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Abstract. Alzheimer’s disease (AD) lacks effective cures and is typically detected after substantial pathological changes have
occurred, making intervention challenging. Early detection and understanding of risk factors and their downstream
effects are therefore crucial. Animal models provide valuable tools to study these prodromal stages. We investi-
gated various levels of genetic risk for AD using mice expressing the three major human APOE alleles in place of
mouse APOE. We leverage these mouse models utilizing high-resolution magnetic resonance diffusion imaging,
due to its ability to provide multiple parameters that can be analysed jointly. We examine how APOE genotype in-
teracts with age, sex, diet, and immunity to yield jointly discernable changes in regional brain volume and fractional
anisotropy, a sensitive metric for brain water diffusion. Our results demonstrate that genotype strongly influences
the caudate putamen, pons, cingulate cortex, and cerebellum, while sex affects the amygdala and piriform cortex
bilaterally. Immune status impacts numerous regions, including the parietal association cortices, thalamus, audi-
tory cortex, V1, and bilateral dentate cerebellar nuclei. Risk factor interactions particularly affect the amygdala,
thalamus, and pons. APOE2 mice on a regular diet exhibited the fewest temporal changes, suggesting resilience,
while APOE3 mice showed minimal effects from a high-fat diet (HFD). HFD amplified aging effects across multiple
brain regions. The interaction of AD risk factors, including diet, revealed significant changes in the periaqueductal
gray, pons, amygdala, inferior colliculus, M1, and ventral orbital cortex. Future studies should investigate the mech-
anisms underlying these coordinated changes in volume and texture, potentially by examining network similarities
in gene expression and metabolism, and their relationship to structural pathways involved in neurodegenerative
disease progression.

1 Introduction Alzheimers disease (AD) is the most common type of dementia and is estimated to af-
fect more than 5 million U.S. citizens and more than 25 million people worldwide. The risk of Alzheimer’s
disease (AD) is complex and multifactorial, resulting in multiple pathologies, and is influenced by factors
including genetic predispositions [1], environmental factors [2], lifestyle [3], and most importantly age
[4]. Therefore, identifying and understanding which regions of the brain are highly vulnerable, that is,
subject to significant changes, and how different risk factors contribute to this vulnerability, is important
to understand, bearing the potential to open new therapeutic targets and opens new horizons for AD
prevention [5].

Our scientific premise is based on the role of alleles of the apolipoprotein E (ApoE) gene in ag-
ing and Alzheimer’s disease. ApoE is a critical gene involved in lipid metabolism and neuronal repair
processes, with its variants: ApoE2, ApoE3, and ApoE4 playing distinct roles in neurodegenerative
diseases [6, 7]. The most studied among these, ApoE4, is known for its strong association with an
increased risk of Alzheimer’s disease. In contrast, ApoE2 is considered neuroprotective, while ApoE3
is neutral. This genetic variability offers a unique opportunity to explore the connection between ge-
netic profiles and brain structure, particularly in relation to neurodegenerative diseases. Mouse models
with human targeted replacement APOE alleles allow for understanding the mechanisms behind early
alterations in such association at prodromal stages.

Recent research in AD is increasingly focused on understanding the relationship between brain
volume variations, also known as structural covariance/correlation. A notable study demonstrated
that single nucleotide polymorphisms (SNPs) susceptible to Alzheimer’s disease are closely related to
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changes in grey matter volume and cognitive outcomes [8]. This research utilized magnetic resonance
imaging to construct grey matter structural covariance networks (SCNs) in patients with Alzheimer’s
disease. The study assessed the effects of various genetic loci on cognitive outcomes, revealing that
specific genetic variations, including the ApoE4 allele, interact with or independently affect cognitive
outcomes. Other studies similarly support the fact that there is a relationship between AD progression
and changes in SCNs [8, 9]. However, these methods exhibit limitations. The main limitation is that
these methods construct a single SCN per group, which can lead to a small sample size when trying to
find brain regions that are changing, rather than a single correlation between pairs of regions. Perform-
ing hypothesis tests on individual elements of a correlation matrix, whose data are highly correlated,
can result in spurious conclusions if the interactions between regions are not decoupled.

To address these issues, we propose a method for obtaining individualized representations of co-
variance and leverage recent advances in K-sample and multi-way hypothesis testing framework to
identify brain regions that are highly vulnerable, or susceptible to significant change [10]. We first com-
pute an absolute difference of a feature between all pairs of brain regions, resulting in a network per
subject. We focus on studying the brain volume derived from structural MRI, and fractional anisotropy
derived from diffusion MRI. Given these networks, we obtain a low-rank representation for each brain
region per subject by jointly modeling the networks. We then leverage distance correlation to perform
multi-way tests that include factors such as age, sex, genotypes, and diet.

We used magnetic resonance microscopy [11] to derive quantitative metrics reflective of brain mi-
crostructural integrity in mouse models with different risk actors for AD (age, ApoE genotype, sex, diet
and immunity). Specifically, we employed diffusion imaging, since this can reveal multiple markers for
both volume and microstructural changes [12]. Our results reveal significant influence of genetic risk
factors, particularly in differentiating between amygdala network-associated and non-associated ApoE
allelic populations. While alone age, sex, and diet emerge as marginal factors, their significance esca-
lates when considering the broader ApoE allelic set. These insights not only improve our understanding
of ADs complexity but also signify a pivotal step towards stratified, personalized and effective clinical
interventions.
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Figure 1: An illustration of the preprocessing pipeline. MRI scans from the three genotypes of mice, ApoE2, ApoE3, and
ApoE4 are processed to estimate brain volume and fractional anisotopy data per ROI. Each data modality is then transformed
into distance matrices, which are jointly embedded. Resulting embedded features are concatenated for subsequent analysis.

2 Materials and Methods

2.1 Animals We have used mice expressing the human apolipoprotein E (ApoE) alelles, critically
involved in lipid metabolism and neuronal repair processes [13], homozygous for its variants–ApoE2,
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ApoE3, or ApoE4–because of their distinct roles in neurodegenerative diseases. APOE3 is the allele
found in a majority of the population. The most studied among these, ApoE4, is known for its strong
association with an increased genetic risk of Alzheimer’s disease. In contrast, ApoE2 is considered
neuroprotective [14]. All mice have the human version of the ApoE allele, and some express the mouse
nitric oxide synthase gene (Nos2) while others express the human nitric oxyde synthase 2 (NOS2) gene
(HuNOS2tg/mNos2−/−) mice, termed HN).

This mutation helps address differences between the human and mouse inflammatory responses,
where human macrophages, express little NOS2, and generate much less nitric oxide (NO) in response
to inflammatory stimuli, compared to mouse macrophages [15]. Introducing the human NOS2 gene
lowers the amounts of NO produced, to help render the innate immune system more human like by
bringing the mouse immune/redox activity more in tune with the human [16].

Mice were fed a control diet for their whole life (2001 Lab Diet; denoted Ctrl), or swithced to a high
fat diet for the last 4 months before sacrifice (D12451i, Research Diets; denoted HFD). A total of 169
mice were scanned using diffusion weighted MRI (dMRI). See Table 1 for more details.

Genotype N Sex (Female) Age (Mean; Std) High Fat Diet Immunity
ApoE 2 58 30 16.12; 1.8 15 25
ApoE 3 54 27 15.25; 1.54 25 20
ApoE 4 57 28 15.84; 1.76 15 30

Table 1: Description of the mice population. For each genotype, some mice were given high fat diet (HFD) and some had the
humanized NOS2 gene.

Specimens were prepared for imaging as described in [17]. Briefly mice were anesthetized with
ketamine/xylazine (100 mg/kg ketamine, 10 mg/kg xylazine) and perfused via the left cardiac ventricle.
Blood was cleared with 0.9% Saline at 8 ml/min for 5 min. Fixation was done perfusing 10% neutral
buffered formalin phosphate containing 10% (50 mM) Gadoteridol (ProHance, Bracco Diagnostics Inc.,
United States) at 8 ml/min for 5 min. The specimens were then stored in formalin for 12 h, then moved in
phosphate-buffered saline with 0.05% (2.5 mM) Gadoteridol until imaging. Specimens were imaged in
the skull, to avoid brain damage and distortion, and while submerged in fomblin to reduce susceptibility
artifacts and prevent dehydration.

2.2 Image Collection and Preprocessing Mouse brain specimens were imaged at 9.4 T, as de-
scribed in [18], using a 3D spin echo diffusion weighted imaging (SE DWI) sequence with TR/TE: 100
ms/14.2 ms; matrix: 420 × 256 × 256; FOV: 18.9 × 11.5 × 11.5 mm, BW 62.5 kHz; reconstructed at
45 µm isotropic resolution. Diffusion weighting was applied along 46 directions, using 2 diffusion shells
(23 directions using a b value of 2,000 s/mm2 and 23 directions using a b value of 4,000 s/mm2); we
also acquired 5 non-diffusion weighted images (b0). The max diffusion pulse amplitude was 130.57
Gauss/cm; duration 4 ms; separation 6 ms. We used eightfold compressed-sensing acceleration and
reconstructed images using BART [19] [20].

Diffusion parameters were reconstructed using MRtrix3 [21] producing 2 million tracts per brain.
To produce regional estimates of volume and FA we have used pipelines implemented in a high-
performance computing environment for image reconstruction [22], and atlas based segmentation
[23, 24] using a symmetrized mouse brain atlas [25, 26] with 332 regions, 166 for each hemisphere.

2.3 Single Subject Networks and Covariates Each mouse brain image was segmented into 332
brain regions using SAMBA, and the symmetrized mouse brain atlas previously used for connectomic
analyses [23, 24]. The volume of each brain region was computed by counting the number of voxels in
each region and multiplying this by the voxel size, and the average fractional anisotropy (FA) for each
brain region was calculated using MRtrix3[21] (see Section 2.1 and 2.2 for more details).

To compute single-subject networks, we first normalized brain volume and FA by dividing by the
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maximum brain volume and FA, respectively, then computed the absolute difference between all pairs
of brain regions, resulting in a distance matrix of size 332 × 332, where each element of the matrix
corresponds to the difference of either brain volume or FA from a pair of brain regions. This resulted in
two networks per mouse, one from each of the two data modalities. For all subsequent analyses, we
treated these networks as undirected (since we computed absolute differences), weighted so that all
values lie between 0 and 1, and loopless (e.g. there is no difference in volume of a particular region to
itself). Figure 2A and 2C shows the averaged distance matrices for brain volume and FA, respectively.
To better understand the distance matrices, we then computed the difference of the distance matrices
from pairs of genotypes, which highlights qualitative differences in the distance matrices (Figure 2B and
2D).

Besides brain volume and fractional anisotropy (FA) data, we collected additional information for
each mouse that might predict Alzheimer’s disease risk. This included: genotype (ApoE2, ApoE3,
or ApoE4, which have varying risk levels), sex (female or male, as females are believed to be more
susceptible), age (categorized as below or above the median age for each genotype, since older age
is a major risk factor for late-onset AD), immunity (presence of the humanized NOS2 gene, denoted as
HN, for a more human-like immune system), and diet (control or high-fat diet (HFD), with HFD expected
to increase vulnerability).

Next, we present a model for multiple networks and methods for obtaining new representations of
all the networks, which takes into account the inherent structure and dependencies within networks.

2.4 Statistical Modeling of Networks Statistical models for networks allows us to model all of the in-
herent dependencies across vertices (brain ROIs) in networks, and transforms the data in which we can
apply traditional statistical and machine learning tools that would otherwise be inappropriate for network
data. The joint random dot product graph (JRDPG) model provides a way to model weighted networks
and allow us to obtain a Euclidean representation of networks using statistically principled procedures
[27–29]. In this model, a vertex is a region-of-interest (ROI) in the brain, which is represented as a
low-dimensional vector called a latent position. The probability of one ROI connecting to another is
determined by the dot product of the corresponding latent positions. In other words, a matrix containing
the latent positions of all ROIs is a representation of the underlying distribution of the networks.

Given our networks derived from brain volume and FA data, we can obtain the low-dimensional
latent positions using a joint embedding technique called omnibus embedding (Omni) (see Section
2.6 for more details); that is embed all of the networks from derived from brain volume and then embed
networks from the FA independently. We will then concatenate the output embeddings for each modality
giving us a final feature set that will be used for subsequent analysis. The dimensionality of the latent
position is determined by an automatic elbow detection algorithm [30], which is 3 for both brain volume
and FA. We finally obtain a 6 dimensional latent position vector per brain region, resulting in a matrix of
size 332× 6 per mouse, which we will use for our subsequent analysis. Next, we detail a framework for
understanding and quantifying the differences in these maps and how we construct a hypothesis test
using latent positions and predictor variables.

2.5 Hypothesis Testing for Discovering Vulnerable Regions We sought to understand whether
these single-subject maps were significantly different according to some definition, in order to iden-
tify and characterize how certain predictor variables, such as ApoE genotypes, affect brain regions.
A simple approach is to ask whether the brain volume and FA of a region are significantly different
across a predictor. One way to formalize the question into a hypothesis test is as a K -sample testing
problem. Let y(i) represent measurements (possibly vector-valued high-dimensional) for i = 1, . . . ,m
samples, where for each sample, we have additional covariates t(i) where are from one-of-K groups.
For example, t(i) can denote different genotypes such as ApoE2, ApoE3, and ApoE4, and y(i) can be
measurements, such as brain volume and FA. Assume that if t(i) = k, that measurements y(i) are
sampled independently and identically from some distribution Fk. A reasonable test would be whether
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the measurements differ depending on the grouping; this can be formalized as the K -sample test:

H0 : F1 = F2 = · · · = FK ,

HA : ∃ k 6= l s.t. Fk 6= Fl

(2.1)

In words, under the null hypothesis, the measurements do not differ across groups; under the alterna-
tive, there exists at least one pair of groups for which the measurement distributions are unequal. Intu-
itively, rejection of the null hypothesis in favor of the alternative has the interpretation that the grouping
encodes meaningful differences in the measurements for a particular region (the region is vulnerable).
This test can be generalized to the case where there are multiple predictors, or multi-way K-sample
testing. For example, suppose that K denotes our three ApoE genotypes and that for each sample we
obtain additional predictor data, such as age and sex. Traditionally, analysis of variance (Anova) [31]
or multivariate Anova (Manova) [32] are conventional choices for k -sample tests. For multi-way K-
sample testing, K -way Anova [33] or K -way Manova are common choices. However, these tests often
do not perform well for high-dimensional or non-Gaussian data, which is typically the case for network
data, because their performance depends on assumptions that are generally not present in real data
[34, 35]. Several non-parametric alternatives have been developed to address this issue; we choose
distance correlation (DCorr) for testing [36]. While DCorr is an independence test, the connections
between the independence test and the multi-way K-sample test are detailed in Panda et al. [10].

To begin our investigation, we divided the analysis into two distinct categories due to the absence
of observed data for certain combinations of factors. For instance, not all mice with a non-HN immunity
gene were subjected to a high-fat diet. Consequently, we conducted two separate analyses to under-
stand the impact of human immunity and diet. The first analysis examined the effects of genotypes, sex,
age, and immunity (HN and non-HN), while the second analysis explored the effects of genotypes, sex,
age, and diet (control and HFD). Specifically, only mice that were given normal diet were considered in
the first analysis, and only mice with HN immunity were considered in the second analysis.

2.6 Graph Theory Preliminaries Networks (or graphs) are convenient mathematical objects for rep-
resenting connectomes. A network G consists of the ordered pair (V,E), where V is the set of vertices
and E is the set of edges. The set of vertices can be represented as V = {1, 2, . . . , n}, where |V | = n
is the number of vertices. The set of edges is a subset of all possible connections between vertices
(i.e., E ⊆ V × V ). We say tuple (i, j) ∈ E if there exists an connection between vertex i and vertex j.
In many connectomics datasets, edges have associated edge weights: these are real-valued numbers
that encode quantitative information about a connection between two vertices.

2.7 Statistical Models Statistical modeling of connectomics data enables the principled analysis of
these high-dimensional, graph-valued data. Random graph models treat individual connectomes as
random variables, enabling mathematical characterization of network structure and accounting for noise
within and across observed samples. Treating connectomes as random network-valued variables sam-
pled from these random graph models enables the formulation of hypothesis tests that can be used to
identify connective differences at multiple levels across numerous phenotypic profiles.

Random Dot Product Graph Model The Random Dot Product Graph (RDPG) is a type of independent
edge model. In this model, each element of an adjacency matrix is sampled independently from a
Bernoulli distribution:

Aij ∼ Bernoulli(Pij)

Given the number of vertices n, the matrix P is a n × n matrix of edge-wise connection probabilities
with elements in [0, 1]. We can construct various models depending on the constraints imposed on P.
Note that we assume that P has no self-loops (i.e. diag(P) = ~0) and is undirected (i.e. P> = P).
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In the random dot product graph (RDPG), the probability of a connection Pij is determined by the
vertices. Each vertex i ∈ V is associated with a low-dimensional latent position vector, Xi, in the
Euclidean space Rd. The probability of connection between vertices i and j is given by the dot product
(i.e Pij = XiX

>
j ). Thus, in a d-dimensional RDPG with n vertices, the rows of the matrix X ∈ Rn×n

are the latent positions of each vertex, and the matrix of edge-wise connection probabilities is given by
P = XX>. Each element of the adjacency matrix is then independently modelled as

Aij = Bernoulli(XiX
>
j )

where Xi and Xj are latent positions for vertices i and j, respectively.
We acknowledge that the original intention of RDPG is to model binary networks, although the model

can be naturally extended to handle weighted networks. However, the weighted RDPG models are not
well studied, and as such does not enjoy the same statistical guarantees. In the subsequent section,
we present an algorithm for estimating latent positions from observed data and describe methods for
preprocessing the data to enable interpretation of results within the context of binary networks while
still utilizing weighted network data.

Joint Random Dot Product Graphs (JRDPG) In this model, we consider a collection of m RDPGs
all with the same generating latent positions. Similar to a RDPG, given an appropriately constrained
Euclidean subspace Rd, the model is parameterized by a latent positions matrix X ∈ Rn×d where
d � n. The model is

(
A(1),A(2), . . . ,A(m)

)
∼ JRDPG(X) where A

(l)
ij ∼ Bernoulli(XiX

>
j ) for all

i, j ∈ [n] and l ∈ [m]. Each graph has marginal distribution A(l) ∼ RDPG(X) for all l ∈ [m], meaning
that the matrices A(1), . . . ,A(m) are conditionally independent given X [37, 38].

2.8 Adjacency Spectral Embedding The modeling assumptions of RDPGmake the estimation of la-
tent positions, which are usually unobserved in practice, analytically tractable. The estimation proce-
dure we use is adjacency spectral embedding (ASE) [39]. The ASE of an adjacency matrix A in d
dimensions is X̂ = Û|Ŝ|1/2, where |Ŝ| is a diagonal d × d matrix containing on the main diagonal the
absolute value of the top-d eigenvalues of A in magnitude, in decreasing order, and Û is an n× d ma-
trix containing the corresponding orthonormal eigenvectors. This simple and computationally efficient
approach results in consistent estimates X̂ of the true latent positions X [39–41]. The ASE depends
on a parameter d that corresponds to the rank of the expected adjacency matrix conditional on the
latent positions; in practice, we estimate this dimension, d̂, via the scree plot of the eigenvalues of the
adjacency matrix which can be done automatically via a likelihood profile approach [30].

Omnibus Embedding Consider a sample of m observed graphs G(1),G(2), . . . ,G(m) and their asso-
ciated adjacency matrices, A(1),A(2), . . . ,A(m) ∈ Rn×n with n vertices that are identical and shared
across all graphs. Under the JRDPG model, Omni is a consistent method for simultaneously estimating
the latent position matrices for each graph by computing the spectral embedding into d-dimensions on
the omnibus matrix, O ∈ Rnm×nm, as defined below

O =


A(1) 1

2

(
A(1) +A(2)

)
· · · 1

2

(
A(1) +A(m)

)
1
2

(
A(2) +A(2)

)
A(2) · · ·

(
A(2) +A(m)

)
...

...
. . .

...
1
2

(
A(m) +A(1)

)
1
2

(
A(m) +A(2)

)
· · · A(m)


The embeddings gives the matrix
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Ẑ = ASE(O) =


X̂(1)

X̂(2)

...
X̂(m)

 ∈ Rmn×d

where the first n rows are the latent positions corresponding to A(1),A(2), . . . ,A(m).

Methodological intuition Our procedures can be described intuitively as follows: under the null hypoth-
esis (there is no difference in measurements across groups; e.g., Equation (2.1)), the JRDPG model is
flexible for homogeneous networks, the Omni embedding provides an effective strategy for estimating
the latent positions of these networks, and these estimated latent positions will have approximately the
same distribution across groups. Under the alternative hypothesis, the latent positions estimated by
Omni will differ; e.g., the estimated latent positions will not have the same distribution across groups.
We exploit these observations to motivate the use of the estimated latent positions from volume and
FA-derived difference matrices for our testing procedures described herein.

For our statistical analyses, we use the estimated latent positions for each ROI jointly across both
volume and average fractional antisotropy to test if they differ significantly given some combination of
groups (e.g. certain labels). For example, we test of there is a difference among the ApoE 2, 3, 4
genotypes while considering both sex (male and female), as well as immunity (presence or absence of
HN). We then run subsequent analysis comparing subgroups. For example, instead of examining all
three genotypes, we can compare APOE2 and 3 while considering gender and alleles.

2.9 p-values and Multiple Hypothesis Correction All p-values from DCorr tests are estimated us-
ing N = 25,000 permutations via a chi-squared approximation for fast computations [42]. Across all
figures and tables associated with this work, we are interested in interpreting individual statistical tests
at a given significance level. Therefore, we control the familywise error rate (FWER) with the Holm-
Bonferroni correction [43].

3 Results

3.1 Visualizations of Distance Matrices Show Significantly Different Regions Distance matrices
for volume and fractional anisotropy (FA) were qualitatively different, yet both supported differences
between genotypes, with some consistency between pairwise genotype differences, but showed more
widespread effects in FA texture.

3.2 Effects of risk factors in animals on a control diet Our multi-way nonlinear hypothesis test-
ing addressed the influence of APOE genotype, immunity, sex, and age on the brain volume and FA
variations within specific brain regions.

In these comparisons, we only study mice with normal diet, and no mice with high fat diet were
included as some mice with the non-humanized ApoE gene were treated with high fat diet. Figure 3
shows the statistical significance of each factor in various areas of the brain, which are summarized
below.

1. Age: the median age was not a pivotal factor, as age alone did not show any significant results
for our cohort.

2. Sex: Significant sex-related differences were notable in regions traditionally associated with
hormonal influence, such as the bilateral amygdala and left lateral hypothalamus; also the bilateral
piriform cortex; right frontal association cortex. Three regions showed differences in each hemisphere.

3. APOE Genotype: The genotype factor showed a diverse influence on brain regions including
the bilateral caudate putamen (CPu); left pons (PN, oral part), periaqueductal gray (PAG), cingulate
cortex area 24a (A24a),inferior colliculus (IC), and longitudinal fasciculus of pons (lfp); right ventral
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Figure 2: Visualization of the Distance Matrices from Brain Volume (BV) and Fractional Anisotropy (FA) Measure-
ments. (A) The averaged difference of brain volumes between all pairs of brain regions. Each row represents one of the
three ApoE genotypes. (B) The difference in differences of relative brain volume between each possible pairs of three ApoE
genotypes. (C) The averaged difference of fractional anisotropy between all pairs of brain regions. Each row represents
one of the three APOE genotypes. (D) The difference in differences of fractional anisotropy between each possible pairs of
three ApoE genotypes.

tegmental area (VTA), and cerebellar nuclei. 6 regions in the left hemipshere and 9 in the right were
affected.

4. Immunity: The contrast between mouse and humanized immune system mice yielded the
largest number of significant results; and involved the bilateral dentate nucleus of the cerebellum, thal-
amus, parietal association cortex, auditory and visual cortex (V1B, V1 motor); left cochlear nucleus,
fornix, cerebellar white matter, dorsal tenia tecta; and right raphe nuclei. 18 regions in the left hemi-
sphere and 12 in the right were affected.

We performed the same analyses within each of the APOE genotypes Figure 4.
In conclusion for this analysis in animals on a control diet, among all comparisons, the largest num-

ber of regions found to differ significantly was for immunity (18 on the left, 12 on the right hemisphere),
followed by APOE allele (6 left, 4 on the right hemisphere), and then sex (3 regions in each hemi-
sphere). A prominent role was found for the right amygdala and thalamus rest, as these regions were
highly significant for 8 of the 15 comparisons for all factors. Interestingly, the pons were also significant
in 8 of the comparisons but p values were higher. We noted that the interaction of APOE and immunity
revealed a large number of regions (26 left hemisphere, 21 in the right hemisphere); as well as the in-
teraction of APOE, sex and immunity (20 in each hemisphere). The combination of all factors revealed
17 regions in the left, and 14 in the right hemisphere, including the bilateral amygdala, thalamus and
superior colliculus; right septum, and left dentatecerebellar nucleus.

When comparing ApoE2 versus ApoE3-4 mice, much fewer regions were significantly different,
however we noted a role for the caudate putamen for genotypes comparisons; and for the amygdala
when examining the role of sex, and the interaction of sex with immunity, where additional regions
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Figure 3: Significant Brain Regions From Testing for Effects of Genotypes, Sex, Age, and Innate Immunity. The results
of tests conducted on each hemisphere are shown on top panel for left hemisphere and bottom panel for the right hemisphere.
Significant results are shown by X. Brain regions in which no tests were significant are not shown for visualization purposes.
A total of n = 114 mice were included in the tests. In all, 207 combinations of genotypes and factors were tested.

plaedy a role including septum, S2, hypothalamus, and thalamus including its reticular nucleus. Amyg-
dala was present in the interaction of all factors, as well as septum, superior colliculus, and thalamus
within APOE2 mice.

When comparing APOE3 mice versus the other strains we found a role for the superior collicu-
lus, cingulate cortex, ventral tegmental area, and cerebellar nuclei for genotype comparisons. The
largest differences in terms of the number of regions appeared for the effect of immunity (34 regions).
The interaction of all factors included the thalamus, superior colliculus, sp5, pons bilaterally, as well
as amygdala, septum, frontal association cortex, VTA, lateral hypothalamus, and dentate nucleus of
cerebellum. Sex differences included amygdala, hypothalamus, bed nucleus of stria terminalis, but also
frontal association cortex.

The caudate putamen, the cerebellum and longitudinal fasciculus of pons appeared as significant
when comparing within the APOE4 vs other strains. Age was important within the APOE4 genotype,
and pointed to a role for the caudate putamen. 36 regions were affected by immunity. For the interaction
of all factors we noted the thalamus rest, septum, pons, and spinal trigemnial nerve bilaterally; as
well as frontal association cortex, S1, S2, thalamic nuclei (reticular, ventral and zona incerta), lateral
hypothalamus, amygdala, S1 and S2. Interestingly sex differences were associated with the entorhinal
cortex.

In summary, certain regions that are typically implicated in Alzheimer’s disease, such as amygdala
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Figure 4: Significant Brain Regions From Testing for Effects of Sex, Age, and Immunity, for Each Major APOE Alelle
The results of tests conducted on different genotypes are shown in each panel. Significant results are shown by X. Brain
regions in which no tests were significant are not shown for visualization purposes. A total of n = 114 mice were included in
the tests.

and thalamus were significantly different in all the tests. The effect of immunity in terms of the number
of significant regions increased from APOE2 to APOE3 to APOE4.

3.3 Effect of Diet Studying the effects of a high-fat diet (HFD) in ApoE mice is crucial for understand-
ing the interplay between diet, APOE genotype, and neurodegenerative diseases, such as Alzheimer’s
disease Figure 5.

1. Diet: The diet treatment did not have an effect on its own, but did show significant interactions
with ApoE genotypes, but not with age and sex. APOE by diet interaction showed an effect on the left
pons, inferior colliculus, S1, cingulate cortex (A25), V1 amd V2, and midbrain reticular nuclei, cerebral
peduncle and cerebellar white matter, right M1, thalamus, and globus pallidus.

2. Sex: Similarly, sex only showed a direct effect on one region, the amygdala (left), and showed
significant interactions with ApoE genotypes for the bilateral amygdala and periaqueductal gray, left
septum; right S1, M1, and inferior colliculus,

3. Age: Age had a significant effect for fimbria (bilateral), and right cerebellar white matter; and
showed significant interactions with ApoE genotypes for 41 regions in the left hemisphere and 35 re-
gions in the right hemisphere including V1, V2, S1, septum, caudate putamen, cerebellar nuclei, fimbria,
and other major white matter tracts, as well as for the lateral ventricles.

4. Genotype: The APOE genotype factor showed a widespread influence on brain regions, in-
cluding the bilateral periaqueductal gray (PAG), pons, caudate putamen; right globus palidus, left pari-
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etal association cortex, right lateral hypithalamus. Diet interacted with genotype for the bilateral PAG,
pons, inferior coliculus, V2, thalamus (ventral), and also left cingulate cortex, and V1; right S1, M1,
globus pallidus. The amygdala, M1, inferior colliculus, and PAG were present at the intersection of all
factors; as well as left septum and fimbria; and right ventral orbital cortex.

Figure 5: Significant Brain Regions From Testing for Effects of Genotypes, Sex, Age, and Diet. The results of tests
conducted on each hemisphere are shown on top panel for left hemisphere and bottom panel for the right hemisphere.
Significant results are shown by X. Brain regions in which no tests were significant are not shown for visualization purposes.
A total of n = 75 mice were included in the tests. In all, 154 combinations of genotypes and factors were tested.

Within group analyses showed differences in APOE2 and APOE4 mice. APOE3 differed less rela-
tive to the other two genotypes and only for APOE by sex by age in the amygdala and frontal association
cortex. APOE by diet showed a role for the PAG and the logitudinal fasculucls of pons for the APOE4
comparison, while the APOE2 comparison showed differences in 34 regions, including septum.

For APOE4 the interaction of APOE by Age by Diet showed a role for PAG, IC, fimbria, optic tract,
cerebral peduncle, cerebellar white matter bilaterally, then unilaterally for midbrain reticular nuclei, M1,
V2, pons and white matter tracts including fimbria, cerebral peduncle, optic tracts, spinal trigeminal
tract, cerebellar white matter bilaterally.

4 Discussion Given the complexity of risk factors for LOAD, we have examined jointly changes in
volume and FA covariances in aging mice modeling genetic risk for LOAD, as well as the effects of
sex, diet and immunity. Our qualitative examination of the average connectomes support an important
role of microstructural features such as FA, which may be an important feature to add to the battery of
imaging parameters used to predict and follow the course of AD, and in addition to following the more
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Figure 6: Significant Brain Regions From Testing for Effects of Sex, Age, and Diet Separated by Pairs of Genotypes.
The results of tests conducted on different pair of genotypes are shown in each panel. Significant results are shown by X.
Brain regions in which no tests were significant are not shown for visualization purposes. A total of n = 75 mice were included
in the tests. Clearly, there are less differences between ApoE2 and ApoE3-4 group as much fewer regions were significantly
different. Interestingly, certain regions that are typically implicated in Alzheimer’s disease, such as amygdala and thalamus
show as significantly different in all the tests.

widely studied regional brain atrophy patterns along the lifespan[44].
When studying animals on a regular diet we found that APOE genotype influenced primarily the

network integration of the caudate putamen [45], but also the cingulate cortex [46] involved in mediat-
ing cognitive influences on emotion, response to threats, ventral tegmental area involved in regulating
reward, learning, memory and addiction behaviors [47]; pons whose volume loss has been associated
with greater neocortical amyloid burden [48], periaqueductal gray invoved in modulation of pain percep-
tion, and its memory, subsequently linked to anxiety and depression [49], inferior colliculus modulating
auditory signal integration, and helping map physical space with both auditory and visual information
[50]. These results support that APOE is involved in modulating brain networks architecture in regions
known to be involved in learning, memory and emotion, functions impacted in AD, regions involved in
reward processing and psychiatric conditions, such as depression, and with sensory function.

Sex differences consistently pointed primarily to a role of the amygdala, lateral hypothalamus, well
known sexually dimorphic structures [51], as well as the piriform cortex, and frontal association cortex.
Immunity effects were seen for a large number of regions, including the thalamus, lateral parietal as-
sociation cortex, auditory and visual cortex, cerebellar white matter and dentate nuclei, but also fornix,
the primary patway of the limbic system.

In terms of common findings for all APOE genotypes, the amygdala played an important role for sex

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2025. ; https://doi.org/10.1101/2025.02.05.636582doi: bioRxiv preprint 

https://doi.org/10.1101/2025.02.05.636582
http://creativecommons.org/licenses/by-nc-nd/4.0/


differences, sex x immunity, sex x age, and for sex x age x immunity; and the thalamus for immunity,
age and immunity, sex and immunity and the intersection of all factors.

The specific effect of APOE2 was important for the caudate putamen (CPu), and for this group,
immunity identified 8 regions, pointing to a role for the thalamus bilaterally, as well as superior col-
liculus, accumbens, S1, cingulate cortex, and dentate cerebellar nucleus, predominantly for the left
hemisphere. Sex differences isolated the amygdala. In addition to the amygdala, the interaction be-
tween sex and immunity pointed to a role for the septum. Age and immunity pointed to a role for the
thalamus, bilaterally, and also cingulate cortex and superior colliculus. The intersection of all risk fac-
tors identified changes in 9 regions, underlining the bilateral amygdala, thalamus, and spinal trigeminal
tract; and right septum, superior colliculus, pons.

The presence of APOE3 indicated additional regions (15 total) changed withe the combination
of risk factors, besides the regions found for APOE2. These included the frontal association cortex,
the lateral hypothalamus, and the dentate cerebellar nuclei. Immunity identified 34 changed regions,
including the claustrum and insula.

The presence of APOE4 identified 17 regions where affected by all risk factors, adding the septum,
S1 and S2; while 36 were affected by immunity, including the accumbens, septum S1, V1, V2 and
parietal association cortices. Age was associated with changes to the caudate putamen for APOE4
only. APOE4 appeared to be most sensitive to interactions for age, sex, and immunity for animals on a
regular diet, and in particular for immunity.

When studying animals exposed to control and high fat diet, the different APOE alleles affected 37
regions, up from the 4 and 6 regions in the previous analysis with the most significant changes for the
periaqueductal gray, which has been previously involved in consummatory behaviors, and responses to
reward, being proposed to mediate behaviors related to food consumption [52], where the bed nucleus
of stria terminalis (BNST) and lateral hypothalamic GABAergic projections to the periaqueductal gray
(PAG) may regulate feeding [53]. The interaction between APOE and HFD affected around 10 regions,
the PAG, pons [54], and inferior colliculus which has been shown to respond to high levels of circulating
glucose [55], and interestingly the cerebellar white matter, which has been show to have a high inflam-
matory response to a high fat diet [56], and was also prominent in the interaction of APOE x age, diet.
This interaction also affected the fimbria, suggesting alterations in the memory processing system. The
interaction of APOE, sex, and diet revealed a small set of regions including periaquductal gray (PAG),
pons, amygdala and inferior colliculus, primary somatosesory cortex (S1), and fimbria. The interaction
of all risk factors included the amygdala, similarly to our previous analyses, but also the PAG, motor
cortex, and fimbria.

Interestingly genotype specific changes were more pronounced in APOE2 and APOE4 mice, than
in APOE3 mice, indicating resilience of APOE3 mice to nework changes following a high fat diet. The
APOE2 effect was present in a large number of regions (>70), including the bed nucleus of stria termi-
nalis (BNST) periaquductal gray (PAG), and plobus pallidus (GP), associated with alcohol and opiate
abuse [57]. Interestingly the interaction with sex was also affecting 11 regions, including septum and
amygdala. The effect of APOE4 was present in 25 regions, and the interaction with aging caused
changes in 58 regions.

4.1 Comparison with Status of the Field While most studies so far examine one biomarker at a
time, either atrophy of texture such as fractional anisotropy changes in AD or animal models of AD, here
we propose a join approach for examining the signal in volume and texture subject specific covariance
networks. Our methods rely on joint embedding of connectomes, and distance correlation metrics.
Other methods for joint signal analyses have used multi canonical correlation [58][59][60], similarity
driven multiview embeddings [61], SVM [62], and complex deep learning models [63] that an integrate
multi MRI as well as clinical [64] [65] and omics data. The advent of novel methods for mulitvariate
integrative modeling is a promising strategy for mining multi dimensional data sets, which then serve to
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better understand complex, multifactorial neurodegenerative diseases. Our methods strengthened the
body of literature describing mouse models of genetic risk for AD to examine single subject networks
that revealed vulnerable nodes to multiple risk factors, underlining the network integration changes for
the caudate putamen, amygdala and thalamus in these mouse models. Our results support widespread
white matter changes due to exposure to a high fat diet, further supporting network disease propagation
models.

4.2 Limitations Interestingly, age was not a pivotal factor in our analysis, supporting that its effects
were uniform and widespread throughout the brain, but we acknowledge that we had a narrow age span.
Future studies can examine younger mice and a wider age span may better reveal the interactions of
age with APOE and other risk factors. Our study is limited in that we could only study the effect of diet
in the APOExHN lines, and had reduced power. Also, mice do not perfectly replicate the complexities of
human AD genetic risk interactions and the heterogeneity of human populations. Additionally, studying
sex differences would benefit from using ovariectomized female mice to reveal menopause associated
effects.

4.3 Conclusion We present the application of novel models that integrate multivariate data to ac-
count for changes in multiple imaging based parameters. Our study in mouse models of genetic risk for
LOAD revealed a role for the amygdala, caudate putamen in normally aging mice, widespread effects
of innate immunity and more expansive, genotype specific changes in response to a high fat diet than
under control conditions.

5 Code The code and data for these analyses are available at GitHub repository at https://github.
com/neurodata/alzheimers-mouse. The analysis relied on graspologic [66], NumPy [67], SciPy [68],
Pandas [69], and NetworkX [70]. Plotting was performed using matplotlib [71] and Seaborn [72].
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