmentation. Segmentation was used in (n = 3, 2.80%) studies based on 2D US images. In two

studies (Xu et al., 2020a, 2020b), seven critical anatomical structures in the apical four-chamber (A4C)

view were segmented, including: left atrium (LA), right atrium (RA), left ventricle (LV), right ventricle (RV),

descending aorta (DAO), epicardium (EP) and thorax. In another study (Sundaresan et al., 2017), segmen-

tation was used to locate four-chamber views (4C), left ventricular outflow tract view (LVOT), and three-

vessel view (3V) in the second and third trimesters.

Miscellaneous. 2DUS imageswere used in (n= 2, 1.86) studies, and both studies utilized classificationwith

object detection. In the second trimester (Dong et al., 2020), the first classification conducted was the cardiac

four-chamber plane (CFP) into non-CFPs and CFPs (i.e., apical, bottom, and parasternal CFPs). The second

task was to then classify the CFPs in terms of the zoom and gain of 2D US images. In addition, object detection

was utilized to detect anatomical structures in the CFPs, including left atrial pulmonary vein angle (PVA), apex

cordis and moderator band (ACMB), and multiple ribs (MRs). In (Pu et al., 2021), object detection was used in

the second and third trimesters to extract attention regions for improving classification performance and deter-

mining the four-chamber view, including detection of end-systolic (ES) and end-diastolic (ED).

Fetus abdomen

As shown in (Table 2), the primary purpose of (n= 10, 10.8%) studies was to identify and localize the fetus’s

abdomen, including abdominal anatomical landmarks (i.e., stomach bubble (SB), umbilical vein (UV), and

spine (SP)). The following subsection discusses this category based on the implemented task. (Table 7).
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Table 7. Articles published using AI to improve fetus abdomen monitoring: objective, backbone methods, optimization, fetal age, and AI tasks

Study Objective

Backbone Methods/

Framework

Optimization/Extractor

methods

Fetal

age

AI

tasks

Abdominal anatomical landmarks

(Rahmatullah

et al., 2011b)

To automatically detect

two anatomical landmarks

in an abdominal image

plane stomach bubble (SB)

and the umbilical vein (UV).

AdaBoost Haar-like feature 14 - 19

weeks

Classification

(Yang et al.,

2014)

To localize fetal abdominal

standard plane (FASP) from

US including SB, UV, and

spine (SP)

Random Forests

Classifier+ SVM

Haar-like feature

Radial Component-Based

Model (RCM)

18 - 40

weeks

Classification

(Kim et al.,

2018)

To classify ultrasound

images (SB, amniotic

fluid (AF), and UV) and to

obtain an initial

estimate of the AC."

Initial Estimation

CNN + U-Net

Hough transform N/A Classification

segmentation

(Jang et al.,

2017)

To classify ultrasound

images (SB, AF, and UV)

and measure AC

CNN Hough transform 20 -

34 weeks

Classification

segmentation

(Wu et al.,

2017)

To find the region of

interest (ROI) of the fetal

abdominal region in the

US image.

Fetal US Image

Quality Assessment

(FUIQA)

L-CNN is able to localize

the fetal abdominal ROI

AlexNet

C-CNN then further

analyzes the identified

ROI

DCNN to duplicate the US

images for the RGB channels

rotating"

16 - 40

weeks

Classification

(Ni et al.,

2014)

To localize the fetal

abdominal standard

plane from ultrasound

Random forest

classifier+ SVM

classifier

Radial Component-based

Model (RCM)

Vessel Probability Map (VPM)

Haar-like features

18 - 40

weeks

Classification

(Deepika et al.,

2021)

To diagnose the (prenatal)

US images by design and

implement a novel

framework

Defending Against

Child Death (DACD)

CNN

U-Net

Hough-man transformation

N/A Classification

segmentation

(Rahmatnllah

et al., 2012)

To detect important

landmarks employed

in manual scoring of

ultrasoundimages.

AdaBoost Haar-like feature 18 - 37

weeks

Classification

(Rahmatullah

et al., 2011a)

To automatically select the

standard plane

from the fetal US volume

for the application of fetal

biometry measurement.

AdaBoost One Combined Trained

Classifier (1CTC)

Two Separately Trained

Classifiers (2STC)

Haar-like feature

20 - 28

weeks

Classification

(Chen et al.,

2014)

To localize the FASP from

US images.

DCNN Fine-Tuning with Knowledge

Transfer

Barnes-Hut Stochastic

Neighbor Embedding (BH-SNE)

18 - 40

weeks)

Classification
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presents comparisons between the various techniques for each fetus abdomen including objective, back-

bone methods, optimization, fetal age, best obtained result, and observations.

Abdominal anatomical landmarks
Classification. Classification task was used in (n = 7, 6.54%) studies to localize abdominal anatomical

landmarks. 2D US images were used in seven studies (Chen et al., 2014; Ni et al., 2014; Rahmatnllah et al.,

2012; Rahmatullah et al., 2011b; Wu et al., 2017; Yang et al., 2014) and 3D US images in only one study (Rah-

matullah et al., 2011a). In (Rahmatnllah et al., 2012; Rahmatullah et al., 2011a, 2011b;Wu et al., 2017), various

classifiers were utilized to localize stomach bubble (SB) and umbilical vein (UV), in the first and second

trimester as seen in (Rahmatullah et al., 2011a, 2011b), and in the second and third trimesters as seen in

(Rahmatnllah et al., 2012; Wu et al., 2017). Furthermore, works in (Chen et al., 2014; Ni et al., 2014; Yang

et al., 2014) located the spine (SP) besides SB and UV on the same trimesters.

Classification and segmentation. 2D US images taken within random trimesters were used in (Deep-

ika et al., 2021; Kim et al., 2018). In (Kim et al., 2018), SB, UV, and AF were localized. Further, abdominal

circumference (AC), spine position, and bone regions were estimated. In (Deepika et al., 2021), 2D US im-

ages were classified into normal versus abnormal fetuses based on the fetus images such as AF, SB, UV, and

SA. Study (Jang et al., 2017) located SB and the portal section from the UV, and observed amniotic fluid (AF)

in the second and third trimesters.
Dataset analysis

Fetus body

In this area, ethical and legal concerns presented themost barriers to comprehensive research. Therefore, data-

sets were not available to the research community. For example, in this research, studies discussed how the fetal

body contains five subsections (fetal part structure, anatomical structure, growth disease, gestational age, and

gender identificationOf the available studies (n = 31, 28.9%), one dataset was intended to be available online in

(Yaqub et al., 2015) related to identifying fetal part structure. Unfortunately, this dataset has not yet been

released by the author. The only public dataset that was available online for fetal struture classification was

released by Burgos-Artizzu et al. (2020) The dataset is a total of 12,499 2D fetal ultrasound images, including

brain 143, Trans-cerebellum 714, Trans-thalamic 1638, Trans-ventricular 597, abdomen 711, cervix 1626, femur

1040, thorax 1718, and 4213 are unclassified fetal images. Acquiring a high volume of the dataset was also chal-

lenging inmost of the studies; therefore,multi-data augmentation in (n = 11, 10.2%) studies (Andriani andMard-

hiyah, 2019; Burgos-Artizzu et al., 2020; Cai et al., 2018; Gao and Noble, 2019; Li et al., 2017; Maraci et al., 2020;

Ryouet al., 2019;Weerasingheet al., 2021; Yanget al., 2019) has beenobserved. These augmented imageswere

employed to boost classification and segmentation performance. SimpleITK library (Lowekamp et al., 2013) was

used for augmentation in (Weerasinghe et al., 2021). Because of limited data samples in addition to augmen-

tation, k-fold cross-validation method was utilized in (n = 8, 7.4%) studies (Bagi and Shreedhara, 2014; Cai et al.,

2020; Gao andNoble, 2019; Maysanjaya et al., 2014; Rahmatullah et al., 2014; Ryou et al., 2016; Wee et al., 2010;

Yaqub et al., 2015). These cross-validationmethods are also used to resolve issues such as overfitting and bias in

dataset selection. Only one software named ITK-SNAP (Yushkevich et al., 2006) was reported in (Weerasinghe

et al., 2021) to segment structures in 3D images.

Fetus head

This section contains three subsections (skull localization, brain standard planes, and brain disease). There were

a total of (n = 43, 40.18%) studies, but weonly found one online public dataset calledHC18 grand challenge (van

den Heuvel et al., 2018). This dataset was used in (n = 13, 12.14%) studies (Aji et al., 2019; Al-Bander et al., 2020;

Brahma et al., 2021; Desai et al., 2020; Fiorentino et al., 2021; Li et al., 2020; Qiao and Zulkernine, 2020; Skeika

et al., 2020; Sobhaninia et al., 2020,2019; Xu et al., 2021; Zeng et al., 2021; Zhang et al., 2020a). This dataset con-

tains 2D US images collected from 551 pregnant women at different pregnancy trimesters. There were 999 im-

ages in the training set and 335 for testing; the sonographer manually annotated the HC. Image augmentation

was applied in (n = 9, 8.41%) studies (Al-Bander et al., 2020; Brahma et al., 2021; Fiorentino et al., 2021; Li et al.,

2020; Skeika et al., 2020; Sobhaninia et al., 2019,2020; Zeng et al., 2021; Zhang et al., 2020a), and cross-validation

was employed in (Zhang et al., 2020a).

(Table 8) highlights the best result achieved despite the challenges of recording the outcomes of the

selected studies.
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Table 8. Compared between studies that utilized the HC18 dataset

Study DSC HD DF ADF

(Sobhaninia et al., 2020) 0.926 3.53 0.94 2.39

(Aji et al., 2019) N/A N/A 14.9% N/A

(Desai et al., 2020) 0.973 1.58 N/A N/A

(Brahma et al., 2021) 0.968 N/A N/A N/A

(Qiao and Zulkernine, 2020) 0.973 N/A N/A 2.69

(Sobhaninia et al., 2019) 0.968 1.72 1.13 2.12

(Zeng et al., 2021) 0.979 1.27 0.09 1.77

(Fiorentino et al., 2021) 0.977 1.32 0.21 1.90

(Li et al., 2020) 0.977 0.47 N/A 2.03

(Al-Bander et al., 2020) 0.977 1.39 1.49 2.33

(Xu et al., 2021) 0.971 3.23 N/A N/A

(Skeika et al., 2020) 0.979 N/A N/A N/A

DSC, Dice similarity coefficient; ACC, Accuracy; Pre, Precision; HD, Hausdorff distance; DF, Difference; ADF, Absolute Differ-

ence; IoU, Intersection overUnion; mPA, mean Pixel Accuracy.
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Fetus face

This section contains three subsections (fetal facial standard planes, face anatomical landmarks, and facial

expression). Of these studies (n = 10, 9.34%), we did not find any public dataset available online. However,

within the private dataset, image augmentation was applied in (n = 3, 2.8%) studies (Chen et al., 2020c;

Miyagi et al., 2021; Singh et al., 2021a). The k-fold cross-validation was employed in (Lei et al., 2014; Singh

et al., 2021a;Wang et al., 2021). Lastly, 3D Slicer software (Pieper et al., 2004) was used for image annotation

as reported in (Singh et al., 2021a).

Fetus heart

This section contains two subsections (heart diseases and heart chamber view). Of these studies (n = 13,

12.14%), we did not find any public dataset available online. However, within the private dataset, the image

augmentation was applied in (n = 4, 3.7%) studies (Arnaout et al., 2021; Pu et al., 2021; Sundaresan et al.,

2017; Yang et al., 2020a). The k-fold cross-validation was employed in (Arnaout et al., 2021; Dong et al.,

2020; Dozen et al., 2020; Gong et al., 2020; Xu et al., 2020a).

Fetus abdomen

This section contains one subsection (abdominal anatomical landmarks). Of these studies (n = 10, 9.34%),

we did not find any public dataset available online. However, within the private dataset, image augmenta-

tion was applied in (n = 4, 3.7%) studies (Chen et al., 2014; Jang et al., 2017; Kim et al., 2018; Wu et al., 2017).

The cross-validation was not reported in any of the studies.
DISCUSSION

Principal findings

AI techniques applied are shown in Figure 4. Deep learning (DL) was the most utilized techniques, seen in

(n = 81, 75.70%) studies. Traditional Machine leaning (ML) models are used in (n = 16, 14.95%) studies. Arti-

ficial neural network (ANN) models are only used in (n = 7, 6.5%) studies. We also found the use of RL in (n =

2, 1.86%) studies. Both deep learning and machine learning models were used in one study.

Deep learning for fetus health

As seen in Figure 4. DL was used heavily in all fetal organ experiments including general fetus issues, fetus

head, fetus face, fetus heart, and fetus abdomen. Furthermore, as seen in most of the models (n = 74,

69.1%), Convolutional Neural Network (CNN) used as a backbone of deep learning and is used in all tasks

including classification, segmentation, and object detection (Aji et al., 2019; Al-Bander et al., 2020; Andriani

andMardhiyah, 2019; Arnaout et al., 2021; Brahma et al., 2021; Budd et al., 2019; Cai et al., 2020, 2018; Chen

et al., 2014, 2017, 2020a, 2020b, 2020c; Deepika et al., 2021; Desai et al., 2020; Dinesh Simon and Kavitha,

2021; Dong et al., 2020; Dozen et al., 2020; Droste et al., 2020; Fathimuthu Joharah and Mohideen, 2020;
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Figure 4. AI techniques used within all studies in this survey, AI techniques are ordered by US images type and

further categorized by fetal organ. Totals here equal the number of included papers
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Fiorentino et al., 2021; Gao and Noble, 2019; Gong et al., 2020; Huang et al., 2018; Jang et al., 2017; Kim

et al., 2018, 2019a; Komatsu et al., 2021b; Li et al., 2020; Li et al., 2017; Lin et al., 2019a, 2019; Liu et al., 2020;

Liu et al., 2019; Miyagi et al., 2021; Namburete and Noble, 2013; Nie et al., 2015a; Patra et al., 2017; Perez-

Gonzalez et al., 2020; Prieto et al., 2021; Pu et al., 2021; Qiao and Zulkernine, 2020; Qu et al., 2020a; Rav-

ishankar et al., 2016; Ryou et al., 2016,2019; Sahli et al., 2020; Singh et al., 2021a, 2021b; Sobhaninia et al.,

2019,2020; Tan et al., 2020; Toussaint et al., 2018; Wang et al., 2019; Weerasinghe et al., 2021; Wu et al.,

2017; Xie et al., 2020a, 2020b; Xu et al., 2021; Xu et al., 2020a, 2020b; Yang et al., 2020a, 2020b; Yekdast,

2019; Yu et al., 2016, 2018; Zeng et al., 2021; Zhang et al., 2020a, 2020b). In addition, Fully Connected Neu-

ral Networks (FCNNs) are similarly largely utilized as a backbone or part of the framework (n = 11, 10.28%) of

DL, as seen in (Al-Bander et al., 2020; Dong et al., 2020; Looney et al., 2021; Maraci et al., 2020; Namburete

et al., 2018; Ryou et al., 2019; Sinclair et al., 2018; Skeika et al., 2020; Sundaresan et al., 2017; Weerasinghe

et al., 2021; Yang et al., 2019). In addition to CNN and FCN, a Recurrent Neural Network (RNN) used to

perform classification tasks in hybrid frameworks was seen in (n = 5, 4.67%) studies (Cai et al., 2020;

Chen et al., 2015, 2017; Gao and Noble, 2019; Yang et al., 2019). U-Net is a convolutional neural network

that was developed for biomedical image segmentation. Therefore, we found U-NET to be the most

frequently utilized segmentation model as a baseline of the framework or as optimization. This was seen

in (n = 23, 21.50%) (Aji et al., 2019; Arnaout et al., 2021; Budd et al., 2019; Cerrolaza et al., 2018; Chen

et al., 2020a; Deepika et al., 2021; Desai et al., 2020; Dozen et al., 2020; Huang et al., 2018; Kim et al.,
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Table 9. Best DL study in each category based on the achieved result

Mian Organ Subsection Best study

Fetal Body Fetal part structures (Liu et al., 2021, 2019)

Anatomical structures (Liu et al., 2019; Toussaint et al., 2018)

Growth disease (Yekdast, 2019)

Gestational age (Chen et al., 2020a)

Head Skull localization (Fiorentino et al., 2021; Zhang et al., 2020a)

Brain Standard plan (Qu et al., 2020a,2020b; Wang et al., 2019)

Brain disease (Chen et al., 2020b; Sahli et al., 2020)

Face Fetal facial standard (Yu et al., 2018)

Face anatomical (Singh et al., 2021a)

Facial expression (Miyagi et al., 2021)

Heart Heart disease (Arnaout et al., 2021; Dinesh Simon and

Kavitha, 2021; Komatsu et al., 2021b; Yang

et al., 2020a)

Hear chamber view (Pu et al., 2021; Xu et al., 2020a)

Abdomen Abdominal anatomical (Deepika et al., 2021; Kim et al., 2018)
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2018, 2019a; Lin et al., 2019a; Liu et al., 2019; Perez-Gonzalez et al., 2020; Prieto et al., 2021; Qiao and Zul-

kernine, 2020; Singh et al., 2021b; Weerasinghe et al., 2021; Xie et al., 2020a; Xu et al., 2020a, 2020b; Yang

et al., 2020a; Yang et al., 2020b). Other segmentation models were also used, such as DeepLabV3 in (Yang

et al., 2020a), LinkNet in (Fathimuthu Joharah and Mohideen, 2020), and the Encoder-Decoder network

based on VGG16 in (Li et al., 2017). A Residual Neural Network (ResNet) was used to perform some tasks

and enhance the framework efficiency as seen in (n = 6, 5.60%) studies (Arnaout et al., 2021; Liu et al., 2020,

2021; Prieto et al., 2021; Singh et al., 2021b; Toussaint et al., 2018; Wang et al., 2019). Some popular object

detection models (n = 12, 11.21%) were utilized to perform detection tasks in the fetus head, face, and

heart. Additionally, Region Proposal Network (RPN) with bounding-box regression technique was used

in (Chen et al., 2020c; Kim et al., 2019a). Faster R-CNN was utilized in (Al-Bander et al., 2020; Kim et al.,

2019a; Lin et al., 2019a, 2019b). Further, YOLO (You Only Look Once) models were utilized; YOLOv2 in

(Dozen et al., 2020; Fiorentino et al., 2021; Komatsu et al., 2021b) and YOLOv3 in (Pu et al., 2021). Mask

R-CNN was utilized only in (Chen et al., 2020b) and Aggregated Residual Visual Block (ARVB) was used

only in (Dong et al., 2020). Surprisedly, we have found CNN is used for regression to predict the accurate

measurement of HC as seen in (Droste et al., 2020; Fiorentino et al., 2021; Li et al., 2020; Zhang et al., 2020a).

We found that, because of the noise and characteristics of US images, DL still relies on traditional feature

extraction techniques in image analysis used to optimize the DL frameworks for better performance. For

example, Hough transform was utilized with head and abdomen US images as seen in (Deepika et al.,

2021; Jang et al., 2017; Kim et al., 2018; Nie et al., 2015a). In addition, image processing techniques

such as histogram equalization was used in (Nie et al., 2015a). Besides these tools, Class Activation

Maps (CAM) are a helpful classification tool in computer vision that was utilized for brain visualization in

(Liu et al., 2020; Xie et al., 2020a), fetal part structure in (Gao and Noble, 2019), and heart chamber view

in (Arnaout et al., 2021). DL shows promising results for the identification of certain fetus diseases as

seen in the identification of heart diseases (Arnaout et al., 2021; Dinesh Simon and Kavitha, 2021; Dozen

et al., 2020; Gong et al., 2020; Komatsu et al., 2021b; Tan et al., 2020; Yang et al., 2020a), brain diseases

(Chen et al., 2020b; R. Liu et al., 2020; Sahli et al., 2020; Xie et al., 2020a, 2020b), and growth diseases (An-

driani and Mardhiyah, 2019; Selvathi and Chandralekha, 2021; Yekdast, 2019). (Table 9) list of DL studies

exhibiting technical novelty that achieved promising results in each category.

Machine leaning for fetus health

Most of the research utilizing machine learning for fetal health monitoring was conducted between 2010

and 2015, as seen in (n = 14, 13.8%). Only two studies (Li et al., 2018; Wang et al., 2021) were published

in 2018 and 2021, respectively. We found that MLmodels were used for all fetus organs except for the heart

and identification of fetus disease. The most used ML algorithm was Random Forest (RF), as seen in (n = 8,

7.47%) studies. RF was used as a baseline classifier in (Cuingnet et al., 2013; Li et al., 2018; Namburete and

Noble, 2013; Yaqub et al., 2013). RF was used with other classifiers as well, with Support Vector Machine
30 iScience 25, 104713, August 19, 2022
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(SVM) in (Ni et al., 2014; Yang et al., 2014) and Probabilistic Boosting Tree (PBT) in (Yaqub et al., 2015). Sim-

ple Linear Iterative Clustering (SLIC) was also used in (Rahmatullah et al., 2014). The SVM classifier was used

in (n = 6, 5.60%) studies. SVM was used as a baseline classifier in (Lei et al., 2014,2015; Maraci et al., 2015;

Wang et al., 2021) and utilized with other classifiers as seen in (Ni et al., 2014; Yang et al., 2014). AdaBoost

was used in (n = 5, 4.67%) studies as a baseline classifier in (Nie et al., 2015b; Rahmatullah et al., 2011a,

2011b, 2012) and to detect the region of interest (ROI) in (Lei et al., 2014). Moreover, ML traditional algo-

rithm still rely on Haar-like features (digital image features used in object recognition) while being utilized

with US images as seen in (n = 9, 8.41%) studies (Li et al., 2018; Namburete and Noble, 2013; Ni et al., 2014;

Nie et al., 2015b; Rahmatnllah et al., 2012; Rahmatullah et al., 2011a, 2011b; Yang et al., 2014; Yaqub et al.,

2013). Gaussian Mixture Model (GMM) and Fisher Vector (FV) were used in (n = 3, 2.80%) studies, where

GMM is used to simulate the distribution of extracted characteristics throughout the images. Then, FV rep-

resents the gradients of the features under the GMM, with respect to the GMM parameters as seen in (Lei

et al., 2014; Lin et al., 2019b; Maraci et al., 2015).

DL and ML models were seen in (Sridar et al., 2019), the SVM with decision fusion for classification and fea-

tures extracted by fine-tuning AlexNet. Finally, we found the first research to utilize MLmodel in monitoring

fetus health was in (Rahmatullah et al., 2011a), which was used to classify abdominal anatomical landmarks.

Artificial Neural Network for fetus health

ANN is the cut edge between ML and DL (Chauhan and Singh, 2019). As seen in Figure 4, ANN was used in

(n = 7, 6.5%) studies (Anjit and Rishidas, 2011; Bagi and Shreedhara, 2014; Dave and Nadiad, 2015; Gadag-

kar and Shreedhara, 2014; Maysanjaya et al., 2014; Rawat et al., 2016; Wee et al., 2010). ANN models were

used for the identification of growth diseases (Bagi and Shreedhara, 2014; Gadagkar and Shreedhara, 2014;

Rawat et al., 2016), fetus gender (Maysanjaya et al., 2014), facial expressions (Dave and Nadiad, 2015), face

anatomical landmarks (Nasal Bone) (Anjit and Rishidas, 2011), and anatomical structures (nuchal translu-

cency (NT)) (Wee et al., 2010). Hence, ANN was not utilized to identify brain or heart structures, nor accom-

panying disease. Finally, we concluded that the first utilization of ANN to monitor fetus health was in 2010

(Wee et al., 2010); the main goal was to detect NT, which helps early identify Down syndrome. The second

utilization of ANN was completed in 2011 (Anjit and Rishidas, 2011) to detect nasal bone. This detection

also helps for early identification of Down syndrome.

Reinforcement learning for fetus health

The first attempt to utilize RL to monitor fetus health was in 2019 (Yang et al., 2021a). Dueling Deep Q Net-

works (DDQN) was employed with RNN-based active termination (AT) to identify brain standard planes

(trans-thalamic (TT) and trans-cerebellar (TC)). The second time RL was utilized to monitor fetus health

was reported on in a recent study from 2021 (Yang et al., 2021b). A multi-agent RL (MARL) was used in a

framework that compromises RNN and includes both neural architecture search (NAS) as well as

gradient-based differentiable architecture sampler (GDAS). This framework achieved promising results

for identifying the brain standard plane and localize mid-sagittal, transverse (T), coronal (C) planes in vol-

umes, trans-thalamic (TT), trans-ventricular (TV), and trans-cerebellar (TC).

Practical and research implication

The diagnosis of US imaging plays a significant role in clinical patient care. Deep learning, especially the

CNN-based model, has lately gained much interest because of its excellent image recognition perfor-

mance. If CNN were to live up to its potential in radiology, it is expected to aid sonographers and radiol-

ogists in achieving diagnostic perfection and improving patient care (Yasaka and Abe, 2018). Diagnostic

software based on artificial intelligence is vital in academia and research and has significant media rele-

vance. These systems are largely based on analyzing diagnostic images, such as X-ray, CT, MRI, electrocar-

diograms, and electroencephalograms. In contrast, US imaging, which is non-invasive, non-expensive, and

non-ionizing, has limited AI applications compared to other radiology imaging technologies (ShuoWang

et al., 2019).

This survey found one available AI-based application to identify fetal cardiac substructures and indicate

structural abnormalities as seen in (Komatsu et al., 2021b). From these findings, many studies achieved

promising results in diagnosing fetus diseases or identifying specific fetus landmarks. However, to the

best of our knowledge, there is no randomized controlled trial (RCT) or pilot study carried out at a medical

center or any adaptation of an AI-based application at any hospitals. This hesitance could be because of the
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following challenges (ShuoWang et al., 2019).(1) The present AI system can complete tasks that radiologists

are capable of but maymakemistakes that a radiologist would notmake. For example, radiologists may not

see undetectable modifications to the input data. These changes may not be seen by human eyes but

would nevertheless impact the result of AI system’s categorization. In other words, a tiny variation might

cause a deep learning system to reach a different result or judgment. (2) Developers require a specific

quantity of reliable and standardized data with an authorized reference standard to train AI systems. An-

notated images may become an issue if this is done through retroactive research. Datasets may also be

difficult to get as the firms that control themwant to keep them private and preserve their intellectual prop-

erty. Validation of an AI system in the clinic can be difficult as it frequently necessitates multi-institutional

collaboration and efficient communication between AI engineers and radiologists. Validating an AI system

is also expensive and time-consuming. (3) Finally, when extensive patient databases are involved, ethical

and legal concerns may arise.

This survey found some of these challenges were addressed in some studies. For example, applying trans-

fer learning on AI model learned natively on US images and fine-tuning the model on an innovative dataset

collected from a different medical center and/or different US equipment. Another way to address the chal-

lenges of a small dataset is to employ data augmentation (e.g., tissue deformation, translations, horizontal

flips, adding noise, and images enhancement) to boost the generalization capacity of DL models. It is rec-

ommended that data augmentation settings should be carefully chosen to replicate ultrasound images

changes properly (Akkus et al., 2019). Advanced AI applications are already being used in breast and chest

imaging. Large quantities of medical images with strong reference standards are accessible in various

fields, allowing the AI system to be trained. Other subspecialties like fetus disease, musculoskeletal disease

or interventional radiology are less familiar with utilizing AI. However, it seems that in the future, AI may

influence every medical application that utilizes any images (Neri et al., 2019).

This survey found that no standard guideline is being followed or developed that focused on AI in diag-

nostic imaging to meet clinical setting, evaluation, and requirements. Therefore, the Radiology Editorial

Board (Bluemke et al., 2020) has created a list of nine important factors to assist in evaluating AI research

as a first step. These recommendations are intended to enhance the validity and usefulness of AI research in

diagnostic imaging. These issues are outlined for authors, although manuscript reviewers and readers may

find them useful as well: (1) Carefully specify the AI experiment’s three image sets (training, validation, and

test sets of images). (2) For final statistical reporting, use a separate test set. Overfitting is a problem with AI

models, which means they only function for the images they are trained to recognize. It is ideal to utilize an

outside collection of images (e.g., the external test set) from another center. (3) Use multivendor images for

each step of the AI assessment, if possible (training, validation, test sets). Radiologists understand medical

images from one vendor are not identical to theirs; radiomics and AI systems can help in identifying

changes in the images. Moreover, multivendor AI algorithms are considerably more interesting than

vendor-specific AI algorithms. (4) Always justify the training, validation, and test set sizes. Depending on

the application, the number of images needed to train an AI system varies. After just a few hundred images,

an AI model may be able to learn image segmentation. (5) Train the AI algorithm using a generally recog-

nized industry standard of reference. For instance, chest radiographs are interpreted by a team of experi-

enced radiologists. (6) Describe any image processing for the AI algorithm. Did the authors manually pick

important images, or crop images to a limited field of view? How images are prepared and annotated has a

big impact on the radiologist’s comprehension of the AI model. (7) Compare AI performance against that of

radiology professionals. Competitions and leader boards for the ‘best’ AI are popular among computer

scientists working in the AI field. The area under the receiver operating characteristic curve is often used

to compare one AI to another (AUC). On the other hand, physicians are considerably more interested in

comparing the AI system to expert readers, when treating a patient. Experienced radiologist readers are

recommended to benchmark an algorithm intended to identify radiologic anomalies. (8) Demonstrate

the AI algorithm’s decision-making process. As previously mentioned, computer scientists working on im-

aging studies often describe their findings as a single AUC/ACC number. This AUC/ACC is compared to

the previous best algorithm, which is a competitor. Unfortunately, the AUC/ACC value has little bearing

on clinical medicine on its own. Even with a high AUC/ACC of 0.95, there may be an operating mode in

which 99 out of 100 anomalies are overlooked. Many research teams overlay colored probability maps

from the AI on the source images to assist doctors in comprehending the AI performance. (9) The AI algo-

rithm should be open source so performance claims may be independently validated; this is already a prev-

alent recommendation, as this survey found only (n = 9, 8.4%) studies (Arnaout et al., 2021; Dozen et al.,
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2020; Fiorentino et al., 2021; Gong et al., 2020; Komatsu et al., 2021b; Liu et al., 2021; Skeika et al., 2020;

Yang et al., 2019, 2020b) made their works publicly available.

Future work and conclusion

Throughout this survey, various ways that AI techniques have been used to improve fetal care during preg-

nancy have been discussed, including: (1) determining the existence of a live embryo/fetal and estimate the

pregnancy’s age, (2) identifying congenital fetal defects and determining the fetus’s location, (3) deter-

mining the placenta’s location, (4) checking for cervix opening or shortening and evaluating fetal develop-

ment by measuring the quantity of amniotic fluid surrounding the baby, (5) evaluating the fetus’s health and

seeing whether it is growing properly. Unfortunately, because of both ethical and privacy concerns as well

as the reliability of AI decisions, all aspects of these models are not yet utilized as end applications in med-

ical centers.

Undergraduate sonologist education is becoming more essential in medical student careers; conse-

quently, new training techniques are necessary. As seen in other medical fields, AI-based applications

and tools were employed for medical and health informatics students (Hasan Sapci and Aylin Sapci,

2020). Moreover, AI-mobile-based applications were useful for medical students, clinicians, and allied

health workers alike (Pires et al., 2020). To the best of our knowledge, there are no AI-based mobile appli-

cations available to assist radiologist or sonographer students in medical college. Besides that, medical

students may face many challenges during fetal US scanning (Bahner et al., 2012). Therefore, our future

work will propose an AI- mobile-based application to help radiology or sonography students identify fea-

tures in fetus US image and answer the following research questions: (1) How is the lightweight model effi-

cient and accurate when localizing the fetal head, abdomen, femur, and thorax from the first to the third

trimester; (2) How efficiently and accurately will the lightweight model identify the fetal gestational age

(GA) from the first to the third trimester?; 3) How will inter-rater reliability tests validate the proposedmodel

and compare the obtained result with experts and students using the intra-class correlation coefficient

(ICC) (Bartko, 1966). We have concluded that AI techniques utilized US images to monitor fetal health

from different aspects through various GA. Out of 107 studies, DL was the most widely used model, fol-

lowed by ML, ANN, and RL. These models were used to implement various tasks, including classification,

segmentation, object detection, and regression. We found that even the most recent studies rely on the 2D

US followed by 3D, and that 4D is rarely used. Furthermore, we found that most of the work targeted the

fetus head followed by the body, heart, face, and abdomen. We identified the lead institutes in this field

and their research. This survey discusses the availability of the dataset for each category and highlights

their promising results. In addition, we analyzed each study independently and provided observations

for the future reader. All optimization and feature extractionmethods were reported for each study to high-

light the unique contribution. Moreover, DL novel and unique works were highlighted for each category.

The research and practical implications were discussed, and prospective research and clinical practitioner

recommendations were provided. Finally, a future research direction has been proposed to answer the gap

in this survey.

Limitations of the study

To the best of our knowledge, this survey is the first to explore all AI techniques implemented to provide

fetus health care and monitoring during different pregnancy trimesters. This survey may be considered

comprehensive as it does not focus on specific AI branches or diseases. Rather, it provides a holistic

view of AI’s role inmonitoring fetuses via ultrasound images. This survey will benefit both readers, first med-

ical professionals to have sight about the current AI technology in a development stage and assist data sci-

entists in overcoming existing research and implication problems. Secondly, for data scientists to continue

future investigating in developing lightweight models and overcoming problems that slow the transforma-

tion of this technology based on a solid guideline proposed by the medical professionals. It may be consid-

ered a robust and high-quality survey. Because the most prominent health and information technology da-

tabases were searched using a well-developed search query, the search was sensitive and exact. Lastly, the

utilization of techniques like scanning gray literature databases (Google Scholar), biomedical literature

database (PubMed, Embase) World’s leading citation databases (Web of Science), Subject Specific Data-

bases (PsycINFO), and world’s leading source for scientific, technical, and medical research (ScienceDirect,

IEEE explore, ACM Library) indicates that this study’s risk of publication bias is low. A comprehensive sys-

tematic survey was conducted. However, the search within the databases was conducted between 22nd and

23rd June 202, so we might miss some new studies. Besides that, the words ‘‘pregnancy’’ or ‘‘pregnant’’ or
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‘‘uterus’’ were not used as search terms to identify relevant papers. Therefore, some fetus health moni-

toring studies might have been missed, lowering the overall number of studies. In addition, this survey

focused more on the clinical rather than the technical; therefore, some technical details may have been

missed. Lastly, only English studies were included in the search. As a result, research written in other lan-

guages was excluded.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Studies’ methodologies Contained in the article N/A

Other

Publicly available dataset Grand Challenge Fetal dataset Automated measurement of fetal head circumference using

2D ultrasound images | Zenodo

Fetal Planes Dataset FETAL_PLANES_DB: Common maternal-fetal ultrasound images|Zenodo
RESOURCE AVAILABILITY

Lead contact

Further requests for resources and materials should be directed to and will be fulfilled by the lead contact,

Dr. Mowafa Househ (mhouseh@hbku.edu.qa).
Materials availability

This study did not yield new unique reagents.

Data and code availability

d This paper analyzes existing, publicly available data that can be shared by the lead contact upon request.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHODS DETAILS

Eligibility criteria

Studies published in the last eleven years reporting on ‘fetus’ or ‘fetal’ were included in this survey. The pop-

ulation of interest was pregnant women in the first, second, and third trimesters with a specific focus on fetal

development during these time periods. We included computer vision AI interventions that explore the fetal

development process during the prenatal period. Ultrasound image was the only medical image addressed

in this surveywithdifferent synonyms (e.g., sonography, ultrasonography, echography, andechocardiography).
Search strategy

The bibliographic databases used in this study were PubMed, EMBASE, PsycINFO, IEEE Xplore, ACM Dig-

ital Library, ScienceDirect, and Web of Science. Google Scholar was also used as a search engine. The first

200 results were filtered from Google Scholar, which returned a significant number of papers sorted by rel-

evancy to the search subject (20 pages). The search began on June 22, 2021, and ended on June 23, 2021.

The original query was broad: we searched terms in all fields in all databases; because of the huge number

of irrelevant studies while searching in Web of Science and ScienceDirect, we only searched article title,

abstract, and keywords.
A literature retrieval strategy for AI for fetal monitoring

Databases Search terms

PubMed ((‘‘Ultrasound’’ OR ‘‘sonographic’’ OR ‘‘neurosonogram’’ OR ‘‘Sonography’’ OR ‘‘Obstetric’’

AND (y_10[Filter])) AND (‘‘artificial intelligence’’ OR ‘‘machine learning’’ OR ‘‘neural network’’

OR ‘‘Deep learning’’ AND (y_10[Filter]))) AND (‘‘Fetus’’ OR ‘‘fetal’’ OR ‘‘embryo’’ OR ‘‘baby’’

AND (y_10[Filter])) Default full text.

(Continued on next page)
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Continued

Databases Search terms

Embase ((‘‘Ultrasound’’ OR ‘‘sonographic’’ OR ‘‘neurosonogram’’ OR ‘‘Sonography’’ OR ‘‘Obstetric’’

AND (y_10[Filter])) AND (‘‘artificial intelligence’’ OR ‘‘machine learning’’ OR ‘‘neural network’’

OR ‘‘Deep learning’’ AND (y_10[Filter]))) AND (‘‘Fetus’’ OR ‘‘fetal’’ OR ‘‘embryo’’ OR ‘‘baby’’

AND (y_10[Filter])) Default full text.

PsycINFO ((‘‘Ultrasound’’ OR ‘‘sonographic’’ OR ‘‘neurosonogram’’ OR ‘‘Sonography’’ OR ‘‘Obstetric’’

AND (y_10[Filter])) AND (‘‘artificial intelligence’’ OR ‘‘machine learning’’ OR ‘‘neural network’’

OR ‘‘Deep learning’’ AND (y_10[Filter]))) AND (‘‘Fetus’’ OR ‘‘fetal’’ OR ‘‘embryo’’ OR ‘‘baby’’

AND (y_10[Filter])) full text.

ScienceDirect (‘‘Fetus’’ OR ‘‘fetal’’) AND (‘‘artificial intelligence’’ OR ‘‘neural network’’) AND

(‘‘Ultrasound’’ OR ‘‘sonography’’)

IEEE ‘‘"Fetus’’ OR ‘‘All Metadata’’: ‘‘fetal’’ OR ‘‘All Metadata’’: ‘‘embryo’’ OR ‘‘All Metadata’’:

‘‘baby’’) AND (‘‘All Metadata’’: ‘‘artificial intelligence’’ OR ‘‘All Metadata’’: ‘‘machine learning’’

OR ‘‘All Metadata’’: ‘‘neural network’’ OR ‘‘All Metadata’’: ‘‘Deep learning’’) AND (‘‘All Metadata’’:

‘‘Ultrasound’’ OR ‘‘All Metadata’’: ‘‘sonographic’’ OR ‘‘All Metadata’’: ‘‘neurosonogram’’ OR ‘‘All

Metadata’’: ‘‘Sonography’’ OR ‘‘All Metadata’’: ‘‘Obstetric’’) Filters Applied: 2010 - 2021.

ACM Digital library [[All: ‘‘fetus’’] OR [All: ‘‘fetal’’] OR [All: ‘‘embryo’’] OR [All: ‘‘baby’’]] AND [[All: ‘‘artificial intelligence’’]

OR [All: ‘‘machine learning’’] OR [All: ‘‘neural network’’] OR [All: ‘‘deep learning’’]] AND [[All: ‘‘ultrasound’’]

OR [All: ‘‘sonographic’’] OR [All: ‘‘neurosonogram’’] OR [All: ‘‘sonography’’] OR [All: ‘‘obstetric’’]]

AND [Publication Date: (01/0½010 TO 06/30/2021)]

Google Scholar (‘‘Fetus’’ OR ‘‘fetal’’ OR ‘‘embryo’’ OR ‘‘baby’’) AND (‘‘artificial intelligence’’ OR ‘‘machine learning’’

OR ‘‘neural network’’ OR ‘‘Deep learning’’) AND (‘‘Ultrasound’’ OR ‘‘sonographic’’

OR ‘‘neurosonogram’’ OR ‘‘Sonography’’ OR ‘‘Obstetric’’)

Web of science ((ALL=(‘‘Fetus’’ OR ‘‘fetal’’ OR ‘‘embryo’’ OR ‘‘baby’’)) AND ALL=(‘‘artificial intelligence’’ OR ‘‘machine

learning’’ OR ‘‘neural network’’ OR ‘‘Deep learning’’)) AND ALL=(‘‘Ultrasound’’ OR ‘‘sonographic’’

OR ‘‘neurosonograms’’ OR ‘‘Sonography’’ OR ‘‘Obstetric’’).
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Evaluating tool and reporting standard

This study used a few tools for quality evaluation and reporting standards. First, we used Raya web-based

software for study selection, including duplicate remover, title, and abstract screening. Also, the Rayyan

software helped us label each study for fetal and AI task categorization in further steps. Second, we

used an excel sheet for data extraction for each article. The data extraction form is seen in Table S1. Third,

after we finalized the total number of selected studies, we used bibliometrics analysis software to screen

them and ensure that we did not miss any relevant studies. Finally, we evaluated each study independently,

including the study method, dataset, novelty, and result.
QUANTIFICATION AND STATISTICAL ANALYSIS

This paper evaluates the statistical and quantitative analytic methods used in published studies. The au-

thors of this paper did not conduct additional quantified analysis, such as meta-analysis.
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