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Abstract The spread of malaria is a major health burden, which affects many people in Africa, depends on
climate but also socio‐economic conditions. Thus, it is important to gauge the impact of anthropogenic global
warming on malaria and attribute anthropogenic causes. Here we compute the Time Of Emergence of vector
density and of the entomological inoculation rate (EIR) in the SSP3‐7.0 scenario using 50 bias‐corrected
members of Community Earth System Model version 2 Large Ensemble simulations. This reveals that vector
density, which depends on climate conditions, and EIR, which depends on both climate and population
density, will rise significantly and permanently above the pre‐industrial background variability due to
anthropogenic causes in Africa. Both the vector density and EIR have areas, mainly in central Africa, where
anthropogenic causes have already significantly changed, and many more areas will experience anthropogenic
caused changes in the period 2030–2050 and toward the end of this century. Our simulations also show clear
evidence that extremes of vector density and EIR increase in the future by almost 100%, suggesting that major
malaria epidemic outbreaks will become much more likely. We also perform simulations with constant
population and with no global warming which partly reveal underlying malaria dynamics. Our results highlight
the need to prepare for an expansion and intensification of the malaria burden if no health interventions are
being taken.

Plain Language Summary Malaria is a major health burden globally and is one of the most common
infectious diseases. Children under 5 years of age are most at risk. Africa is a hot spot of malaria infections. We
show evidence that the malaria burden will start to be significantly more intense in the coming decades than in
the pre‐industrial period due to anthropogenic causes. We also show that the likelihood of extreme malaria
outbreaks will almost double by the end of this century.

1. Introduction
Malaria is a tropical disease that is spread by female mosquitoes to humans through their bite (Hay et al., 2004,
2009). The World Health Organization (WHO) reports that around 3.3 billion people across the globe are
currently at risk of contracting malaria, resulting in the death of roughly half a million people each year (World
Health Organization (WHO), 2018). Africa is one of the biggest hosts to malaria‐transmitting mosquitoes. Africa
is particularly suitable for malaria parasite survival and transmission because of its suitable climate (Yamba
et al., 2023) and population density. African national health departments have occasionally advised foreigners to
take precautionary measures due to malaria endemicity. Due to continued governmental efforts, malaria in-
fections have substantially declined over most parts of Africa. While the malaria case incidence has decreased
between 2000 and 2022 from 369 to 222 cases per 1,000 population at risk (World Health Organization
(WHO), 2023), malaria still persists in Africa and affects too many people and children today with 263 million
malaria cases in 2023 (World Health Organization (WHO), 2024).

Some malaria studies (Bashar & Tuno, 2014; Bayoh & Lindsay, 2003; Ceccato et al., 2005; Reiter, 2001; Zhou
et al., 2007) have reported that the regional climate can support the emergence and re‐emergence of malaria
epidemics. Temperature, for example, has been shown to have a profound influence over the distribution of the
Anopheles mosquito and the Plasmodium parasite, which causes malaria (Bayoh & Lindsay, 2003; Colón‐
González et al., 2021; Mordecai et al., 2019). Too cold and too hot temperatures reduce either their metabolism
and growth rate or they reach their limit of survivability. In a warmer climate, mosquitoes can partly adapt by
changing their feeding behavior, from day time to night time or from outside to inside (Hug et al., 2024). Whether
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they can biologically adapt to warmer temperatures is still an open question (Hug et al., 2024; Lahondère &
Bonizzoni, 2022).

The records of vectors and epidemiology of malaria in Africa are limited, hampering health burden estimates and
malaria spread modeling. However, a total of 17 Anopheles species have been identified in a report by the World
Health Organization (WHO) (2018), and many of them are competent malaria vectors (World Health Organi-
zation (WHO), 2023; Glick, 1992).

Increased levels of rainfall also expand potential mosquito breeding sites and, when combined with optimum
temperatures, help to provide optimal conditions for the spread of malaria. Several studies have investigated the
relationship between mosquito abundance and regional climatic conditions (temperature and rainfall) over Africa
(Lyimo et al., 1992; Paaijmans et al., 2007), while Zhou et al. (2004) and Pascual et al. (2008) considered the link
between climate variability and malaria epidemics, that is, the rapid spread of malaria. Global warming is likely to
affect many vector‐borne infectious diseases, including malaria (de Souza & Weaver, 2024; Thomson & Stan-
berry, 2022). Hence, a systematic attribution of the causes of a malaria burden increase, whether due to
anthropogenic global warming or population growth and their potential interaction, is needed.

Although many studies concentrated mainly on the situation of current African endemic regions for larvae and
vector species distributions, very few have yet reported on historical and future malaria transmission if future
climate and population projections are considered for the continent of Africa. Local and regional studies might
miss potential malaria range extensions in the future. Hence, here we perform a continent wide simulation study.

Weather extremes can lead to infectious disease outbreaks (Alcayna et al., 2022; Franzke & Czupryna, 2020,
2021; Franzke & Torelló i Sentelles, 2020; McMichael, 2015; Semenza et al., 2022), such as malaria. For
instance, in 2022 and 2023 severe Monsoon rainfall led to large malaria outbreaks in Pakistan (World Health
Organization (WHO), 2023). Precipitation can provide standing water in ponds which can be used for breeding
and larvae development. Precipitation events can create a large number of small ponds which can contribute to the
rapid increase in the number of larvae (Asare et al., 2016; Fillinger et al., 2009). Malaria extremes have been so far
not studied systematically, to the knowledge of the authors. This is of relevance, since there is evidence that
malaria outbreaks can also contribute to civil violence (Cervellati et al., 2022), besides an increased health burden.

Another important factor in malaria transmission is the human population density. In the future not only climate
will change but we expect also higher population densities, this means population projections need to be
considered but there are some studies which did malaria projections with constant population densities (Cha-
turvedi & Dwivedi, 2021; Parihar et al., 2022; Talib et al., 2024). While this can isolate the pure climate effect on
malaria transmission in the future, it only tells part of the story. Here we will show evidence for a nonlinear
response of malaria transmission in parts of Africa due to both global warming and population change, which has
not been discussed previously.

Here we will use daily data and examine malaria extremes in terms of extremes of vector density and the
Entomological Infection Rate (EIR) in a future climate scenario. EIR is an indicator related to the number of
infectious bites from a mosquito infected by malaria an individual is exposed to in a given time period
(Porta, 2014). Here we focus on the climate and population density contributions to malaria infections, and
neglect the impacts of health interventions, which play also an important role in malaria infections but for which
no future projections exist.

In this study, we first evaluate the future time of emergence of vector density and EIR. Then we focus on the
extremes of malaria outbreaks and identify potential hot spots in the near and far future. Identifying potential hot‐
spot regions of malaria epidemic outbreaks will be useful for African policy planners to take early mitigation
measures to prevent future malaria outbreaks.

2. Models and Methods
For examining the likely future spread of malaria we use the dynamical malaria model VECTRI (VECtor borne
disease community model of International Centre for Theoretical Physics, TRIeste) (Tompkins & Di Giu-
seppe, 2015; Tompkins & Ermert, 2013; Tompkins & Thomson, 2018) for our simulations. The model's physics
and associated parameters are chosen based on the life cycles of the key vector, namely, Anopheles gambiae
(Coetzee et al., 2000), and the parasite Plasmodium falciparum. The underlying dynamical structure of the
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VECTRI model describes the interaction between vector and host (Chenet et al., 2012; Parham et al., 2015;
Parihar et al., 2019). The VECTRI model explicitly accounts for the human's population density in the calculation
of biting rates and host‐to‐vector and vice versa transmission probabilities for the parasite (Chenet et al., 2012;
Lunde et al., 2013; Okuneye et al., 2019). It further includes the impact of temperature and rainfall on the
transmission dynamics of malaria. The model has previously been used in several malaria‐endemic studies in
different regions of the world to explore the relationship between the spread of malaria and climatic factors
(Chaturvedi & Dwivedi, 2021, 2024; Parihar et al., 2019, 2022; Tompkins & Di Giuseppe, 2015; Tompkins &
Ermert, 2013; Tompkins & Thomson, 2018; Yamba et al., 2023).

In the model, a series of modular bins govern each process of the vector and parasite growth stages in syn-
chronization with gonotrophic and sporogonic cycles. The fractional development state of the mosquito larvae is
distributed in different weighted bins. These bins represent larvae density at specific fractional stages of its
growth. The first stage depicts the development of eggs within the female vector, and the second stage depicts the
infective state (development of the parasite in the female vector's gut). All vectors in the optimal conditions
advance from the egg to the last bin, where vectors become infectious to humans. A time step of one day integrates
the model equations with input temperature and rainfall data. Tompkins and Ermert (2013) describe the under-
lying numerical structure, and the model architecture in detail.

In this work, we force the VECTRI model by daily climate data from the large ensemble CESM2‐LE (Rodgers
et al., 2021) using bias‐corrected data. CESM2‐LE covers the period 1850–2100 using the SSP3‐7.0 scenario. For
bias correction we use the Quantile Delta Mapping method (Cannon et al., 2015; Xavier et al., 2022). We used the
population density data in Africa from the National Center for Atmospheric Research based on the SSP3‐7.0
scenario (Jones & O’Neill, 2016) for the period 2000–2100. For the period 1850–2000, we use the population
reconstruction product HYDE3.3 (History Database of the Global Environment) (Klein Goldewijk et al., 2017).
Both data sets are spatially aggregated to the same grid as Community Earth System Model version 2 (CESM2).
In order to achieve a daily resolution of population density to drive VECTRI, we linearly interpolate in the time
domain using the Climate Data Operator “inttime” which linearly interpolates between two data points
(Schulzweida, 2023).

While the full CESM2‐LE consists of 100 members, for the bias correction and in this study we used 50 members.
Of these 25 have observed fire emissions and 25 have smoothed fire emissions. See Rodgers et al. (2021),
Yamaguchi et al. (2023), Kim et al. (2023) for more details. However, the treatment of the fire emissions has no
effect on our results here (not shown).

The choice of this particular model (CESM2‐LE), scenario and number of used ensemble members was made for
practical reasons. The SSP3‐7.0 scenario is a relatively high‐emissions scenario leading to awarming of about 4C°.
The use of daily data is necessary for forcing VECTRI, and VECTRI also produces daily output. This produces a
large data set and is also computationally expensive. To compromise between computational expense, for bias
correction and theVECTRI simulations, data storage and number of ensembleswe decided to only use one scenario
and 50 ensemble members. A large number of ensembles is necessary to robustly estimate changes in extremes.

The VECTRI model was configured for the entire of Africa. Daily rainfall and surface temperatures from the
atmospheric model CESM2 Large ensemble members are used as inputs for the VECTRI model simulations. We
first evaluate the spatiotemporal distribution of malaria. The model configuration and associated parameters
follow the default VECTRI setup for the Anopheles species vector and the Plasmodium falciparum malaria
parasite (Bayoh & Lindsay, 2003; Lyimo et al., 1992; Tompkins & Ermert, 2013). The values of input parameters
such as maximum and minimum temperatures for larvae survival, time for egg hatching and pupae stages,
minimal daily survival of larvae after intense rainfall, threshold temperature for egg development in vector,
threshold temperature for parasite development, degree days for parasite development have been extensively
evaluated (Tompkins & Ermert, 2013). The VECTRI model has been evaluated and successfully used in many
previous studies (Asare & Amekudzi, 2017; Chaturvedi & Dwivedi, 2021, 2024; Colón‐González et al., 2016,
2021; Leedale et al., 2016; Parihar et al., 2019, 2022; Tompkins & Caporaso, 2016; Tompkins & Thomson, 2018;
Tompkins et al., 2019).

We compute the Time Of Emergence (TOE) to identify the time period when the vector density and EIR are
significantly different from the pre‐industrial period, for which we assume a unperturbed climate and population.
In many previous studies TOE has been used to identify the time when anthropogenic global warming can be
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detected (e.g., Hawkins & Sutton, 2012; Sui et al., 2014). For TOE we
compute the signal over noise (S/N) ratio and define the TOE once it is very
likely (P ≥ 99.99%) that the level of vector density or EIR is greater than the
fluctuations of the pre‐industrial period and stays above the pre‐industrial
level till the end of the simulations in year 2100. In that case we have iden-
tified unprecedented malaria conditions. As the signal S we use the ensemble
mean of vector density and EIR from the 50 VECTRI ensembles driven by
individual CESM2‐LE ensemble realizations of temperature and precipita-
tion. As the noise N we compute the interannual variability, defined as the
standard deviation of annual means, over the 50 VECTRI ensemble members
for vector density and EIR for the pre‐industrial period (1850–1899). Hence,
our ToE is with respect to the pre‐industrial period.

3. Evolution of African Malaria Infections
To illustrate the climate and population changes in Africa, we display
spatially and ensemble averaged time series in Figure 1a, together with the
full ensemble spread. As is visible, population and temperature show steep
increases, especially after 1950 for population and the 1990s for temperature.
Precipitation over Africa has strong interannual and decadal variability and
also a large ensemble spread. While there is a slight increase projected after
the 2050s in the ensemble mean, precipitation is dominated by internal
variability, which is much stronger than any changes in the ensemble mean.
This strong interannual to decadal scale variability of precipitation implies
that large ensemble simulations will be necessary for robustly estimating
systematic future changes in malaria, since large ensembles allow to estimate
the forced response, the climate signal due to anthropogenic global warming,
without the superposition of natural variability. The forced response indicates
systematic changes due to anthropogenic causes. The forced response in
precipitation over Africa is much smaller than that of temperature, while the
internal variability of precipitation is stronger than that of temperature. This
suggests that the temperature contribution to the malaria infections will be
much clearer than the precipitation contribution.

Now we use the climate model and population data to drive VECTRI with
daily input data on the same grid as CESM2. We perform a set of 50 VECTRI
simulations driven by the 50 CESM2 ensemble members. The mean over the
50 VECTRI simulations are the forced response of the malaria infections. All

50 VECTRI members are driven by the same population density data (see Models and Methods). The spatial
pattern of change in the population density is displayed in Figure 2. While there is generally an overall increase in
population density, certain areas are projected to experience a faster growth than others, especially in urban areas.

To display the overall behavior of EIR we average over Africa (Figure 1b). These aggregated VECTRI simu-
lations show a pronounced increase starting in the 1980s and a tripling by 2100 in the used SSP3 scenario. Since
the EIR curve has a largely increasing shape, which is in contrast to the precipitation curve, this suggests that
precipitation plays a minor role in the long‐term behavior of malaria transmission in these scenario simulations,
but can still play a pronounced role in epidemics. This suggests that the temperature is the main driver of the long‐
term EIR increase. Furthermore, a large ensemble spread is visible around the forced response, suggesting that
internal variability still has a pronounced influence on the malaria infections. This is consistent with the study by
Kaye et al. (2024). This large interannual variability of malaria infections has not been widely recognized so far.
The large precipitation variability likely also contributes to the malaria infections variability.

In general, the spread of malaria is affected by climate, the population density, and also health interventions.
However, health interventions, such as bed nets, are neglected in our study because we do not have future
projections for them. In order to try to examine the two contributions from climate and population density. EIR is
affected by both changes in climate and population density. In order to assess their relative contributions to

Figure 1. (a) Spatial and ensemble mean annual mean time series over Africa
for population, temperature and precipitation. (b) Spatial mean annual mean
time series over Africa for EIR (Infectious bites per person per day) for the
full SSP3 scenario, constant population (mean over 1991–2020) but global
warming and no global warming assumption (based on period 1850–1899)
but including population growth. The solid lines are the ensembles means,
while the light lines indicate all 50 ensemble members. This shows the large
ensemble spread representing internal variability.
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changes in EIR we perform two further sets of VECTRI simulations, each consisting of 50 ensemble members.
This is done to decompose the individual effects of climate and population density on malaria and their relative
roles in malaria trends. The first set is with constant population (average over the period 1990–2020) but with the
climate as simulated by CESM2‐LE, and the second set with no global warming but the SSP3 population change.
As the time period of no global warming we use the period 1850–1899 and then use this period periodically until
we reach 251 years; the duration of the CESM2‐LE simulations and all of our VECTRI simulations. We also used
the period 1990–2020 but this period experiences a strong global warming effect, so cannot be used for this kind
of “no global warming” experiment. However, using this period we get qualitatively similar results regarding the
long‐term behavior (not shown).

These two sets of simulations show that the constant population assumption leads to a larger increase in EIR
compared to the full scenario (Figure 1b). This behavior is consistent with the no global warming simulation,
which shows a decrease in EIR once the population growth in Africa increased considerably after the 1980s
(Figure 1). This shows that in order to understand future malaria projections both global warming and population
need to be considered, besides advances in health intervention such as malaria vaccines and health care for which
currently no projections exist.

Another important aspect of these simulations is that the ensemble variance around the forced response is
increasing in the global warming simulations but not in the “no global warming” scenario, where the variability
stays the same over the simulation period. This suggests in a warmer climate also malaria volatility will increase
and affect the likelihood of epidemic outbreaks. How malaria extremes change will be discussed below.

4. Time of Emergence of Malaria Infections
To gauge when anthropogenic actions have caused an unprecedented change in mosquito density and malaria
infections, we estimate the Time of Emergence (TOE), as the decade when the vector density or EIR are
significantly different from pre‐industrial conditions (see Methods section). The TOE estimates are based on the
CESM2‐LE SSP3‐7.0 scenario and, thus, contain both anthropogenic climate and population changes. Here we
will compare the TOE of the vector density, which is mainly affected by climate, and EIR, which is affected by
both climate and population density. The TOE of the vector density and EIR (Figure 3a) show TOE signals
starting in the 1980s but many areas in Africa have TOE in the period 2030–2050s. There is no perfect overlap
between vector density and EIR but they show mainly the same behavior. The TOE signal is also mainly
concentrated on Central Africa, western West Africa and parts of East Africa and Madagascar. This shows that

Figure 2. Population change (persons per km2) over 30 year periods with respect to the period 1991–2020. (a) period 2031–
2060 and (b) period 2071–2100.
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anthropogenic changes have already increased the malaria infections, but also
that many regions in Africa will experience increased malaria infections in the
next few decades due to anthropogenic causes.

A comparison with Figure 1b is instructive. While over the whole of Africa it
is clearly visible that EIR increases above its pre‐industrial range starting in
the 1980–1990s, regionally the signal mainly emerges later, around the 2000s,
because regional climate variability is larger than the continentally averaged
variability. Areas with TOE in the 2030 and 2040s should be the focus of
decision‐makers to reduce the near term malaria infections.

Large areas of Africa show no TOE (the white areas) for the vector density.
First, some regions are not suitable for malaria like the Sahara desert. Further,
an inspection of the signal over noise (S/N) time series at individual grid
points shows that either S/N stays below the threshold for the whole time
period or turns again below the threshold after a while. This could suggest that
the climate variability is too large in those areas for the anthropogenic signal
in the vector density to permanently rise about our S/N threshold or that there
is also pronounced decadal scale variability forced by decadal climate vari-
ations such as for example, the Atlantic Multidecadal Oscillation (Mann
et al., 2014). Contributing to this could the strong internal variability of
temperature and precipitation as visible in Figure 1.

5. Extremes of Malaria Infections
A distinct advantage of a large ensemble is the ability to examine how ex-
tremes change over time. Here we discuss now how the tail of the vector
density and EIR change over the CESM2‐LE simulation period. For every
year of the VECTRI ensemble simulations we estimate the PDF (Figure 4)
across the ensemble simulations. We can clearly see that extremes become
much more likely in the future scenario, compared with the pre‐industrial
period or our current climate. For instance, we now illustrate how extremes
change by using the 99.99th percentile. This is a very high value which is only
very rarely exceeded and thus represents extremes. We find that the proba-
bility for vector density extremes of above 0.05 vectors/m2, which corre-
sponds to the 99.99th percentile value for vector density, will almost double
(increase by 97%) between 1850 and 2100. An almost doubling (increase by
96%) of EIR extremes of larger than five infectious bites per person, this
corresponds also to the 99.99th percentile of EIR, is also projected. This
suggests that large malaria outbreaks will become more likely in the future.

Next we discuss the geographical distribution of EIR for the pre‐industrial
(1850–1899), present climate (1991–2020), near future (2031–2060) and
far future (2071–2100) periods. Anomalies are with respect to the pre‐
industrial period. We can see that in the near and far futures there will in
general be large increases in EIR over most of sub‐Saharan Africa (Figure 5).
Only in western Africa are some regions with a reduction in EIR.

The spatial 95th percentile fields also show a considerable increase in the SSP3‐7.0 scenario, mainly in western
and central Africa; in the far future the increase in extreme EIR outbreaks is almost 40% locally with respect to
pre‐industrial conditions (Figure 5). An interesting aspect is that while in central Africa the change in mean and
extremes are both positive, in western Africa the mean values of the vector density increase, with the exception of
the area around Senegal where the vector density is decreasing. Further south, in the area of Sierra Leone and
Liberia the 95th percentile values are decreasing while the mean values are increasing. A similar behavior also
occurs for EIR. A distinct feature is, that while the vector density increases in Nigeria, EIR is projected to decrease
there. This is likely due to the projected pronounced population increase in Nigeria (Figure 2).

Figure 3. Time of Emergence of (S/N>5) for (a) vector density (vectors per
m2) and (b) EIR (infectious bites per person per day) based on 10 year
means.
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Overall, the malaria infections will increase in the near and far future. The fact
that in some west African areas the mean increases while the extremes
decrease hints at that nonlinear dynamics are acting there and that the shape of
the distributions of vector density and EIR change in this area.

6. Discussion
Our computation of the TOE reveals that many African regions will exhibit
unprecedented malaria conditions between 2030 and 2050, in the near future.
Furthermore, the TOE potentially highlights areas where health interventions
in the next 2 decades could reduce the malaria infections. While we use here
only one SSP scenario, it still suggests areas where health interventions could
be most valuable in the near future. With respect to the global mean surface
air temperature the 5 SSP scenarios are still relatively close to each in the
period 2030–2050. So our one scenario might provide robust near term TOE
estimates. As our simulations also show a large amount of internal variability,
which also increases in the future, the use of large‐ensembles seems to be very
valuable in estimating the future malaria infections and its interannual
variability.

Another important question is how weather and climate extremes affect the
malaria infections. Scoping reviews found evidence that weather extremes are
more likely to cause water‐borne disease outbreaks and found mixed evidence
for an impact on vector‐borne epidemics (Alcayna et al., 2022; Coalson
et al., 2021). Studies found that flooding (Boyce et al., 2016; Ding et al., 2014;
Gao et al., 2016) and un‐seasonal precipitation (Maes et al., 2014) can cause
malaria outbreaks. But those studies typically examine local regions and
particular events. How much they can be generalized remains subject to
further research.

Here we examined extremes in vector density and EIR and show that they will
considerable increase in a warmer world. Compared to pre‐industrial condi-
tions, we find that the probability of malaria extremes to occur will almost
double. Major areas for the increase in extremes are the west coast of western
Africa and central Africa. This makes epidemic malaria outbreaks much more
likely, potentially increasing malaria infections if no preventive measures are
taken.

We also find evidence for a nonlinear response due to the relationship be-
tween global warming and population growth for EIR. While this is not
surprising but still reminds us that for projections of future malaria infections
both anthropogenic global warming and population change need to be
considered. Siraj et al. (2015) show that human population density is involved
in the seasonal persistence of malaria and high house occupancies can lead to
prolonged transmission seasons. The study by Villena et al. (2024) found a

nonlinear relationship between malaria incidence and population density: malaria increases up to a point with
increasing population density, and then decreases with further population increases.

An aspect our study has neglected are health interventions such as bed nets (e.g., Lindsay et al., 2021), vaccines
(e.g., Duffy et al., 2024) and genetically modified mosquitoes (Hoermann et al., 2022). How effective they will be
in the future needs to be seen and no current future projections exist, so they are difficult to consider in our study
based on the SSP3 scenario.

Another aspect which also needs more attention is the impact of interannual and decadal scale variability. Many
studies are based on multi model means (e.g., Chaturvedi & Dwivedi, 2021). But as our study shows, and also the
study by Kaye et al. (2024), variability on long time scales can also be important for understanding future
evolution of the malaria infections, since the malaria infections in response to natural climate variability will also

Figure 4. PDF of daily data of (a) vector density (vectors per m2) and (b) EIR
(infectious bites per person per day). Colors indicate different years.
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exhibit variability which can exacerbate the malaria infections. For instance, the EIR can be in individual
ensemble members up to 35% larger than the ensemble mean. Hence, future projections based on multi‐model or
ensemble means can considerably misrepresent the malaria infections since also in a warmer future climate
natural climate variability will play a pronounced role.

Figure 5. Annual means and 95th percentiles of vector density (vectors per m2) and EIR (infectious bites per person per day). Displayed mean differences are statistically
significant at the 5% level using a Student's t‐test.
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7. Conclusions
The impact of anthropogenic global warming on infectious vector‐borne diseases is of obvious importance. Here,
we have for the first time estimated the Time of Emergence (TOE) for the SSP3‐7.0 scenario. Our results show
that the mosquito vector density and EIR will experience its TOE in the near future, mainly between 2030 and
2050, but also in later decades. Parts of Central Africa already passed their TOE in the 1980 and 1990s. This
shows that anthropogenic global warming already has and will continue to also directly affect the malaria health
infections.

Furthermore, our projections show also a pronounced increase in extremes of vector density and EIR. Our results
suggests that very high percentiles of vector density and EIR, such as the 99.99th percentile, almost double in
likelihood between the pre‐industrial and the far future periods. This suggests that epidemic Malaria disease
outbreaks are becoming more likely in the a warmer world.
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