
May 2018 | Volume 9 | Article 10701

Review
published: 24 May 2018

doi: 10.3389/fimmu.2018.01070

Frontiers in Immunology | www.frontiersin.org

Edited by: 
Pinyi Lu,  

Biotherapeutics, Inc.,  
United States

Reviewed by: 
Jianlin Geng,  

University of Alabama  
at Birmingham,  

United States  
Zhenhuan Zhao,  

University of Virginia,  
United States  

Ana María Sanchez-Perez,  
Jaume I University,  

Spain

*Correspondence:
Wenkai Ren 

renwenkai19@126.com; 
Yuanyi Peng 

pyy2002@sina.com

Specialty section: 
This article was submitted to 

Nutritional Immunology,  
a section of the journal  

Frontiers in Immunology

Received: 03 March 2018
Accepted: 30 April 2018
Published: 24 May 2018

Citation: 
Zhao G, He F, Wu C, Li P, Li N, 

Deng J, Zhu G, Ren W and Peng Y 
(2018) Betaine in Inflammation: 

Mechanistic Aspects  
and Applications. 

Front. Immunol. 9:1070. 
doi: 10.3389/fimmu.2018.01070

Betaine in inflammation: Mechanistic 
Aspects and Applications
Guangfu Zhao1, Fang He1, Chenlu Wu1, Pan Li1, Nengzhang Li1, Jinping Deng2,  
Guoqiang Zhu3, Wenkai Ren2,3* and Yuanyi Peng1*

1 College of Animal Science and Technology, Southwest University, Chongqing, China, 2 Guangdong Provincial Key 
Laboratory of Animal Nutrition Control, College of Animal Science, Subtropical Institute of Animal Nutrition and Feed, 
South China Agricultural University, Guangzhou, Guangdong, China, 3 Jiangsu Co-Innovation Center for Important Animal 
Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of 
Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China

Betaine is known as trimethylglycine and is widely distributed in animals, plants, and 
microorganisms. Betaine is known to function physiologically as an important osmopro-
tectant and methyl group donor. Accumulating evidence has shown that betaine has 
anti-inflammatory functions in numerous diseases. Mechanistically, betaine ameliorates 
sulfur amino acid metabolism against oxidative stress, inhibits nuclear factor-κB activity 
and NLRP3 inflammasome activation, regulates energy metabolism, and mitigates endo-
plasmic reticulum stress and apoptosis. Consequently, betaine has beneficial actions in 
several human diseases, such as obesity, diabetes, cancer, and Alzheimer’s disease.
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iNTRODUCTiON

Betaine is a stable and nontoxic natural substance. Because it looks like a glycine with three extra 
methyl groups, betaine is also called trimethylglycine (1). In addition, betaine has a zwitterionic 
quaternary ammonium form [(CH3)3N+  CH2COO−] (Figure  1). In the nineteenth century, 
betaine was first identified in the plant Beta vulgaris. It was then found at high concentrations in 
several other organisms, including wheat bran, wheat germ, spinach, beets, microorganisms, and 
aquatic invertebrates (2). Dietary betaine intake plays a decisive role in the betaine content of the 
body. Betaine is safe at a daily intake of 9–15 g for human and distributes primarily to the kidneys, 
liver, and brain (2). The accurate amount of betaine intake generally relies on its various sources 
and cooking methods (3). Besides dietary intake, betaine can be synthesized from choline in the 
body. Studies report that high concentrations of betaine in human and animal neonates indicate the 
effectiveness of this synthetic mechanism (4, 5).

Regarding its biological significance, on the one hand, betaine is a vital methyl group donor 
in transmethylation, a process catalyzed by betaine-homocysteine methyltransferase (BHMT). 
This reaction catalyzes homocysteine to form methionine and occurs primarily in the liver and 
kidneys (6). On the other hand, betaine is an essential osmoprotectant, primarily in the kidneys, 
liver, and brain, and large amounts of betaine can accumulate in cells without disrupting cell 
function; importantly, this role of betaine protects cells, proteins, and enzymes under osmotic 
stress (7).

Recently, several studies have focused on various natural compounds proven to be effective against 
many diseases. For example, Geng and colleagues found that mulberrofuran G has anti-hepatitis B 
virus activity (8). Interestingly, in Southeast Asia, water extracts of Lycium chinensis, which contains 
a high concentration of betaine, were used as a traditional oriental medicine to treat liver disorders 
(9). These findings indicate that the function of betaine, a natural compound, has become a hot topic 
because of its anti-inflammatory effects on diseases, such as nonalcoholic and alcoholic fatty liver 
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FigURe 1 | (A) Molecular structure of betaine. (B) Metabolism of betaine and related sulfur amino acids (SAAs). Betaine is a substrate of choline and can be 
converted to DMG via demethylation to ultimately become glycine. Most of these reactions occur in the mitochondria. The demethylation reaction converts 
homocysteine to methionine and can be replaced by 5-methyl-THF, which can catalyze methylation to form THF. Then, methionine is successively converted 
to SAM and finally to homocysteine to form the methionine cycle. Homocysteine can also go through the transsulfuration pathway to form cystathionine, 
cysteine, taurine, or glutathione. The enzymes mentioned in this review are shown and marked in the cycle with individual numbers. 1. Betaine-homocysteine 
methyltransferase (BHMT); 2. Methionine synthase (MS); 3. Methionine adenosyltransferase (MAT); 4. SAM-dependent methyltransferases;  
5. S-adenosylhomocysteine hydrolase; 6. Cystathionine β-synthase (CBS); 7. Cysteine dioxygenase (CDO); 8. γ-glutamylcysteine synthetase (GCS).  
THF, tetrahydrofolate; SAM, S-adenosyl-L-methionine; SAH S-adenosyl-L-homocysteine; DMG, N,N-dimethylglycine.
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disease (NAFLD and AFLD) and diabetes (10–12). This paper 
summarizes the role of betaine in physiological functions, anti-
inflammatory mechanisms, and human diseases.

PHYSiOLOgiCAL FUNCTiONS OF 
BeTAiNe

As many studies show, cells from bacteria to vertebrates absorb 
betaine as an osmoprotectant; animals can rapidly absorb betaine 
through the duodenum of the small intestine (13, 14). Specifically, 
betaine can be freely filtered in the kidney and reabsorbed into 
the circulation, so it is primarily excreted in sweat instead of urine 
(15, 16). Betaine accumulation depends on transporters, and it 
primarily distributes to the kidneys, liver, and brain (2). Although 
betaine is utilized in most tissues (such as the kidneys and brain) 

as an osmoprotectant, its primary role is to act as a methyl group 
donor in liver metabolism (17, 18).

Betaine as an Osmoprotectant
In contrast to inorganic salts, osmoprotectants are highly soluble 
small organic compounds that accumulate in large amounts in 
cells without disrupting cell function; these compounds protect 
against osmotic stress (19). Hyperosmosis can cause water efflux 
and a concomitant reduction in cell volume; these effects are 
detrimental to cell survival (20). Thus, to balance hyperosmosis 
and protect cells from shrinkage and death, the accumulation of 
different types of osmoprotectants, such as betaine, sorbitol, and 
taurine, is essential (21–25). In contrast to other osmolytes and 
inorganic salts, such as urea and Na+, betaine reduces the ability 
of water molecules to solvate proteins, thus stabilizing the native 
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protein structures (26). In addition, betaine can also increase the 
cytoplasmic volume and free water content of cells to prevent 
shrinkage in hyperosmotic conditions and to inhibit various 
hyperosmotic-induced apoptosis-related proteins  (27,  28). Due 
to these advantages, additional betaine can be used to counter 
the pressure when tissues are hypertonic. For example, in 
the kidneys, hypertonicity increases the levels of the betaine- 
γ-aminobutyric acid (GABA) transport system (GAT4/BGT1) 
in the basolateral plasma membrane to obtain more betaine; 
however, under normal physiological conditions, BGT1 levels are 
low, and this transporter is present primarily in the cytoplasm in 
Madin–Darby canine kidney (MDCK) cells (21).

Betaine as a Methyl group Donor
Betaine is not only a metabolite of choline but also a methyl group 
donor that participates in methylation. Methylation, such as that 
of DNA and protein, is an essential biochemical process in ani-
mals. A previous study has shown that the availability of methyl 
group donors influences methylation levels (29). It has been 
acknowledged that betaine, methionine, and choline are the most 
important methyl group donors present in diets. Nevertheless, 
the major role of methionine is a substrate for protein synthesis, 
and choline contributes primarily to forming the cell membrane 
and neurotransmitters. The transmethylation reaction of betaine, 
which is part of a one-carbon metabolism via the methionine 
cycle, occurs principally in the mitochondria of liver and kidney 
cells. In this reaction, BHMT catalyzes the addition of a methyl 
group from betaine to homocysteine to form methionine, which 
is subsequently converted to dimethylglycine (DMG) (30). DMG 
has two available methyl groups and is possibly degraded to 
sarcosine and ultimately to glycine. Similarly, methionine syn-
thase (MS), a vitamin B12-dependent enzyme, can also catalyze 
the formation of methionine from homocysteine with a donor 
methyl group from N5-methyltetrahydrofolate. These reactions 
are important in animals because they conserve methionine, 
detoxify homocysteine, which is a cause of cardiovascular disease 
(31), and  produce S-adenosylmethionine (SAM) (32). SAM is 
generated from methionine via methionine adenosyltransferase 
(MAT), and SAM is a principal methylating agent. After dem-
ethylation, SAM is transformed into S-adenosylhomocysteine 
(SAH). The ratio of SAM:SAH affects various SAM-dependent 
methyltransferases, including protein-L-isoaspartate methyl-
transferase (PIMT), phosphatidylethanolamine methyltrans-
ferase (PEMT), protein arginine methyltransferase (PRMT), and 
isoprenylcysteine carboxyl methyltransferase (ICMT). These 
enzymes are associated with the protein repair progress, lipid 
metabolism, protein–protein interactions, and GTPase activity 
(33–38). One molecule of SAH is subsequently hydrolyzed by 
SAH hydrolase to form one homocysteine molecule and one 
adenosine molecule. Notably, this reaction is reversible, and the 
direction of the reaction depends on whether these products are 
removed. All of these reactions constitute the methionine cycle. 
Furthermore, with the help of cystathionine β-synthase, a vitamin 
B-6-dependent enzyme, homocysteine can be transformed into 
cystathionine via the transsulfuration pathway. In this pathway, 
homocysteine catabolism leads to an increase in the production 
of glutathione (GSH), taurine, and other metabolites (39–41). 

Dietary betaine supplementation has been demonstrated to 
have an impact on various sulfur amino acids (SAAs) (2). For 
example, such supplementation effectively increases the available 
methionine and SAM (42, 43). Therefore, betaine acts as a methyl 
donor and plays an influential role in SAA metabolism; the details 
of this metabolic pathway are shown in Figure 1B.

ANTi-iNFLAMMATORY eFFeCTS OF 
BeTAiNe ON DiSeASeS

Inflammation, an immune reaction, is an essential and primary 
process of host defense and wound healing. However, excessive or 
prolonged inflammation may become the pathogenesis of various 
diseases. Due to this, using natural compounds to treat diseases 
could be a good strategy by controlling the intensity of the inflam-
matory reaction. For instance, many studies show that GABA is 
anti-inflammatory (44). Consequently, using betaine in response 
to inflammation has sparked heated debate in recent years. Next, 
this review will discuss the primary mechanisms through which 
betaine exerts its anti-inflammatory effects on diseases.

Betaine Ameliorates SAA Metabolism 
Against Oxidative Stress
Reactive oxygen species (ROS) are by-products of biological 
energy-generating reactions; in particular, they are produced in 
the mitochondria where oxidative metabolism primarily occurs. 
Under normal conditions, the body has two detoxification sys-
tems that can clear ROS and free radicals: antioxidant enzymes 
and antioxidant agents (45, 46). Catalase, superoxide dismutase 
(SOD), melatonin, and GSH are examples of these detoxification 
agents (47–49). However, excess ROS levels are a threat to cells 
because they alter the stability of nucleic acids, proteins, and 
the lipid membrane; furthermore, high ROS levels likely cause 
pathological processes, including inflammation (50).

Sulfur amino acids such as homocysteine, methionine, SAM, 
SAH, and cysteine are involved in various essential metabolic 
pathways, including GSH synthesis and protein synthesis, and 
transmethylation reactions. Although homocysteine contributes 
to GSH synthesis (51), various studies have demonstrated that 
hyperhomocysteinemia ultimately induces oxidative stress and 
apoptosis (52, 53). Betaine treatment can directly influence 
homocysteine concentrations via stimulating homocysteine to 
form methionine to regulate SAA concentrations. For example, 
ethanol-induced ROS and free radicals can suppress methionine 
synthase (MS) activity to inhibit remethylation and induce 
hyperhomocysteinemia (54). To compensate for this decrease in 
MS activity, betaine was used as an alternate methyl donor that 
improved BHMT activity to generate methionine and SAM and 
remove homocysteine in the livers of ethanol-fed Wistar rats 
(54, 55). However, it is worth noting that C57B6 mice showed a 
decrease or no change in BHMT expression, rather than a com-
pensational increase (56). As betaine converts homocysteine to 
methionine, methionine concentrations are closely related with 
betaine. Methionine plays an important role in antioxidation. For 
example, methionine can reduce oxidative stress via chelation, 
and it can be used by hepatocytes for GSH synthesis (57, 58). 
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TABLe 1 | Changes in the oxidation-related functions of primary sulfur amino acids after betaine treatment.

Compound Change Functions Reference

Methionine Upregulated GSH synthesis; reduces oxidative stress (57, 58, 69)
S-adenosylmethionine Upregulated Increases cellular GSH content; antioxidant (59, 60)
S-adenosylhomocysteine Downregulated Inhibits methyltransferases (62)

Induces oxidative stress
Homocysteine Downregulated Induces oxidative stress; GSH synthesis (51–53, 70)
Cysteine Upregulated GSH synthesis; reduces oxidative stress (65)
GSH Upregulated Antioxidant (71)
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In addition, this reaction is essential for generating SAM and 
removing homocysteine. Studies have demonstrated that SAM 
is a direct antioxidant in the body and that it can modulate GSH 
metabolism (59, 60). Moreover, based on the reversibility of the 
reaction that converts SAH to homocysteine and adenosine, 
homocysteine concentrations would further decrease (61). SAH 
is a powerful inhibitor of SAM-dependent methyltransferases; 
which methylate various compounds, such as nucleic acids and 
proteins (62). Kwon and colleagues found that betaine could 
significantly increase the SAM:SAH ratio and MAT activity (63). 
Kharbanda and colleagues found that betaine could prevent nitric 
oxide synthase 2(NOS2) expression; this process is initiated by 
inflammation, and the SAM:SAH ratio is increased to maintain 
NOS2 promoter methylation (64). In addition, homocysteine can 
also be converted to cysteine via the irreversible transsulfuration 
pathway, and cysteine then forms either taurine via cysteine 
dioxygenase (CDO) or GSH via γ-glutamylcysteine synthetase 
(65). Researchers found that betaine treatment inhibited CDO 
activity and decreased taurine levels, while increased the produc-
tion of GSH to neutralize oxidative stress in AFLD and NAFLD 
mice (11, 63, 66).

Few studies indicated antioxidant enzymes, such as SOD 2 
and glutathione S-transferases (GST), were changed after betaine 
treatment, but most results have shown no significant changes. 
Thus, more researches are needed in the future to confirm whether 
these antioxidant enzymes really participated in the process (55, 
67, 68). Considering the above studies, the primary antioxidant 
mechanism of betaine may occur through ameliorating SAA 
metabolism. These changes after betaine treatment and the oxi-
dation-related functions of primary SAAs are shown in Table 1.

Betaine inhibits the NF-κB Signaling 
Pathway
The pathway of the transcription factor nuclear factor-κB (NF-κB)  
controls many genes involved in inflammation; these genes 
include the pro-inflammatory cytokines tumor necrosis factor-
alpha (TNF-α), interleukin 1 beta (IL-1β) and interleukin 23 
(IL-23). Therefore, it is not surprising that many inflammatory 
diseases involve chronically activation of NF-κB (72–74). 
Consequently, the NF-κB pathway has become an essential 
candidate for inflammation treatment. Researchers found that 
betaine can suppress NF-κB activity and various downstream 
genes (75–77). For example, in an early study of aged kidneys, 
betaine treatment suppressed NF-κB activity and the expression of 
a variety of related genes, including TNF-α, vascular cell adhesion 
molecule-1 (VCAM-1), intracellular cell adhesion molecule-1 

(ICAM-1), inducible nitric oxide synthase (iNOS), and cyclooxy-
genase-2 (COX-2) (75). Notably, in this and another study about 
atherogenesis, the authors found that betaine inhibited NF-κB by 
suppressing two important activators, mitogen-activated protein 
kinases (MAPKs) and nuclear factor-inducing kinase/IκB kinase 
(NIK/IKK) (75, 76). NIK/IKK can relieve IκB inhibition and initi-
ate the transcriptional activation of NF-κB (78). MAPKs consist 
of c-Jun NH2-terminal kinase (JNK), protein 38 (p38), and 
extracellular signal-regulated kinase (ERK1/2) and are involved 
in inflammation and the response to pro-inflammatory cytokine 
expression (79). Mechanistically, betaine exerts its effects by main-
taining thiol levels, particularly GSH, to inhibit ROS production 
and NF-κB activity (80). Furthermore, betaine also inhibits some 
upstream signaling molecules that induce the activation of NF-κB. 
Classically, Toll-like receptors (TLRs) participate in an important 
upstream signaling event, which eventually culminates in acti-
vating NF-κB. In an in vitro study, betaine treatment prevented 
lipopolysaccharide (LPS, specific activator of TLR-4)-induced 
NF-κB activation in RAW 264.7 murine macrophage cells (81). 
Another study showed that betaine treatment improved hypo-
thalamic neural injury via inhibiting the TLR-4/NF-κB signaling 
pathway to restore fructose-induced astrogliosis and inflamma-
tion. This study suggests that betaine can inhibit histone deacety-
lases 3 expression, which can activate NF-κB via binding to IκBα 
(82). Another study showed that betaine treatment can reduce the 
mRNA and protein expression levels of high-mobility group box 
1, a positive regulator of TLR-4 activation to restrict inflammation 
(83). In addition, betaine can also reduce endogenous damage-
associated molecular pattern (DAMP) generation to inhibit the 
NF-κB pathway. In conclusion, betaine has anti-inflammatory 
effects through its inhibition of NF-κB signaling pathway.

Betaine inhibits NLRP3 inflammasome 
Activation
The leucine-rich family, pyrin-containing 3 (NLRP3) inflam-
masome is a large cytosolic protein complex that contains the 
nucleotide-binding domain, leucine-rich repeat-containing 
(NLR) family member NLRP3, the important adapter molecule 
ASC, and mature caspase-1. When TLRs recognize DAMPs or 
pathogen-associated molecular patterns, NF-κB can be activated 
to promotes mRNA expression of interleukin precursors, includ-
ing pro-IL-18 and pro-IL-1β, as well as NLRP3 (84). The completely 
assembled NLRP3 inflammasome activates caspase-1 to mediate 
the production of mature IL-1β and IL-18, which are involved in 
initiating inflammation (85). It is important to ameliorate inflam-
matory reactions via inhibiting NLRP3 inflammasome activity.
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Earlier studies have shown that betaine can directly increase 
heme oxygenase-1 expression levels in hepatocytes (86); this effect 
may suppress the NLRP3 inflammasome to protect against LPS-
induced and d-galactosamine-induced inflammation in the liver 
(87, 88). Recent studies have demonstrated that betaine treatment 
can significantly inhibit NLRP3 inflammasome-related proteins, 
such as NLRP3 and mature caspase-1, and the levels of pro-
inflammatory cytokines, including IL-1β, in a dose-independent 
manner in fructose-induced NAFLD models (82, 89,  90). The 
same phenomenon was found in betaine-treated db/db mice; this 
finding shows that the mechanism is associated with a forkhead 
box O1 (FOXO-1) inhibition of thioredoxin-interacting protein 
(TXNIP), which can promote the production of  ROS to trigger 
NLRP3 inflammasome assembly (12). The FOXO family contains 
six members, including FOXO-1 and FOXO-6, that are found in 
mammals. The main role of FOXO factors is the regulation of cell 
growth, cell death, proliferation, differentiation, and oxidative 
stress response (91, 92). Activated FOXO-1 promotes TXNIP 
activity, which is the endogenous inhibitor of ROS-scavenging 
protein thioredoxin, resulting in producing more ROS (93). 
In addition, activated PKB/Akt can phosphorylate the active 
form of FOXO-1 to trigger its exit from the nucleus into the 
cytoplasm; this change makes FOXO-1 inactivation (94). In 
this study, betaine treatment increased the levels of PKB/Akt-
mediated FOXO-1 phosphorylation. However, Kathirvel and 
colleagues noted that betaine did not directly activate PKB/Akt, 
and its mechanism may be the result of enhanced insulin receptor 
substrate 1 (IRS-1) phosphorylation (10). Thus, we suggest that 
betaine could enhance IRS-1 activity to activate PKB/Akt; then, 
the activated PKB/Akt would inhibit FOXO-1 activation, which 
restricts TXNIP to suppress NLRP3 inflammasome components 
to excise its anti-inflammation effects. Moreover, a study found 
that betaine mediated inhibition of NLRP3 inflammasome activa-
tion played a more important role than that of NF-κB in response 
to renal inflammation (90). Overall, the anti-inflammatory effects 
of betaine are closely associated with its inhibition of NLRP3 
inflammasome activation.

Betaine Regulates energy Metabolism to 
Relieve Chronic inflammation
Energy metabolism disorders can lead to various chronic diseases, 
including obesity and diabetes, which generally have a systemic 
low-grade inflammation (95). Thus, restoring normal metabolism 
is an essential step that contributes to mitigating inflammation. As 
various reports have reported, betaine has effects on both lipid 
and glucose metabolism (10, 96). Regarding lipid metabolism, 
excessive fat accumulation resulting from the imbalance of lipid 
transportation, synthesis, and oxidation is considered to be the 
culprit of many diseases. Many studies have demonstrated that 
various factors, such as high-fat diets, antibiotics exposure and 
ethanol consumption, could lead to such situations (11, 97).

Betaine treatment can restore the imbalance between synthesis 
and oxidation to help attenuate fat accumulation (97–99). Song 
and colleagues found that an increased hepatic AMP-activated 
protein kinase (AMPK) activity may be involved mechanistically 
(98). AMPK serves as both a principal cellular energy sensor and 

a vital metabolic homeostasis regulator; in fact, AMPK controls 
many genes, such as sterol regulatory element-binding protein-
1c (SREBP-1c), acetyl CoA carboxylase (ACC), and fatty acid 
synthase (FAS). Activated AMPK can inhibit fatty acid synthesis 
and promote fatty acid oxidation via regulating the expression 
of these genes (100). Betaine can increase AMPK phosphoryla-
tion and then inhibit ACC activity as well as SREBP-1c and FAS 
expression (98). This result supports the finding of another study 
in which AMPK could directly phosphorylate SREBP-1c and 
SREBP-2 at Ser372 to inhibit their activities to reduce lipogenesis 
and lipid accumulation in diet-induced insulin-resistant mice 
(101). Furthermore, activated AMPK promotes glucose uptake 
via improving glucose transporter type 4 (GLUT-4) transloca-
tion; these findings suggest a beneficial effect on insulin resistance 
(102). Regarding the mechanism of AMPK activation, changing 
the AMP:ATP ratio in cells under normal conditions activates 
AMPK (103). However, hepatic AMPK activation can occur 
independently of the AMP:ATP ratio via adiponectin (104, 105). 
Interestingly, in another study from Song, betaine could restore 
abnormal adipokine levels in NAFLD, and it upregulated adi-
ponectin and downregulated leptin and resistin in adipose cells 
to attenuate the dysregulated lipid metabolism. Similar effects 
of betaine are supported by another in  vitro study in human 
adipocytes (106). These results imply that the upregulation of 
adiponectin may contribute to AMPK phosphorylation (107). In 
addition, because these adipokines play roles in inflammation, 
this normalizing process is anti-inflammatory (106). In addi-
tion to activating AMPK, betaine treatment could potentially 
influence other lipid metabolism-related factors. Earlier studies 
showed that betaine can reduce triglyceride accumulation in 
apolipoprotein B (apoB)-deficient mice via decreasing peroxiso-
mal proliferator-activated receptor alpha (PPARα) methylation 
(108). In another study, betaine restricted PPARγ transcriptional 
activity via inhibiting FOXO-1 binding to the PPARγ promoter to 
reduce fat accumulation (109). In a recent study, not only PPARα 
but also hepatic liver X receptor α (LXRα) were upregulated when 
betaine restored fatty acid oxidation inhibition (89). Although 
the mechanism of how betaine activates LXRα remains unclear, 
it may be associated with a SAM-related enzyme PRMT-3, which 
can directly increase LXRα activity (38). In addition, in a study 
of cisplatin-induced nephrotoxicity, betaine inhibited lipid 
peroxidation via suppressing renal thiobarbituric acid-reactive 
substance activation, which is mostly initiated by oxidative stress 
(110). In addition to altering fat synthesis and oxidation, betaine 
treatment can ameliorate lipid transport. A study found that 
betaine maintains liver SAM:SAH ratios to enhance phosphati-
dylcholine synthesis and normalize very-low-density lipoprotein 
(VLDL) production via promoting PEMT activity (111), and 
another study found that betaine stimulates apoB gene expression 
to form more VLDL (112).

With respect to glucose metabolism, studies have demonstrated 
that insulin resistance is associated with inflammation (113, 114). 
Morgan and colleagues discovered that betaine supplementation 
could directly act upon the insulin pathway to improve NAFLD 
(10). A similar phenomenon has been found in another study of 
type 2 diabetes (12). In these studies, betaine significantly reduced 
ser473-phosphorylated PKB/Akt levels, but it increased IRS-1 
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TABLe 2 | Main metabolic pathways and genes/proteins influenced by betaine treatment in inflammation diseases.

Results Main metabolic pathway gene/protein Function of gene/protein Reference

Lipid metabolism↑ AMPK pathway↑ ACC↑
FAS↑
SREBP-1c↑

Fatty acid synthesis
Fatty acid synthesis
Fatty acid synthesis

(98, 100, 101)

Others PPARα↑,  
PPARγ↑
LXRα↑
TBARS↓
Apo B↑

Fatty acid oxidation
Fatty acid oxidation
Fatty acid oxidation
Lipid peroxidation
Cholesterol transport

(108, 109)

(89)
(110)

(111, 122)

Glucose metabolism↑ IRS-1/Akt pathway↑ IRS-1↑
FOXO-1↓
GSK3α↓

Insulin sensitivity
Gluconeogenesis
Inhibits glycogen synthesis

(10, 12, 123, 124)

Others XBP-1↓ Gluconeogenesis (89, 125)
GLUT-4↑ Glucose transport (102)

The upward arrows indicate promotion.
The downward arrows indicate inhibition.
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phosphorylation and thr308-phosphorylated PKB/Akt levels. The 
PKB/Akt regulates systemic and cellular metabolism, mainly by 
mediating cell proliferation, differentiation, and survival, and it is 
required for insulin signaling (115, 116). Then, thr308-phospho-
rylated PKB/Akt could restrict FOXO-1 and glycogen synthase 
kinase-3α activities (115). The former can decrease the expression 
levels of phosphoenolpyruvate carboxy kinase to reduce hepatic 
gluconeogenesis, whereas the latter can increase glycogen synthesis 
(117, 118). To verify whether betaine can directly initiate PKB/Akt, 
the authors used a PI3K inhibitor, wortmannin, and found it hard 
to detect activated PKB/Akt; these results suggest that betaine 
may directly enhance IRS-1 phosphorylation rather than directly 
activate PKB/Akt (10). The mechanism of how betaine enhances 
IRS-1 phosphorylation to improve insulin resistance remains 
unclear. However, Iwasaki and colleagues recently reported that 
PRMT-1 can methylate heterogeneous nuclear ribonucleoprotein 
(hnRNPQ) and may be involved in insulin signaling (119–121). 
Mechanistically, PRMT-1 can catalyze the addition of a methyl group 
from SAM to hnRNPQ; this process results in internalization and 
lasting insulin receptor activation. Notably, SAM concentrations 
are associated with betaine. Therefore, these evidences speculated 
that betaine could improve the available SAM to generate more 
methylation hnRNPQ via PRMT-1 and thus PKB/Akt activation. 
Besides IRS-PKB/Akt signaling pathway, Chen and colleagues 
found that betaine treatment could reduce the protein levels of 
X-box-binding protein-1, an endoplasmic reticulum (ER) stress-
related protein; this reduction is likely to enhance p38–MAPK and 
mammalian target of rapamycin activities and ultimately reduce 
hepatic gluconeogenesis and insulin resistance (89). Therefore, 
we conclude that betaine exerts its anti-inflammatory effects via 
restoring energy metabolism. These main metabolic pathways and 
key factors mediated by betaine treatment in chronic inflammation 
are shown in Table 2.

Betaine Mitigates eR Stress and 
Apoptosis
Endoplasmic reticulum (ER) stress is caused by the abnormal 
assembly of proteins, as either misfolded or unfolded proteins, in 

the ER lumen (126). Various proteins, such as C/EBP homologous 
protein (CHOP) and glucose-regulated protein 78 (GRP78), are 
involved in ER stress, and both of these proteins are ER stress 
markers (127). Massive ER stress is undesirable and leads to cell 
apoptosis. Apoptosis is a type of cell death, and takes part in the 
pathogenesis of inflammatory diseases (128). Although apoptosis 
has extrinsic and intrinsic pathways, the final process is completed 
by caspase family proteins, especially caspase-3 (129).

As mentioned, betaine can directly influence the homocysteine 
pool, and it has been reported that hyperhomocysteine can induce 
misfolded proteins, ultimately leading to ER stress (70). According 
to the research by Cheng, betaine can stabilize homocysteine levels 
and inhibit GRP78 and CHOP levels as well as cell death (130). 
Likewise, in another study, betaine inhibited both GRP78 and 
CHOP and reduced JNK activation (107). Interestingly, the JNK 
pathway can directly phosphorylate multiple IRS-1 sites, includ-
ing serine-307. These modifications prevent insulin-stimulating 
IRS-1 tyrosine phosphorylation, which leads to insulin resistance 
(10). In addition to ER stress, betaine also inhibits apoptosis. In 
a recent study of rheumatoid arthritis synovial fibroblasts, Gaur 
and colleagues found that transcription factor-3 (ATF-3), an 
apoptosis-related molecule, is downregulated by betaine (131). 
In addition, betaine can inhibit caspase family proteins. In an 
in vitro study, adding adenosine to hepatocytes increased hepatic 
SAH levels and caspase-3 activity, both of which would be inhib-
ited by betaine treatment (132). The inhibition of caspase-3 by 
betaine is also found in cisplatin-induced nephrotoxicity (110). 
Furthermore, betaine significantly reduced caspase-8, caspase-9, 
and caspase-3/7 activity in human corneal epithelial cells and 
MDCK cells under hyperosmotic stress (28, 133). Thus, we would 
like to believe that the mitigation of ER stress and apoptosis by 
betaine is essential to its anti-inflammatory effects.

APPLiCATiONS OF BeTAiNe iN HUMAN 
DiSeASeS

Recently, the effects of natural and nontoxic substances on 
human diseases have attracted considerable attention. Researches 
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have shown that betaine has beneficial effects in various human 
 diseases, such as obesity, diabetes, cancer, and Alzheimer’s 
disease (134–141). Obesity results from excessive fat accumula-
tion and has potentially negative effects on health. Obesity can 

lead to various secondary diseases, such as NAFLD. In animal 
 studies, dietary betaine has been demonstrated to positively 
affect body fat (142, 143). However, few studies have focused on 
the effect of betaine on human obesity, and some of the results 

FigURe 2 | Continued
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are contradic tory. The current studies show that plasma betaine 
concentrations are inversely correlated with body fat percentages 
in adults; subjects with higher plasma betaine concentrations 
tended to have better fat profiles and distributions (134, 135). 
In a recent study, Gao and colleagues found that this positive 
correlation between plasma betaine concentrations and a better 
body composition existed in only males (144). Although this area 
deserves attention, there are few studies exploring the influence of 
betaine supplementation on obesity. In the studies of Schwab and 
Favero, betaine supplementation did not affect body composition 
(145, 146). However, in another study from Gao and colleagues, 
a large general population was analyzed, and a higher betaine 
intake was correlated with a better body composition (147). 
Similarly, other studies show that plasma betaine concentrations 
are inversely associated with human NAFLD, but the results of 
betaine supplementation are up for debate (148–152). Thus, in 
order to get the reliable result, more studies need to focus on this 
area from now on. In addition, many animal studies have shown 
that betaine is closely linked with diabetes (12, 153, 154). Diabetes 
leads to hyperglycemia due to impaired glucose metabolism 
(155). Different from its role in obesity, plasma betaine concen-
tration is a poor predictor for diagnosing diabetes in humans 
(137, 156, 157). Nevertheless, plasma betaine concentration is 
likely linked with secondary diseases of diabetes, such as micro-
angiopathy (158). Studies have shown that abnormal urinary 
betaine excretion is closely associated with diabetes (136–138), 
but its diagnostic value is lower than that of other substances, 
such as choline and DMG (159). Currently, only one study has 
investigated the effect of betaine supplementation on diabetes 
(160). Therefore, to identify whether betaine supplementation is 
effective, more systematic studies will be needed in the future. 
Various human studies have found that in addition to its asso-
ciation with metabolic diseases, betaine intake is associated with 
cancers, such as breast cancer, lung cancer, liver cancer, colorectal 
cancer, and nasopharyngeal carcinoma (139, 140, 161–163). In 
these studies, a higher betaine intake resulted in a lower risk of 
cancer. Furthermore, research has suggested that cancer incidence 
could be decreased by 11% by consuming choline plus betaine  
(100  mg/day) (164). However, in some studies, contradictory 
results have been found (165, 166). For example, Lee and col-
leagues found no association between colorectal cancer and 
betaine intake (165). So far, most of these have been case–control 
studies; to obtain reliable results, placebo-controlled intervention 
trials and prospective studies will be needed. Recently, a study 
has shown that betaine intervention could restore hyperhomo-
cysteine, which is a hallmark of Alzheimer’s disease (141), and 

attenuate the inflammatory reaction in Alzheimer’s disease 
patients (167). This finding further extended the range of betaine 
applications in human diseases.

In summary, despite some contradictory results, we propose 
that betaine may have an application in treatment or ameliorating 
symptoms of various huaman inflammatory diseases because of 
betaine’s significant anti-inflammatory effects (168). Notably, 
human diseases are undoubtedly more complex than animal dis-
ease models; therefore, to take advantage of the beneficial effects 
of betaine, researchers should continue to explore its mechanism 
and effects in humans.

CONCLUSiON

In conclusion, this review discusses the major physiological 
role of betaine as an osmoprotectant and a methyl group donor, 
as well as the anti-inflammatory effects of betaine in various 
diseases. These effects are primarily associated with protecting 
SAA metabolism from oxidative stress, inhibiting NF-κB and 
NLRP3 inflammasome activity, regulating energy metabolism, 
and mitigating ER stress and apoptosis (Figure  2). Although 
the data from animal experiments are compelling, the clinical 
situation appears to be much more complex than originally 
thought. For example, despite various animal studies reporting 
the effects of betaine supplementation and some mechanisms, 
human studies have shown contradictory results. Future stud-
ies should focus on both animal and clinical experiments to 
reduce errors from separate experiment types and to ensure the 
medicinal value of betaine. More importantly, it is worthwhile 
to further investigate betaine because its significant anti-
inflammatory effects could be beneficial for treating inflamma-
tory diseases.
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FigURe 2 | Primary anti-inflammatory mechanisms of betaine. First, betaine can alter various sulfur amino acid (SAA) concentrations via protecting SAA metabolism 
from oxidative stress. Second, betaine can inhibit IKK, MAPKs, HDAC3, and Toll-like receptor-4 (TLR-4) activities to downregulate the nuclear factor- κB (NF-κB) 
pathway and pro-inflammatory genes transcription. Third, betaine can reduce the expression levels of NLRP3 inflammation components (pro-caspase-1, ASC, and 
NLRP3) and inhibit the FOXO-1-induced NLRP3 inflammasome via enhancing the IRS/Akt pathway. Fourth, betaine significantly increases activated AMPK, restores 
adipokines that can activate AMPK, and activates other lipid metabolism-related factors to regulate lipid metabolism. Fifth, on the one hand, betaine increases 
phosphorylated IRS, which phosphorylates Akt at threonine 308, to improve glucose metabolism. On the other hand, betaine can influence other glucose 
metabolism-related factors to improve glucose metabolism. Sixth, betaine can inhibit caspase-3 to reduce apoptosis and repair endoplasmic reticulum (ER) stress. 
Akt, protein kinase B; AMPK, AMP-activated protein kinase; FOXO-1, forkhead box O1; TXNIP, thioredoxin-interacting protein; ROS, reactive oxygen species; IKK, 
nuclear factor-inducing kinase/IκB kinase; MAPKs, mitogen-activated protein kinases; HDAC3, histone deacetylases 3. SAM, S-adenosyl-L-methionine; SAH 
S-adenosyl-L-homocysteine; GSH, glutathione; Met, methionine; Cys, cysteine.
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