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Abstract: The use of vaccine and Wolbachia has been proposed as strategies against dengue. Research
showed that the Wolbachia intervention is highly effective in areas with low to moderate transmission
levels. On the other hand, the use of vaccine is strongly effective when it is implemented on
seropositive individuals and areas with high transmission levels. The question that arises is could the
combination of both strategies result in higher reduction in the number of dengue cases? This paper
seeks to answer the aforementioned question by the use of a mathematical model. A deterministic
model in the presence of vaccine and Wolbachia has been developed and analysed. Numerical
simulations were presented and public health implications were discussed. The results showed that
the performance of Wolbachia in reducing the number of dengue cases is better than that of vaccination
if the vaccine efficacy is low, otherwise, the use of vaccine is sufficient to reduce dengue incidence
and hence the combination of Wolbachia and vaccine is not necessary.
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1. Introduction

Dengue is a vector-borne disease with around 390 million cases annually and mostly occurs in
tropical and sub-tropical regions [1]. An increase in dengue cases has been noticed with a 30-fold
increase in incidence over the past 50 years [2]. Dengue is caused by four different serotypes where
individuals generally obtain lifelong immunity to the serotype they are infected with, although
reinfection with the same serotype is possible [3]. The secondary infection may be worse as it can
increase the risk of severe disease [4].

A number of strategies such as insecticides have been implemented, but they are unsustainable [5]
and hence alternative strategies are required. The current proposed strategies are by the use of vaccine
and Wolbachia bacterium. Around 86% of dengue reduction can be obtained by the use of Wolbachia
bacterium in particular if it is implemented in regions with low to moderate transmission level [6–12].
The use of vaccine can reduce the number of dengue cases up to 80% depending on individual ages
and status (seronegative or seropositive) and the transmission level in the regions [13,14]. CYD-TDV
is the only dengue vaccine licensed to date [15]. Several trials have shown satisfactory safety profile
of the vaccine [16,17] and balanced immune response to the vaccine [18,19]. An analysis of multiple
phase-2 trials of CYD-Tetravalent Dengue Vaccine (CYD-TDV) showed the importance of dengue
exposure prior to vaccination on the vaccine immunogenicity. Furthermore, research showed the
distinct vaccine efficacy against dengue serotypes with no significant efficacy against serotype 2 [20,21]
and a decrease in protective effects in years 3 and 4 after vaccination [22]. This may increase the
risk of the use of the vaccine [13]. Therefore, the implementation of vaccination strategy should be
carefully designed and considers important factors such as vaccination age, doses, and individual status
(seronegative or seropositive) [13,17,21]. Although research and development of both strategies are
still underway, understanding the combination of these interventions before they are publicly used is
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important. Understanding the complex phenomena by using a mathematical model is common.
Many mathematical models have been widely formulated to understand dengue transmission
dynamics and measure the effectiveness of Wolbachia and vaccination in reducing the number of
dengue cases [6–9,11,23–28]. Ndii et al. [7–9] formulated a dengue mathematical model in the presence of
Wolbachia and assessed the effectiveness of Wolbachia intervention in reducing dengue transmission. They
found that the Wolbachia can reduce the number of dengue cases up to 80% particularly in regions with low
to moderate transmission level. The results were similar to that found by Ferguson et al. [6]. O’ Reilly et al.
used a mathematical model to assess the performance of Wolbachia in reducing dengue transmission in
Indonesia and found 80% reduction in dengue cases [11]. Furthermore, a long-term implementation
of Wolbachia provided a higher reduction in dengue incidence [26]. Aguiar et al. [14] investigated the
effects of vaccination on dengue transmission dynamics and found that, if the vaccine is implemented
on partial immune individuals, a significant reduction in disease burden can be obtained. Using a
mathematical model, Ferguson et al. [13] showed the benefits and risks of using dengue vaccine with
an increase risk of hospitalization if the vaccination is implemented in regions with low to moderate
transmission levels, and the benefits if it is implemented in regions with a high transmission level. Due
to different factors affecting the performance of these interventions, it has been suggested to combine
both strategies [12]. A question that then arises is “could the combination of both strategies result in
higher reduction in the number of dengue cases?” This paper seeks to answer the aforementioned
question by the use of a mathematical model.

Although many mathematical models have been formulated to study dengue transmission
dynamics in the presence of vaccine and Wolbachia, they did not take into account the combination of
both strategies. It is important to compare the performance of both interventions individually and the
combination of them. To date, only a few research papers have been conducted to examine the effects
of the combination between vector control and vaccine. Hladish et al. [29] have recently investigated
the performance of the combination of vaccine and vector control (insecticide-based method) in
minimizing the dengue transmission and found that the combination of strategies outperformed single
intervention. Different to Hladish et al. [29], in this paper, we investigate the performance of the
vaccine and Wolbachia in reducing dengue transmission. Wolbachia has different characteristics to the
insecticide-based method which may affect the disease transmission dynamics. We will show the
performance of both strategies individually and the combination of them. The aim of the paper is to
obtain general understanding of the effectiveness of the strategy and hence a single serotype dengue
model is sufficient.

2. Methods and Results

2.1. Formulation of the Mathematical Model

A deterministic mathematical model in the presence of Wolbachia and vaccination is formulated,
which is the extension of a dengue mathematical model in the presence of Wolbachia formulated by
Ndii et al. [8]. This is a compartment-based model where the human and mosquito populations
are divided into different compartment depending on their disease status. The human population
is divided into susceptible (SH), vaccinated (VH), exposed (EH), infectious (IH), and recovered (RH).
Mosquito population is divided into aquatic (A), susceptible (S), exposed (E), infectious (I) with
subscripts N and W denoting non-Wolbachia and Wolbachia mosquitoes, respectively. There is no
recovered class for mosquitoes as they remain infectious for the rest of their life. As the aim of the
paper is to gain general insights of the possible effectiveness of the use of vaccine and Wolbachia,
the use of a single serotype dengue model is sufficient. An extension of this work to investigate
the serotype-specific effects on the effectiveness of the use of both strategies is the subject of the
future work.

The susceptible individuals are infected when they are bitten by infected non-Wolbachia and
Wolbacbia-carrying mosquitoes at a rate of λN and λW , respectively. The human population is
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vaccinated at a rate vh and the vaccinated individuals are exposed to dengue when the vaccine loss its
efficacy at a rate (1− ε) and the individuals are bitten by infected non-Wolbachia and Wolbachia-carrying
mosquitoes at a rate λN and λW , respectively. We take into account the waning immunity which
happens at a rate of φh and the random mass vaccination.

The model is governed by the following system of differential equations:

dSH
dt

= BNH − pSH − λNSH − λWSH − µHSH + φVH ,

dVH
dt

= pSh − (1− ε)λNVH − (1− ε)λWVH − φVH − µHVH ,

dEH
dt

= λNSH + λWSH + (1− ε)λNVH + (1− ε)λWVH − γHEH − µHEH ,

dIH
dt

= γHEH − σIH − µHSH ,

dRH
dt

= σIH − µH RH ,

dAN
dt

= ρN
F2

N
2(FN + FW)

(
1− (AN + AW)

K

)
− (τN + µNA) AN ,

dSN
dt

= τN
AN
2

+ (1− α) τW
AW
2
−
(

bNTN IH
NH

+ µN

)
SN ,

dEN
dt

=
bNTN IH

NH
SN − (γN + µN) EN ,

dIN
dt

= γN EN − µN IN ,

dAW
dt

= ρW
FW
2

(
1− (AN + AW)

K

)
− (τW + µWA) AW ,

dSW
dt

= τWα
AW
2
−
(

bW TN IH
NH

+ µW

)
SW ,

dEW
dt

=
bW TN IH

NH
SW − (γW + µW) EW ,

dIW
dt

= γW EW − µW IW ,

(1)

where
λN =

bNTN IN
NH

,

λW =
bW THW IW

NH
.

(2)

The description of the parameters, references, and values are given in Table 1.
Using the concept of the next generation matrix, we obtain the basic reproduction number which is

the average number of new infections generated by one infectious individual in the entirely susceptible
population. The basic reproduction number in the absence of interventions is given by

RA =

√
b2

NT2
NγNγHSN

µN (γN + µN) (σ + µH) (γH + µH) NH
. (3)
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Table 1. Parameter descriptions, values and sources for the model. We use “Non-W” to denote
non-Wolbachia mosquitoes and “W” to denote Wolbachia-carrying mosquitoes.

Symbol Description Value Unit Source

α Maternal transmission 0.9 N/A [30,31]
bN Biting rate of non-W 0.63 day−1 [32]
γH Progression rate from exposed to infectious human 1/5.5 day−1 [33]
γN Progression from exposed to infectious non-W 1/10 day−1 [34]
γW Progression rate from exposed to infectious 1/10 day−1 [34]
µN Adult mosquito death rate (non-W) 1/14 day−1 [35]
µNA Death rate of aquatic non-W 1/14 day−1 [35]
µWA Aquatic death rate 1/14 day−1 [35]
ρN Reproductive rate of non-W 1.25 day−1 [36]
ρW Reproductive rate W 0.95× ρN day−1 [30]
σ Recovery rate 1/5 day−1 [33]
TN Transmission probability 0.2614 N/A [7]
τN Maturation rate of non-W 1/10 day−1 [35]
τW Maturation rate of W 1/10 day−1 [35]
THW Transmission probability from infectious W to human 0.5× TN N/A [37]
µW Death rate of W 1.1 ×µN day−1 [30,38]
bW Biting rates of W 0.95× bN day−1 [39]
µH Natural death rate 1

(66.38×365) day−1 [40]
B Birth rate 1

(66.38×365) day−1 [40]
p Vaccination rate 0.2 N/A [41]
ε Vaccine efficacy 0.538 N/A [17,21]
φ Waning immunity 0.1 N/A [41]

2.2. Sensitivity Analysis

We performed a global sensitivity analysis to determine the most influential parameters of the
model by using the combination of a Latin Hypercube Sampling (LHS) and Partial Rank Correlation
Coefficient (PRCC) [42]. We measure against the increasing number of infected individuals, which is
the solution of

dCIH

dt
= γHEH . (4)
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Figure 1. Partial Rank Correlation Coefficient (PRCC) values for the model when measured against the
increasing number of infected individuals. The positive and negative values indicate the relationship
of the parameter and an increase in the number of infected individuals.
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Figure 1 shows that the non-Wolbachia and Wolbachia-carrying mosquitoes death rates (µN and
µW), vaccine efficacy (ε), the biting rates (bN and bW), and the transmission probability (TN) are the
most influential parameters on the increased number of infected individuals. The first three parameters
have negative relationships and the latter have positive relationships. This implies that an increase
in mosquito death rates and the vaccine efficacy results in the reduction of the number of infected
individuals. Moreover, a decrease in the biting rates and the transmission probabilty leads to the
reduction in the number of dengue cases.

2.3. Numerical Simulations

2.3.1. Dengue Reduction

Here, we present the dengue reduction with three different scenarios: Vaccination only, Wolbachia
only, and both vaccination and Wolbachia. We also show the numerical solutions of the model with
different vaccination rate and vaccine efficacy.

Figure 2 presents the numerical solutions of the model where the vaccine efficacy and the vaccination
rate are 0.536 and 0.2, respectively. The vaccine efficacy of 0.536 represents the effectiveness of vaccine
on seronegative individuals. The result showed that the use of Wolbachia only reduces a higher number
of dengue cases in comparison to that of the vaccine. The use of vaccination only, Wolbachia only,
and both strategies can reduce the number of dengue cases around 19%, 92%, and 99%, respectively.
This suggests that the use of Wolbachia is sufficient to reduce the number of dengue cases if the vaccine
efficacy is low.
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Figure 2. Numerical simulations of the model with no intervention, vaccine only, Wolbachia only,
and both vaccine and Wolbachia. This is for the case RA = 2.91. The vaccine efficacy is 0.536 and the
vaccination rate is 0.2. Plot (A): No intervention, Plot (B): Vaccination, Plot (C): Wolbachia, Plot (D):
Both Wolbachia and vaccination strategies.

Figure 3 showed when the vaccination rate is different and the vaccine efficacy is 0.536.
Although the vaccination rate is high, the performance of Wolbachia is still better than that of vaccine.
This may be affected by a low vaccine efficacy which can lead to reinfection of vaccinated individuals.
When the vaccination rate is 0.5 and the vaccine efficacy is 0.8, the reduction in the number of dengue
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cases by the use of vaccine is higher compared to that of Wolbachia as given in Figure 4. This means
that the vaccine efficacy and the vaccination rate should be considered to implement a vaccination
strategy. Further explanation of these parameters is given in Section 2.3.2.
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Figure 3. Comparing the performance of vaccination and Wolbachia with different vaccination rates.
This is for the case RA = 2.91 and the vaccine efficacy is 0.536. The vaccination rates are 0.2 plot (A),
0.5 plot (B), 0.8 Plot (C). Plot (D) is for Wolbachia strategy.
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Figure 4. Comparing the performance of vaccination and Wolbachia with different vaccine efficacy.
This is for the case RA = 2.91 and the vaccine rate is 0.5. The vaccine efficacy is 0.7 plot (A), 0.8 plot (B),
0.95 plot (C). The plot (D) is Wolbachia.



Trop. Med. Infect. Dis. 2020, 5, 78 7 of 11

2.3.2. Parameter Exploration

The comparison of the performance of Wolbachia and vaccine is presented. We define the
‘performance index’ as follows:

IdxVW =
cumIV
cumIW

, (5)

where cumIV and cumIW are the cumulative number of infected individuals at the end of the period
with vaccination strategy, and Wolbachia strategy, respectively. Here, we vary the vaccination rate (p)
and the vaccine efficacy (ε). If the values of ‘performance index’ is less than unity, the cumulative
number of infected individuals with the vaccination strategy is lower than that of the Wolbachia strategy.

Figure 5 presents the performance index when the vaccine efficacy and the vaccination rate are
varied. It showed that when the vaccine efficacy is almost perfect but the vaccination rate is low
(around 0.1), the performance of Wolbachia is better than the vaccine in reducing the number of dengue
cases. It shows that, when the vaccine efficacy is higher (around 0.8), the vaccination rate should be
around 0.5 to obtain higher reduction in the number of dengue cases compared to Wolbachia. When the
vaccine efficacy is around 0.4, the performance of Wolbachia is better than that of the vaccine, although
the vaccination rate is close to one.
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Figure 5. Countour plot of vaccine efficacy (ε) and the vaccination rate (p) against the performance
index (IdxVW ).

3. Discussion and Conclusions

A mathematical model in the presence of vaccination and Wolbachia has been developed, and a
global sensitivity analysis has been performed to determine the most influential parameters of the
model. The performance of vaccination and Wolbachia in reducing the number of dengue cases has
been investigated.

A global sensitivity analysis showed that the death rate of non-Wolbachia and Wolbachia carrying
mosquitoes, the vaccine efficacy, the biting rates, and the transmission probability are the influential
parameters on the increase number of infected individuals. The first three parameters have negative
relationships, and the rest has positive relationships. This implies that, in order to reduce the number
of dengue cases, we need to increase the death rate of mosquitoes and vaccine efficacy and decrease the
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biting rates and the transmission probability. However, a higher increase in death rate of mosquitoes
leads to the extinction of Wolbachia-carrying mosquito population and hence non-Wolbachia mosquito
would dominate the population and the dengue incidence cannot be reduced. A 10% reduction in
Wolbachia-carrying mosquito death rate is sufficient to guarantee the persistence of Wolbachia [7,30].

Generally, the performance of Wolbachia in reducing dengue transmission is better than that of
vaccination if the vaccine efficacy is low. Around 80% of reduction in dengue cases can be obtained
with Wolbachia strategy only. Research showed that this may be obtained in areas with low to moderate
transmission level [6,7]. The efficacy of the dengue vaccine ranges between 42% to 80% depending on
the serotypes [21]. If the vaccine efficacy gets higher, the performance of the vaccine in reducing the
number of dengue cases becomes effective. If the vaccine efficacy and the vaccination rate are high,
the use of vaccination is better in minimising dengue transmission compared to Wolbachia. The results
suggest that the use of vector control such as Wolbachia may not be necessary if the vaccine efficacy
and the vaccination rate is high. In fact, the higher vaccine efficacy can be obtained when 9–45 years of
age seropositive individuals were vaccinated [13,43]. Although the use of vaccine is sufficient when
the vaccine efficacy and vaccination rate are high, the vector control such as using Wolbachia is still
needed since it reduces multiple diseases such as Zika and chikungunya [44,45].

The aim of our paper is to gain general insights of the possible effectiveness of the combination of
vaccine and Wolbachia strategies in reducing dengue transmission, and hence a single serotype dengue
model is sufficient. We used a single serotype dengue model which did not take into account the effects
of secondary infections and therefore it is better to extend this work by considering the multi dengue
serotypes and examining the effects of vaccination and Wolbachia on disease transmission dynamics.
Although the combination of both strategies can minimize the dengue incidence, understanding
specific-serotype difference may be needed to examine the risks of the use of them particularly for
vaccines, which may increase the secondary infection incidence [13,14]. Furthermore, as the mosquito
population dynamics are seasonally-dependent, the effects of seasonality need to be considered since
it may affect the disease transmission dynamics. We did not consider age-dependent effects on the
effectiveness of the intervention in a particular vaccine, which is more effective for 9–45 years of age.
The issues are the subject of future work.
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