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Abstract: With the intrinsic material advantages, silicon carbide (SiC) power devices can operate at
high voltage, high switching frequency, and high temperature. However, for SiC wafers with high
hardness (Mohs hardness of 9.5), the diamond blade dicing suffers from problems such as debris
contaminants and unnecessary thermal damage. In this work, a precision layered stealth dicing
(PLSD) method by ultrafast lasers is proposed to separate the semi-insulated 4H-SiC wafer with a
thickness of 508 µm. The laser power attenuates linearly from 100% to 62% in a gradient of 2% layer
by layer from the bottom to the top of the wafer. A cross section with a roughness of about 1 µm was
successfully achieved. We have analyzed the effects of laser pulse energy, pulse width, and crystal
orientation of the SiC wafer. The anisotropy of the SiC wafer results in various qualities of PLSD cross
sections, with the roughness of the crystal plane {10−10} being 20% lower than that of the crystal
plane {11−20}.

Keywords: ultrafast laser; stealth dicing; silicon carbide (SiC); wafer dicing; precision layered
stealth dicing

1. Introduction

On the occasions of high voltage, high switching frequency, and high temperature, the
wide-bandgap semiconductor silicon carbide (SiC), with the advantages of high efficiency
and severe-environment adaptability, has gradually replaced silicon devices, widely applied
to energy-efficient lighting, fifth-generation (5G) mobile communications, electric vehicles,
smart grid, rail transit, new energy, intelligent manufacturing, and radar detection [1–4].
One of the essential processes in integrated circuit (IC) chip manufacturing is wafer dicing,
which splits the wafer into thousands of tiny chips. The dicing quality has a great impact
on wafer utilization and IC chip quality.

For SiC wafers with a Mohs hardness of 9.5, there are many problems when using the
diamond blade dicing method, such as poor cutting quality, low efficiency, and low wafer
utilization [5]. In diamond blade dicing, a diamond blade is used to carve kerf marks on
the wafer surface, and the wafer is split along the kerf mark. However, when applied to
hard SiC wafers, it is likely to produce mechanical stress and lead to kerf edge breakage
and surface damage. Jinn P. chu et al. [6] researched the coating of diamond dicing blades
with a Zr-based metallic glass coating to improve the kerf quality with a low coefficient
of friction, but the kerf width was still around 50 µm. Diamond blade dicing has some
inherent disadvantages that are difficult to overcome completely. A new method of wafer
dicing with high quality is valuable to the SiC semiconductor industry.

Compared to diamond blade dicing, non-contact laser dicing can solve problems
caused by tool wear and mechanical stress, achieving high quality and precision of the
kerfs. There are various laser-based methods such as thermal laser separation, laser ablation,
and stealth dicing (SD). Thermal laser separation (TLS) is a novel dicing technology for
large-scale production of SiC devices [7]. With feed rates up to two orders of magnitude

Micromachines 2022, 13, 1011. https://doi.org/10.3390/mi13071011 https://www.mdpi.com/journal/micromachines

https://doi.org/10.3390/mi13071011
https://doi.org/10.3390/mi13071011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0002-9750-5472
https://doi.org/10.3390/mi13071011
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi13071011?type=check_update&version=1


Micromachines 2022, 13, 1011 2 of 9

higher than mechanical blade dicing, no tool wear, and high quality of diced chips, TLS is a
potential technology for SiC wafer dicing.

Pal Molian et al. [8] used an ultra-short, pulsed laser with a 1552 nm wavelength,
2 ps pulse, and 5 mJ pulse energy ablating on an n-type 4H-SiC wafer to achieve rapid
etching of diaphragms for pressure sensors. Trenches of 26 mm deep and holes of 10 mm
diameter on the SiC wafer were machined with clean edges and a smooth bottom surface. It
was concluded that picosecond pulsed laser ablation is more effective than a femtosecond
pulsed laser in terms of ablation rate and nanosecond pulsed laser in terms of cleanliness
and thermal effects. However, the thermal damage on the surface still exists, and the depth
of ablation is limited to about 150 µm [9].

SD focuses the laser inside the material to form a modified layer and then separates the
chips by means of tape expansion or other external tensile force [10]. Kumagai M. et al. [11]
applied a nanosecond laser to the silicon wafer dicing process, proving that the method
has the advantages of no debris contaminants, narrow kerfs, and high processing efficiency.
Ohmura E. et al. [12] focused a permeable nanosecond laser beam inside a silicon wafer and
induced a high dislocation density layer after the thermal shock wave propagation. The
possibility of internal crack propagation by laser pulses was investigated, which indicated
that the internal cracks were already generated before division. Compared to nanosecond
lasers, ultrafast lasers induce quite special phenomena, such as nonlinear multi-photon
absorption, extreme non-equilibrium between electrons and lattices, non-thermal phase
transition, coulomb explosion, and electrostatic ablation [13–15]. The ultrafast laser has
shown numerous advantages in the field of micro/nano-fabrication since its advent [16,17].
Lee et al. [18] and Zhang et al. [19] have compared the SD effect of an ultrafast laser and
nanosecond laser on transparent materials and concluded that an ultrafast laser SD can
reduce the debris and thermal damage of kerfs compared with a nanosecond laser. Kim
E. et al. [20] sliced off a thin wafer from a bulk SiC crystal along the crystal plane {0001}
by using femtosecond laser double pulses with an exfoliated surface roughness of 5 µm
and a cutting-loss thickness smaller than 24 µm. Amit Yadav et al. [21] have investigated
the SD of sapphire wafers with near-infrared femtosecond pulses to leave a high-quality
surface, and Caterina Gaudiuso et al. [22] applied a femtosecond laser to SD on quartz
glass. Zhang et al. [23] proposed a new asynchronous double-beam laser SD method, in
which an ultrafast laser is focused inside of the SiC wafer along the writing line to form
microcracks, heated by continuous lasering to expand the cracks through thermal stress,
achieving the dicing of a 200 µm SiC wafer with almost no damage to the kerf. However, it
is only suitable for thicknesses less than 200 µm.

The trend of IC chip integration promotes the continuous reduction of chip size, and
the advantages of ultrafast laser micro-nanomachining will be further prominent on thin
wafer dicing. Ultrafast laser SD has a very narrow width of the kerf, contributing to the
tiny width of the reserved dicing line on the wafer, and the chips on the same wafer can
be arranged more densely, thus increasing the number of chips on a single wafer and
improving the utilization rate of the wafer. The realization of SD on SiC wafers with
high quality and high efficiency is expected to break through the technical bottleneck
and the limit of high cost and promote the market application of SiC devices in place of
silicon substrates.

In this work, based on the physical properties of SiC material, we have proposed a
precision layered stealth dicing (PLSD) method by ultrafast lasers to successfully separate
the semi-insulated 4H-SiC wafer with a thickness of 508 µm. It is compact and suitable for
industrial applications. We believe that the method can be applied to dicing SiC wafers
and has a promising potential to fulfill the demands of the IC manufacturing of 4H-SiC
devices. The effects of laser pulse energy, pulse width, and crystal orientation of the SiC
wafer on the quality of kerfs were analyzed.
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2. Experiments

The experimental object of ultrafast laser PLSD was a commercially available semi-
insulated 4H-SiC single crystal wafer (Tankeblue semiconductor) with a thickness of 508 µm.
An ultrafast laser source (PHAROS, SP-HP) was used to investigate PLSD of the semi-
insulated 4H-SiC semiconductor wafer. The ultrafast laser, which has pulse width of 5 ps,
repetition frequency of 200 kHz, and laser radius of 1.13 µm, was tightly focused inside
the SiC wafer through a 100× objective lens with numerical aperture (NA) of 0.7, and
the incident surface was the (0001) silicon plane of SiC wafer, as shown in Figure 1a. The
pulse energy was 45 µJ with laser power of 9 W. With the coordination of the XYZ 3 axis
precision moving platform (Aerotech, XYZ accuracy ± 0.3 µm), the laser focus is moved
along the preset path with a scanning speed of 10 mm/s. The scan direction was parallel or
perpendicular to the primary flat orientation of the wafer, that is, along the crystal direction
<11−20>. The laser pulse spots overlapped along the scanning direction with high density,
and the dense bonding of volume elements created an SD modified layer running through
both edges of the wafer. The internal stress and microcracks were formed in the modified
layer, which provided the basis for subsequent wafer separation.
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Figure 1. (a) Schematic diagram of ultrafast laser scanning in the SiC wafer and (b) PLSD. (c) The
semi-insulated 4H-SiC wafer sample after PLSD. (d) Absorption and transmission spectra of the
wafer at 300–1200 nm.

After laser scanning, a modified layer was derived inside the wafer along the scanning
direction. However, the single SD layer was insufficient for chip separations of the hard SiC
wafer with a thickness of 508 µm. Therefore, the PLSD method was designed, as shown
in Figure 1b. An ultrafast laser was applied to scan inside SiC wafer from bottom to top,
with the laser focus moving up after each layer, to achieve multiple layers of machining
and a modified section. Considering the wafer thickness of 508 µm, the PLSD layer vertical
spacing in SiC wafer was set to 20 µm, divided into 24 layers. However, there is a problem
that ablation may occur when the laser is focused closely to the surface of the wafer. To
avoid ablations on the top or the bottom of the wafer after laser penetration, 3 layers near
the top and 1 layer near the bottom were not processed, as the number of actual scanning
layers was 20. Furthermore, to compensate for the difference of transmitted laser intensity
at different depths from the top surface and equate the energy deposition of each layer,
the laser power attenuated linearly from 100% to 62% in a gradient of 2% layer by layer
from the bottom to the top by a motorized attenuator. Dense microcracks existed in the
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layers after PLSD, and the chip separation of semi-insulated 4H-SiC wafer was achieved by
applying tensile force to the PLSD section of the wafer, as shown in Figure 1c.

One of the essential foundations for PLSD is that the wafer is transparent to the
wavelength of the laser used. The 4H-SiC wafer sample was characterized by absorption
and transmission spectra from ultraviolet to infrared wavebands, using ultraviolet and
visible spectrophotometer (UV-2600i). Figure 1d showed the spectra characterization in the
range of 300~1200 nm of semi-insulated 4H-SiC wafer. It is indicated that the transmittance
of 4H-SiC wafer is higher than 60% in the wavelength band larger than 400 nm. In
experiments, the laser center wavelength was 1028 nm, with a corresponding transmittance
of 65.8%. The minimum laser power attenuation of 62% is close to that.

The morphology of the kerfs was tested using scanning electron microscopy (SEM,
TESCAN, Brno, Czech, MIRA 3), and their cross sections were measured by a 3D optical
surface profilometer (ZYGO, Middlefield, CT, USA, New View 9000).

3. Results and Discussion
3.1. Effect of Laser Pulse Energy

Laser average power and repetition frequency collectively determine the pulse energy
of ultrafast lasers. The pulse energy E0 has a relationship with laser power P and repetition
frequency f as:

E0 =
P
f

(1)

Figure 2 showed the ablation effects of the SiC wafer surface with various pulse
energies. The laser focus was located at 80 µm below the surface, belonging to shallow
layer experiments with a laser power of 9 W. It can be seen that when the laser pulse energy
was 45 µJ, there was only a tiny heat-affected region at the surface with a line width of
approximately 8 µm, as shown in Figure 2a. The overall effect on the wafer surface seemed
not obvious. Figure 2b showed that in the case of 90 µJ, the surface was slightly ablated,
and the line width appeared to be about 10 µm. As pulse energy increased to 180 µJ, severe
ablation occurred at the surface, and the line width reached 33 µm, causing severe ablation
damage to the wafer kerf, as shown in Figure 2c. It was indicated that low pulse energy can
reduce the energy deposition on the wafer surface without ablation of the wafer surface,
approaching real “stealth”.
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and (c) 180 µJ.

However, this did not mean that the higher the pulse energy the better. With the upper
limit of laser power in the ultrafast laser machining system, of which the maximum power
could be adjusted to 10 W, the low pulse energy caused the lack of energy deposition to
induce modified layers, and effective PLSD could not be realized in the wafer. Therefore, in
the specific PLSD experiments, it was necessary to select the laser power and repetition
frequency properly according to the wafer material properties, such as transmittance and
ablation threshold. For the semi-insulated 4H-SiC wafer, the relatively proper pulse energy
was 45 µJ under our experimental conditions.
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3.2. Effect of Laser Pulse Width

Das A et al. [24] have defined the threshold conditions of initiating modifications
inside silicon by the pulse duration and the numerical aperture, with a modest pulse
duration dependence of the energy threshold. In order to investigate the influence of laser
pulse width on the effects of PLSD, a series of experiments with different pulse widths
from femtosecond to picosecond were carried out. With a pulse width of hundreds of
femtoseconds, a modification line with several microns was formed inside the SiC wafer.
However, the size of the internal modification region was not large enough to separate
the wafer by tensile force. When the pulse width reached sub-picosecond and picosecond,
wafer separation was accomplished successfully.

Figure 3 shows the images of the morphology of cross sections with different pulse
widths after wafer separation. It can be seen that the crack size seemed smaller, and
the crack distribution was denser with the pulse width of 1 ps, compared to other cases.
When the pulse width modulation was amplified to 5 ps or 10 ps, the crack size increased
gradually. The quality of the cross section was accurately measured by the size of the
surface roughness. The surface average roughness (Sa) of the cross sections was obtained
by a 3D optical surface profilometer, with a scanning area size of 350 × 350 µm2. When
the pulse width was 1 ps, the Sa of the cross section showed 0.699 µm. When the pulse
width reached 5 ps, the Sa increased to 1.613 µm. When approaching 10 ps, the Sa increases
to 1.649 µm. It is obvious that the roughness of the cross section rose as the pulse width
increased, and the increase in roughness was not significant for larger pulse widths. The
crack size of the cross section gradually increased as the laser pulse width increased. When
the pulse width was small, the crack size was small and densely distributed, and the
trajectory of PLSD was covered by microcracks. While the pulse width was large, PLSD
layers along the scanning direction could be clearly seen, and there are also some cracks
and fractures extending inward and outward through the adjacent PLSD layers.
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In general, the laser pulse width has a great influence on the PLSD results. Femtosec-
ond lasers can achieve internal modification of SiC wafers, forming modified regions of
only a few microns to a dozen microns in width, and wafer separation is hard to achieve.
Picosecond lasers induce a modified region large enough to achieve the separation of
SiC wafers. The larger the pulse width, the larger the crack size of the cross section, the
higher the roughness, and the greater the degree of damage inside the wafer, which means
that the wafer is more likely to separate. In order to obtain the best quality of PLSD, the
appropriate laser pulse width needs to induce a large enough modified region inside the
wafer to achieve wafer separation while minimizing the roughness of the cross section. The
optimal pulse width is varied for different materials and may be generally at picosecond
and sub-picosecond levels.

3.3. Effect of Crystal Orientation

For hexagonal SiC single crystals, different crystal orientations mean anisotropic
mechanical properties [25], such as fracture toughness values, so different orientations
of PLSD can result in various kerf morphologies. Figure 4 shows the SEM images of the
kerfs after ultrafast laser PLSD of SiC wafers obtained under a 45◦ oblique view. From
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Figure 4b,c, it can be seen that the kerf edges along the crystal orientations <11−20> and
<10−10> were both in good agreement within a length of 1.7 mm along the dicing line.
Some minor notches existed in the local section, and the straightness was within 20 µm.
However, there was a significant distinction on the morphology of the cross sections of the
two crystal planes {10−10} and {11−20}. The cross section of crystal plane {10−10} was
smoother than that of crystal plane {11−20}, indicating the influence of the anisotropy of
the crystal orientations or crystal planes on the kerf quality of PLSD.
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The cross sections of the PLSD kerfs of Figure 4 along different crystal orientations
or planes were obtained by a 3D optical surface profiler, as shown in Figure 5a,b. On the
cross sections of PLSD kerfs, the different cleavage plane exhibited a large difference in
roughness. The profiler scanned two cross sections of crystal planes, {10−10} and {11−20},
with an area of 434 × 434 µm2. The surface roughness values were 0.894 µm and 1.126 µm,
respectively, which meant that the surface roughness of crystal plane {10−10} was 20%
lower than that of crystal plane {11−20}. This indicated that plane {10−10} is easier to
cleave than plane {11−20}. This might be related to crystal cleavability, which is the capacity
of the crystal cleavage along one specific crystal plane under the action of an external force.
The cleaved crystal plane was called a cleavage plane, which was generally a crystal plane
with weak bonding of atomic layers. The material properties [26] of 4H-SiC allow the
calculation of theoretical fracture toughness values [27] for both crystal planes:

(KIC)hkl = (Ehkl(GIC)hkl)
1/2 MPa m1/2 (2)
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Here, Ehkl is the elastic modulus and (GIC)hkl is the critical crack energy release rate.
The fracture toughness of 1.4 MPa m1/2 was theoretically calculated for the primary cleavage
plane {10−10}, and 1.8 MPa m1/2 was calculated for the secondary cleavage plane {11−20} [28].
Compared to {11−20}, the fracture toughness of {10−10} is 22% lower, which is similar to the
difference of 20% in the roughness of two cross sections. This explains why the kerf quality of
{10−10} was better than that of {11−20} under the same experimental conditions.
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In addition, for the crystal planes of the hexagonal crystal system (hkil), the crystal
plane spacing d(hkl) can be calculated from the lattice constants as:

d(hkl) =
1√

3
4

(
h2+hk+k2

a2

)
+
(

l
c

)2
(3)

The crystal plane spacings of 4H-SiC were calculated to be 3.55 Å and 2.05 Å for crystal
planes {10−10} and {11−20}, respectively. The larger crystal plane spacing of {10−10} means
weaker bonding of the atomic layers and better crystal cleavability, which agrees with the
better quality of {10−10} than {11−20}.

The comparison of Figure 6b,c showed that the microcrack size inside the modified
region was smaller and the roughness was lower, while the roughness was relatively higher
near the top and the bottom surfaces. This was due to the fact that the PLSD layers were
mainly inside the wafer, and in order to reduce the thermal effect on the wafer surfaces,
there was no laser modification near the top and bottom surfaces. When the wafer was
separated by tensile force after PLSD, the stress inside the modified region was released to
the top and bottom surfaces as the cracks extended outwards. The roughness was relatively
higher because of the lack of guidance for the PLSD layers near the top and bottom surfaces.
This is a problem that needs to be solved in further studies to avoid surface thermal effects
while reducing the overall roughness of the kerf edge and improving the kerf quality.
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4. Conclusions

We have proposed a precision layered stealth dicing method by ultrafast lasers to
separate SiC wafers with high-quality kerfs. A cross section with a roughness of about
1 µm was successfully achieved. In addition, the effects of the significant parameters in
PLSD processing on the kerf quality were experimentally investigated. It was showed that
low pulse energy can reduce the damage at the wafer’s surface. It is more difficult for the
femtosecond laser to separate the SiC wafer after PLSD than the picosecond laser, due to
the insufficient size of the internal modified region. A shorter pulse width corresponds
to a smaller crack size and lower roughness of the cross sections. Anisotropic crystal
orientations have different crystal cleavability and fracture toughness values. The cross
section along the primary cleavage plane {10−10} is visibly smoother than the secondary
cleavage plane {11−20}. The surface roughness of the crystal plane {10−10} is 20% lower
than that of {11−20}, which corresponds to a 22% lower fracture toughness. The PLSD by
ultrafast lasers is a non-contact dry process with no debris generation and almost no effect
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on the wafer surface, which has great potential in the dicing of hard-brittle materials and
IC chip manufacturing.
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