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Abstract: In China, a large amount of fish bones are produced during the processing of tuna cans
production. For full use of those by-products, gelatin (STB-G) with a yield of 6.37 ± 0.64% was
extracted from skipjack tuna (Katsuwonus pelamis) bone using water at 60 ◦C for 8 h. Amino acid
analysis showed that STB-G contained Gly (340.3 residues/1000 residues) as the major amino acid
and its imino acid content was 177.3 residues/1000 residues. Amino acid composition, SDS-PAGE,
and Fourier transform infrared (FTIR) spectrum investigations confirmed that the physicochemical
properties of STB-G were similar to those of type I collagen from skipjack tuna bone (STB-C),
but partial high molecular weight components of STB-G were degraded during the extraction process,
which induced that the gelatin was easier to be hydrolyzed by protease than mammalian gelatins
and was suitable for preparation of hydrolysate. Therefore, STB-G was hydrolyzed under in vitro
gastrointestinal digestion (pepsin-trypsin system) and five antioxidant peptides were purified from
the resulted hydrolysate (STB-GH) and identified as GPDGR, GADIVA, GAPGPQMV, AGPK, and
GAEGFIF, respectively. Among the gelatin hydrolysate, fractions, and isolated peptides, GADIVA
and GAEGFIF exhibited the strongest scavenging activities on 2,2-diphenyl-1-picrylhydrazyl (DPPH)
radical (EC50 0.57 and 0.30 mg/mL), hydroxyl radical (EC50 0.25 and 0.32 mg/mL), superoxide anion
radical (EC50 0.52 and 0.48 mg/mL), and 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS)
radical (EC50 0.41 and 0.21 mg/mL). Moreover, GADIVA and GAEGFIF showed a high inhibiting
ability on lipid peroxidation in a linoleic acid model system. The strong activities of five isolated
peptides profited by their small molecular sizes and the antioxidant amino acid residues in their
sequences. These results suggested that five isolated peptides (STP1–STP5), especially GADIVA and
GAEGFIF, might serve as potential antioxidants applied in health food industries.

Keywords: Skipjack tuna (Katsuwonus pelamis); bone; gelatin; peptide; antioxidant activity

1. Introduction

Gelatin is produced by partial hydrolysis of collagen with a molecular weight (MW) ranging
between 80 and 250 kDa [1]. Traditionally, gelatin has been isolated from the skin and bone collagens of
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mammalian species, primarily cows and pigs [2]. However, the application of gelatin from mammalian
species may be a concern among consumers because of dietary restrictions and infectious disease [3].
These sociocultural and safety concerns have led to intensive research to identify and develop
alternatives to mammal derived gelatin [1]. Gelatin from seafood by-products has been thought
as an ideal alternative to mammalian gelatin due to its large quantities and safety [4]. In addition,
gelatin from marine resources is acceptable for Islam, and can be used with minimal restrictions
in Judaism and Hinduism [5]. Therefore, gelatin has been extensively extracted from different fish
by-products, such as golden carp skin [2], lizardfish scale [6], unicorn leatherjacket skin [7], cuttlefish
skin [8], cod head [9], shark cartilage [10], and red snapper and grouper bones [11].

Nowadays, fish gelatin is wildly applied in the food, pharmaceuticals, cosmetics, biomedical,
and biomaterial-based packaging industries for its high nutrition, good moisture-retention, and
biocompatibility [2,12]. However, its properties, including the lower melting temperature and gel
strength, and weaker structural stability compared to mammal gelatin, severely limit its application
extensively in tissue engineering materials and capsule wall materials [13,14]. Nevertheless, gelatin
with those undesirable physicochemical properties is more easily hydrolyzed by proteases compared
to mammal gelatin and is suitable to be prepared for bioactive peptides. Therefore, preparation
of bioactive peptides using gelatins attracts broad attention due to its utilization potentiality in
biomedical industries. Wu et al. reported that peptides of GPAGPHGPPGKDGR, AGPHGPPGKDGR,
and AGPAGPAGAR from Pacific cod skin gelatin exhibited a high affinity to ferrous ions, which has
a potential application of gelatin-derived peptides as novel carriers to combat iron deficiency [12].
Sun et al. evaluated the effect of tilapia gelatin peptides (TGP) on UV-induced damages to mice
skin, and the results indicated that TGP could significantly prevent a decrease of antioxidase activity
in a dose-dependent manner. The protective effects of TGP suggested that TGP could be a novel
antiphotoaging agent from natural resources [15]. Chen and Hou reported that oral administration of
gelatin hydrolysate from Pacific cod skin could suppress ultraviolet (UV) radiation-induced damage
to the skin by inhibiting the depletion of endogenous antioxidant enzyme activity, and suppressing
the expression of nuclear factor-κB (NF-κB) and NF-κB-mediated expression of pro-inflammatory
cytokines [16]. Zheng et al. reported that gelatin hydrolysate (FSGH) of Nile tilapia skin prepared using
ginger protease exhibited a higher degree of hydrolysis (DH), radical scavenging activity, and lipid
peroxidation inhibition capability than those of gelatin hydrolysate from pig skin, pig bone, and bovine
skin. Furthermore, tripeptides of Gly-Pro-Ala from FSGH can activate the expression of antioxidant
response element (ARE)-driven antioxidant enzyme genes in a dose dependent manner and suppressed
the H2O2-induced intracellular reactive oxygen species (ROS) production in the porcine small intestinal
epithelial cell line (IPEC-J2) [17]. Therefore, gelatin peptides derived from seafood by-products exhibit
significant antioxidant activity to protect the skin from photoaging through alleviating UV-induced
abnormal changes of antioxidant defense systems, repairing endogenous collagen and elastin protein
fibers, and decreasing the loss of moisture and lipids.

Skipjack tuna (Katsuwonus pelamis) belongs to the family of Scombridae, which is an epipelagic
oceanic species widely distributed in subtropical and tropical seas [18]. It is the principal species of
tropical tuna, with about 2.16 million metric tons caught in the Pacific Ocean in 2015 [18]. In China,
a large amount of fish bones (spines and skulls) and skins are produced during the processing of tuna
cans production [3], which contain about 30% collagen. Therefore, the preparation of collagen, gelatin,
and bioactive peptides from tuna bones and skins could be a promising means to gain a value-added
product and to lower environmental pollution. Shyni et al. extracted the skin gelatin of skipjack
tuna and measured its physical and chemical properties, which indicated that its gelling temperature
is low [19]. Yu et al. prepared acid- and pepsin-soluble collagens from the spine and skull of the
skipjack tuna, and the data of the amino acid composition, SDS-PAGE pattern, and FTIR spectrum
confirmed that acid-soluble collagen were type I collagen [3]. However, there was little information
available about the preparation of gelatin and bioactive peptides using skipjack tuna bones. Therefore,
the aims of this work were to (i) prepare and characterize gelatin from skipjack tuna bones (STB-G),
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(ii) isolate and identify the antioxidant peptides from hydrolysate of STB-G, and (iii) evaluate the
in vitro antioxidant activities of isolated peptides form hydrolysate of STB-G.

2. Results and Discussion

2.1. Characterization of Gelatin from the Bones of Skipjack Tuna (STB-G)

2.1.1. Yield and Proximate Composition of STB-G

The yield of STB-G was 6.37 ± 0.64% (on a wet bone weight basis), which was significantly
lower than that (11.3 ± 0.03%) of gelatin from skipjack tuna skins [19]. The protein, moisture, ash,
and fat contents of STB-G were 90.14 ± 3.98 g/100 g, 7.68 ± 0.41 g/100 g, 0.88 ± 0.15 g/100 g,
and 0.68 ± 0.07 g/100 g, respectively. The protein content was higher than that (88.4 ± 0.12 g/100 g)
of gelatin from skins of skipjack tuna [19]. The results indicated that the impurities in the bones of
skipjack tuna were effectively removed through the extraction process of gelatin.

2.1.2. Amino Acid Composition of STB-G

The amino acid composition and MW distribution are two key factors that influence the properties
of gelatin [20]. As shown in Table 1, gelatin (STB-G) and Type I collagen (STB-C) from the bones
of skipjack tuna had similar amino acid compositions. Glycine was the most abundant amino acid
of STB-G and STB-C with contents of 340.3 and 339.1 residues/1000 residues, respectively, which is
because approximately 50–60% of α-chains consist of typical tripeptide repetitions (Gly-X-Y), where X
is mostly proline and Y is mainly hydroxyproline [21,22]. In addition, STB-G and STB-C were rich in
alanine, proline, and hydroxyproline, in decreasing order, which is consistent with previous reports
that those are the main amino acids in gelatins [20,23,24].

Table 1. Amino acid composition of gelatin (STB-G) and Type I collagen (STB-C) from the bones of
skipjack tuna (residues/1000 residues).

Amino Acid STB-G STB-C

Hydroxyproline (Hyp) 72.5 73.8
Glutamic acid (Glu) 64.7 66.7
Aspartic acid (Asp) 46.1 46.8

Threonine (Thr) 25.6 25.2
Serine (Ser) 36.4 33.3

Proline (Pro) 104.8 104.4
Glycine (Gly) 340.3 339.1
Alanine (Ala) 125.3 126.3
Cysteine (Cys) ND ND

Valine (Val) 25.4 26.0
Methionine (Met) 14.7 14.5

Isoleucine (Ile) 11.4 12.7
Leucine (Leu) 25.2 26.0
Tyrosine (Tyr) 4.3 2.9

Phenylalanine (Phe) 13.8 14.3
Hydroxylysine (Hyl) 5.6 4.9

Lysine (Lys) 29.2 29.5
Histidine (His) 5.5 5.3
Arginine (Arg) 49.2 48.3

Total 1000.0 1000.0
Imino acid (Pro + Hyp) 177.3 178.2

ND = not detected.

Hydroxyproline can form hydrogen bonds through its hydroxyl group to stabilize the
triple-stranded collagen helix [22,25]. Pyrrolidine rings of imino acids (proline and hydroxyproline) are
also confirmed to restrict the changes of the secondary structure of the polypeptide chain, and hence
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assist in reinforcing the thermal stability of the triple helical structure [14,26]. Therefore, the amount
of imino acids highly affects the stability of the triple helix structure of the renatured gelatins [5,22].
As shown in Table 1, the content of imino acids of STB-G was 177.3 residues/1000 residues, which
is similar to those of gelatins from the skin of dover sole (173–183 residues/1000 residues) [27] and
bigeye snapper (186–187 residues/1000 residues) [28], but significantly lower than that of bovine
gelatin (219.0 residues/1000 residues) [8]. Therefore, the helices of STB-G might be more unstable than
those of bovine gelatin due to their lower contents of imino acids.

2.1.3. Electrophoretic Pattern of STB-G

In addition to the amino acid composition, the distribution of the MW and composition of subunits
also influences the properties of gelatins and collagens. SDS-PAGE patterns of STB-G and STB-C are
shown in Figure 1. Similar protein patterns were observed from STB-G and STB-C, which consisted
of two α-chains (α1 and α2 chains), and the band intensities of the α1-chain were approximately
2-fold higher than those of the α2-chain. The pattern was similar to type I collagen from seafood
by-products [21,25]. It is generally known that type I collagen consists of two α1- and one α2-chain as
the major component ([α1]2α2).
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Figure 1. SDS-PAGE patterns of STB-G and STB-C analyzed by 7.5% separating gel and 4% stacking
gel. Lane 1. Type I collagen from bones of skipjack tuna (STB-C); Lane 2. Gelatin from the bones of
skipjack tuna (STB-G); Lane 3. Protein marker.

High MW components, particularly β (dimmers) and γ (trimers) components, were also observed
in the protein patterns of STB-G and STB-C, but the β and γ band intensities of STB-C were significantly
stronger than those of STB-G. In addition, the presence of peptides with MW below 100 kDa were
slightly noticeable in STB-G. Those results indicated that heat induced cleavages of protein chains of
STB-G during the extraction process [19,29].

2.1.4. Fourier transform infrared (FTIR) Spectrum of STB-G

As shown in Figure 2, STB-G and STB-C exhibited similar FTIR spectral profiles. The spectrum of
STB-G had major peaks associated with amide bands I (1631.9 cm−1), II (1546.5 cm−1), III (1242.6 cm−1),
A (3354.2 cm−1), and B (2932.8 cm−1), which were similar to those of gelatins from the skins of
seabass [30], golden carp [2], and brownbanded bamboo shark and blacktip shark [31].
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tuna (K. pelamis).

Amide I, II, and III bands are closely related to the triple helical structure of gelatin and collagen,
resulting from C=O stretching, N–H bending, and C–H stretching, respectively [5]. Amide I bands
occurring in the range of 1600–1700 cm−1 are primarily associated with C=O stretching vibration along
the polypeptide backbone or a hydrogen bond coupled with COO–, and a reduction of the molecular
order will result in a peak shift to a lower wavenumber [2,14]. Yakimets et al. (2005) reported that the
absorption wavenumber of the amide I band at 1634.7 cm−1 represented gelatin with a distinctive
coiled conformation [32]. The lower wavenumber of STB-G (1631.9 cm−1), compared to that of STB-C
(1642.1 cm−1), indicated that C=O stretching vibration was reduced and partial telopeptides were
degraded by heating during the preparation process [21]. The amide II band with wavenumbers
ranging from 1500 to 1600 cm−1 specifies the number of N–H groups involved in hydrogen bonding
with the adjacent α-chain; therefore, a lower wavenumber of the amide II band indicates both increased
hydrogen bonding by N–H groups, and a higher structure order [5,14]. The wavenumbers of STB-G
and STB-C were found to be 1546.5 and 1541.6 cm−1, respectively. The present data indicated that there
was less hydrogen bonding in STB-G than that in STB-C. Amide III absorption, which is associated
with the triple helix structure of collagen and is involved in C–N stretching and N–H in plane bending
from amide linkages, is normally very weak in FTIR. It also arises from wagging vibrations of CH2

groups from the glycine backbone and proline side-chains [26]. In this study, the amide III bands
of STB-G and STB-C were located at wavenumbers of 1242.6 cm−1 and 1240.2 cm−1, respectively.
The higher amplitude was suggested to be due to the conversion of the α-helix structure to random
coils upon heating. The changes were linked to the denaturation of collagen to gelatin with a loss in
the triple helical structure [2].

Normally, stretching vibration of free N–H groups occurs within the range of 3400–3440 cm−1 [21].
The wavenumber shifts to a lower frequency when the N–H group of the peptide is involved in
hydrogen bonding [14]. Figure 2 shows that the amide A wavenumbers of STB-C (3329.5 cm−1) and
STB-G (3354.2 cm−1) indicate that some N–H groups in STB-G and STB-C contributed to the formation
of hydrogen bonds, and the degree of hydrogen bonding in STB-C was more than that of STB-G.
The amide B band is related to asymmetric stretch vibrations of –NH+

3 and =C–H, and the shift of
amide B to a higher wavenumber is associated with an increase in free NH–NH+

3 groups from both
lysine residues and the N-terminus [5,14]. The wavenumbers of the amide B band of STB-C and STB-G
were found at 2936.1 cm−1 and 2932.8 cm−1, respectively, indicating STB-C had fewer free –NH+

3
groups than STB-G.

2.2. Purification of Antioxidant Peptides from Hydrolysate of STB-G

2.2.1. Preparation and Fractionation of Hydrolysate from STB-G

The ideal in vitro digestion method can provide a useful alternative to animal and human models
and serve as a tool for rapid screening foods or delivery systems with different compositions and
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structures [33]. Therefore, in vitro gastrointestinal (GI) digestion models are usually applied to prepare
protein hydrolysates due to their rapid, inexpensive, and safe properties [34,35]. STB-G was hydrolyzed
under in vitro GI digestion (pepsin-trypsin system), and the resulting hydrolysate (referred to as
STB-GH) with a degree of hydrolysis of 23.78 ± 1.24% could strongly scavenge DPPH radical with
a half elimination ratio (EC50) value of 3.28 mg protein/mL, which is lower than those of gelatin
(collagen) hydrolysates from tilapia skin (EC50 value of 3.66 mg/mL) [36], skate (Raja porosa) cartilage
(EC50 value of 13.13 mg protein/mL) [37], and bluefin leatherjacket skin (EC50 value of 5.23 mg
protein/mL) [38] and heads (15.98% at 10 mg/mL) [39], but higher than those of gelatin (collagen)
hydrolysates from salmon pectoral fin (EC50 value of 1.63 mg /mL) [34] and thornback ray (EC50 value
of 1.98 mg/mL) [40].

Gelatin hydrolysates contain multiple peptides with different chain lengths and amino acid
compositions. Hydrolysate fractions with smaller MW showed stronger antioxidant activity than
those of larger MW hydrolysates because peptides with a short chain length are more accessible to
free radicals and allow them to more easily trap the free radical [41,42]. For enrichment of functional
peptides, STB-GH was further divided into three fractions, including STB-GH-I (<3 kDa), STB-GH-II
(3–5 kDa), and STB-GH-III (>5 kDa), by ultrafiltration with MW Cut Off (MWCO) membranes of 3 and
5 kDa. As shown in Table 2, the EC50 value of STB-GH-I on the DPPH radical was 1.84 mg protein/mL,
which was significantly stronger than those of STB-GH (3.28 mg protein/mL), STB-GH-II (4.36 mg
protein/mL), and STB-GH-III (>10 mg protein/mL) (p < 0.05). This data was in line with previous
reports that the antioxidant abilities of protein hydrolysates were negatively correlated with their
average MW [43]. Therefore, STB-GH-I was selected for the subsequent chromatographic separation.

Table 2. EC50 values of gelatin hydrolysate from the bones of skipjack tuna (STB-GH) and its fractions
on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical.

Gelatin
Hydrolysate

and Fractions

EC50 Value
(mg protein/mL)

Gelatin
Hydrolysate

and Fractions

EC50 Value
(mg protein/mL)

Gelatin
Hydrolysate

and Fractions

EC50 Value
(mg protein/mL)

STB-GH 3.28 GH-I-2 3.47 GH-I-3C >10
STB-GH-I 1.84 GH-I-3 1.32 GH-I-3B1 2.68
STB-GH-II 4.36 GH-I-4 3.41 GH-I-3B2 0.87
STB-GH-III >10 GH-I-3A 3.69 GH-I-3B3 5.74

GH-I-1 8.73 GH-I-3B 1.08

All data are presented as the mean ± SD of triplicate results.

2.2.2. Anion-Exchange Chromatography

Acidic and hydrophobic amino acid residues in peptide sequences can be absorbed by the
anion-exchange resins on hydrogen bonds and/or van der Waals forces [44]. Therefore, anion exchange
resins are usually applied to isolated bioactive peptides and proteins from solutions. As shown in
Figure 3A, four fractions (GH-I-1 to GH-I-4) were separated from STB-GH-I using a DEAE-52 cellulose
column. Amongst them, GH-I-1 was eluted using deionized water (DW), and GH-I-2, GH-I-3, and
GH-I-4 were eluted using 0.1, 0.5, and 1.0 M NaCl, respectively. EC50 values of STB-GH-I and its four
fractions on the DPPH radical are shown in Table 2, and the data demonstrated that GH-I-3 with an
EC50 value of 1.32 mg protein/mL showed significantly stronger DPPH radical scavenging activity than
those of STB-GH-I (EC50 value of 1.84 mg protein/mL), GH-I-1 (EC50 value of 8.73 mg protein/mL),
GH-I-2 (EC50 value of 3.47 mg protein/mL), and GH-I-4 (EC50 value of 3.41 mg protein/mL) (p < 0.05).
Thus, GH-I-3 was selected for the following experiment.



Mar. Drugs 2019, 17, 78 7 of 18

Mar. Drugs 2019, 17, x  7 of 18 

 

STB-GH-I and its four fractions on the DPPH radical are shown in Table 2, and the data 

demonstrated that GH-І-3 with an EC50 value of 1.32 mg protein/mL showed significantly stronger 

DPPH radical scavenging activity than those of STB-GH-I (EC50 value of 1.84 mg protein/mL), 

GH-I-1 (EC50 value of 8.73 mg protein/mL), GH-I-2 (EC50 value of 3.47 mg protein/mL), and GH-I-4 

(EC50 value of 3.41 mg protein/mL) (p < 0.05). Thus, GH-І-3 was selected for the following 

experiment. 

 

Figure 3. Elution profile of STB-GH-І in diethylaminoethanol (DEAE)-52 cellulose anion-exchange 

chromatography (A), GH-І-3 in Sephadex G-25 chromatography (B), and GH-І-3B in a Superdex®  

Peptide 10/300 GL column (C). 

2.2.3. Gel Filtration Chromatography (GFC) 

GFC is a popular method for the preparation of proteins or peptides on their molecular size 

used in food products and pharmaceutical industries [41]. As shown in Figure 3B, GH-І-3 was 

further divided into three fractions (GH-І-3A to GH-І-3C) using a Sephadex G-25 column. The EC50 

value of GH-І-3B on the DPPH radical was 1.08 mg protein/mL, which was significantly higher than 

those of GH-І-3 (EC50 value of 1.32 mg protein/mL), GH-І-3A (EC50 value of 3.69 mg protein/mL), 

and GH-І-3C (EC50 value of >10 mg protein/mL) (p < 0.05). Therefore, fraction GH-І-3B was further 

separated into three components (GH-І-3B1 to GH-І-3B3) using a Superdex®  Peptide 10/300 GL 

column (300 mm × 10 mm, 13–15 μm) in the experiment (Figure 3C). As shown in Table 2, the EC50 

value of GH-І-3B2 on the DPPH radical was 0.87 mg protein/mL, which was significantly higher 

than those of GH-І-3B (EC50 value of 1.08 mg protein/mL), GH-І-3B1 (EC50 value of 2.68 mg 

protein/mL), and GH-І-3B3 (EC50 value of 5.74 mg protein/mL) (p < 0.05). Therefore, GH-І-3B2 

should contain strong antioxidant peptides and was suitable for the following separation process. 

2.2.4. Purification of Peptides from GH-І-3B by Reverse-Phase High Performance Liquid 

Chromatography (RP-HPLC) 

RP-HPLC is an effective technique applied to purify bioactive peptides in a hydrolysate 

mixture on their hydrophobic character [39]. As shown in Figure 4, GH-І-3B was finally purified 

using the RP-HPLC system on an Agilent 1260 HPLC system with a Zorbax C-18 column, and the 

eluted peptides were gathered separately on the chromatographic peaks. At last, five peptides with 

a retention time of 10.393 min (STP1), 12.096 min (STP2), 14.827 min (STP3), 17.168 min (STP4), and 

17.583 min (STP5) were collected and lyophilized for amino acid sequence identification and activity 

evaluation. 

Figure 3. Elution profile of STB-GH-I in diethylaminoethanol (DEAE)-52 cellulose anion-exchange
chromatography (A), GH-I-3 in Sephadex G-25 chromatography (B), and GH-I-3B in a Superdex®
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2.2.3. Gel Filtration Chromatography (GFC)

GFC is a popular method for the preparation of proteins or peptides on their molecular size used
in food products and pharmaceutical industries [41]. As shown in Figure 3B, GH-I-3 was further
divided into three fractions (GH-I-3A to GH-I-3C) using a Sephadex G-25 column. The EC50 value of
GH-I-3B on the DPPH radical was 1.08 mg protein/mL, which was significantly higher than those
of GH-I-3 (EC50 value of 1.32 mg protein/mL), GH-I-3A (EC50 value of 3.69 mg protein/mL), and
GH-I-3C (EC50 value of >10 mg protein/mL) (p < 0.05). Therefore, fraction GH-I-3B was further
separated into three components (GH-I-3B1 to GH-I-3B3) using a Superdex® Peptide 10/300 GL
column (300 mm × 10 mm, 13–15 µm) in the experiment (Figure 3C). As shown in Table 2, the EC50

value of GH-I-3B2 on the DPPH radical was 0.87 mg protein/mL, which was significantly higher than
those of GH-I-3B (EC50 value of 1.08 mg protein/mL), GH-I-3B1 (EC50 value of 2.68 mg protein/mL),
and GH-I-3B3 (EC50 value of 5.74 mg protein/mL) (p < 0.05). Therefore, GH-I-3B2 should contain
strong antioxidant peptides and was suitable for the following separation process.

2.2.4. Purification of Peptides from GH-I-3B by Reverse-Phase High Performance Liquid
Chromatography (RP-HPLC)

RP-HPLC is an effective technique applied to purify bioactive peptides in a hydrolysate mixture
on their hydrophobic character [39]. As shown in Figure 4, GH-I-3B was finally purified using the
RP-HPLC system on an Agilent 1260 HPLC system with a Zorbax C-18 column, and the eluted peptides
were gathered separately on the chromatographic peaks. At last, five peptides with a retention time of
10.393 min (STP1), 12.096 min (STP2), 14.827 min (STP3), 17.168 min (STP4), and 17.583 min (STP5)
were collected and lyophilized for amino acid sequence identification and activity evaluation.
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chromatography (RP-HPLC) on a Zorbax, SB C-18 column (4.6 mm × 250 mm) from 0 to 35 min.

2.3. Amino Acid Sequence Analysis and Mass Spectrometry of Peptides from Gelatin Hydrolysate of Skipjack
Tuna (K. pelamis) Bone

The amino acid composition, sequences, and molecular mass of five isolated peptides (STP1–STP8)
were determined using a protein sequencer and electrospray ionization mass spectrometry (ESI-MS),
and the results are shown in Table 3. The amino acid sequences of five gelatin peptides
(STP1–STP5) were identified as Gly-Pro-Asp-Gly-Arg (GPDGR, STP1), Gly-Ala-Asp-Ile-Val-Arg
(GADIVA, STP2), Gly-Ala-Pro-Gly-Pro-Glu-Met-Val (GAPGPQMV, STP3), Ala-Gly-Pro-Lys (AGPK,
STP4), and Gly-Ala-Glu-Gly-Phe-Ile-Phe (GAEGFIF, STP5) with MWs of 500.43, 544.55, 756.84, 374.39,
and 739.76 Da, respectively, which agreed well with their theoretical masses (Table 3).

Table 3. Retention time, amino acid sequences, and molecular mass of five antioxidant peptides
(STP1–STP5) from gelatin hydrolysate of skipjack tuna (K. pelamis) bone.

No. Retention Time (min) Amino Acid Sequence Theoretical Mass/Observed
Mass (Da)

STP1 10.393 GPDGR 500.51/500.43
STP2 12.096 GADIVA 544.60/544.55
STP3 14.827 GAPGPEMV 756.87/756.84
STP4 17.168 AGPM 374.46/374.39
STP5 17.583 GAEGFIF 739.82/739.76

2.4. Antioxidant Activity

To better evaluate the antioxidant activity of five isolated peptides (STP1–STP5) from gelatin
hydrolysate of skipjack tuna bone, four kinds of radical scavenging assays and lipid peroxidation
inhibition assay were tested, and the results are presented in Table 4 and Figures 5 and 6.

Table 4. Radical scavenging activity of five antioxidant peptides (STP1–STP5) from gelatin hydrolysate
of skipjack tuna (K. pelamis) bone.

No.
Half Elimination Ratio (EC50, mg/mL)

DPPH Radical Hydroxyl Radical Superoxide Anion Radical ABTS Cation Radical

STP1 2.49 ± 0.12 a 1.21 ± 0.08 a 1.48 ± 0.12 a 1.07 ± 0.07 a

STP2 0.57 ± 0.03 b 0.25 ± 0.02 b 0.52 ± 0.03 b 0.41 ± 0.03 b

STP3 1.93 ± 0.11 c 0.64 ± 0.05 c 0.68 ± 0.05 c 0.85 ± 0.06 c

STP4 1.66 ± 0.09 d 0.49 ± 0.03 d 1.22 ± 0.08 d 1.68 ± 0.11 d

STP5 0.30 ± 0.04 e 0.32 ± 0.03 b 0.48 ± 0.03 b 0.21 ± 0.03 e

All data are presented as the mean ± SD of triplicate results. a–e Values with the same letters indicate no significant
difference of different samples at the same radicals (p > 0.05).
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Figure 5. 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical (A), hydroxyl radical (B), superoxide anion
radical (C), and 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) cation radical (D)
scavenging activities of five antioxidant peptides (STP1-STP5) from gelatin hydrolysate of skipjack
tuna (K. pelamis) bone. All data are presented as the mean ± SD of triplicate results. a–f Values with the
same letters indicate no significant difference of different samples at the same concentrations (p > 0.05).
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Figure 6. Lipid peroxidation inhibition assays of five antioxidant peptides (STP1–STP5) from gelatin
hydrolysate of skipjack tuna (K. pelamis) bone. All data are presented as the mean ± SD of triplicate
results. a–f Values with the same letters indicate no significant difference of the different samples at the
same concentrations (p > 0.05).
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2.4.1. Radical Scavenging Activity

DPPH Radical Scavenging Activity

DPPH is a stable and cell-permeable radical that is commonly applied to measure the antioxidant
ability of peptides, which serve as hydrogen donor or free radical scavenger. The reaction of DPPH
with an antioxidant peptide produces the corresponding hydrazine, DPPH2, with the color of the
reaction solution changing from purple (absorbance at around 520 nm) to yellow [44]. As shown in
Figure 5A, five antioxidant peptides (STP1–STP5) showed strong DPPH radical scavenging activities
with a positive correlation between the concentration and the activity, but their activity was still lower
than that of the positive control of GSH at the same concentration. The EC50 value of STP5 was
0.30 mg/mL, which was significantly lower than those of STP1 (2.49 mg/mL), STP2 (0.57 mg/mL),
STP3 (1.93 mg/mL), and STP4 (1.66 mg/mL), respectively. In addition, The EC50 values of STP2
and STP5 were lower than those of most antioxidant peptides from protein hydrolysates of salmon
pectoral fin (TTANIEDRR: 2.503 mg/mL) [45], skate cartilages (FIMGPY: 2.60 mg/mL; GPAGDY:
3.48 mg/mL; IVAGPQ: 3.93 mg/mL) [37], scalloped hammerhead cartilage (GPE: 2.43 mg/mL;
GARGPQ: 2.66 mg/mL; GFTGPPGFNG: 1.99 mg/mL) [46], swim bladders of miiuy croaker (GIEWA:
0.78 mg/mL) [47], and blue mussel (YPPAK: 2.62 mg/mL) [48]. However, the EC50 values of STP2
and STP5 were higher than those of peptides from protein hydrolysates of grass carp skin (HFGBPFH:
0.20 mg/mL) [49] and skate muscle (NWDMEKIWD 0.289 mg/mL) [50]. Therefore, five gelatin
peptides (STP1 to STP5), especially STP2 and STP5, had a strong ability to serve as a hydrogen donor
or free radical scavenger for preventing the DPPH radical reaction.

Hydroxyl Radical Scavenging Activity

Hydroxyl radicals are able to instantaneously attack and unselectively oxidize biomacromolecules,
initiating the process of oxidative stress in an organism. Therefore, it is one of the important ways
to search for antioxidant agents. As presented in Figure 5B, five peptides (STP1–STP5) showed
dose-related effects in the scavenging activity of hydroxyl radicals at peptide concentrations ranging
from 0 to 5.0 mg/mL. The EC50 values of STP1, STP2, STP3, STP4, and STP5 were 1.21, 0.25, 0.64,
0.49, and 0.32 mg/mL, respectively, and STP2 exhibited the highest hydroxyl radical scavenging
ability among all isolated peptides at the same concentration, but its activity was still lower than that
of the positive control of GSH. The EC50 values of STP2 and STP5 were lower than those of most
peptides from protein hydrolysates of conger eel (LGLNGDDVN: 0.687 mg/mL) [51], giant squid
(NADFGLNGLEGLA: 0.612 mg/mL) [52], swim bladders of miiuy croaker (FPYLRH: 0.68 mg/mL;
GIEWA: 0.71 mg/mL) [47], grass carp skin (PYSFK: 2.283mg/mL; VGGRP: 2.055 mg/mL) [49],
and weatherfish loach (PSYV: 2.64 mg/mL) [53]. Nevertheless, EC50 values of STP2 and STP5
were still higher than those of antioxidant peptides from spotless smoothhound cartilage (AEVG:
0.06 mg/mL) [54], blue mussel (YPPAK: 0.228 mg/mL) [48], and skate muscle (NWDMEKIWD
0.176 mg/mL) [50]. The data indicated that STP2 and STP5 could act as a scavenger to decrease the
hydroxyl radical damage in biological systems.

Superoxide Anion Radical Scavenging Assay

Superoxide anion radical can undergo fenton-chemistry and produce the highly reactive hydroxyl
radical to inactivate enzymes with an iron-sulfur cluster, initiate lipid peroxidation, and react with
carbonyl compounds to generate toxic peroxy radicals. Superoxide anion radicals are catalyzed into
hydrogen peroxide and oxygen by superoxide dismutases (SOD) in an organism. Figure 5C indicates
that five antioxidant peptides (STP1–STP5) showed strong superoxide anion radical scavenging
activities in a dose-effect manner with EC50 values of 1.48, 0.52, 0.67, 1.22, and 0.48 mg/mL, respectively,
but their activities were still lower than that of GSH at a concentration ranging from 0.1 to 5.0 mg/mL.
The EC50 values of STP2, STP3, and STP5 were lower than those of peptides from protein hydrolysates
of miiuy croaker swim bladders (GFEPY: 0.87 mg/mL; FYKWP: 1.92 mg/mL; FTGMD: 3.04 mg/mL;
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GFYAA: 3.03 mg/mL; FSGLR: 3.35 mg/mL) [47], croceine croaker muscle (VLYEE: 0.693 mg/mL;
MILMR: 0.993 mg/mL) [55], bluefin leatherjacket heads (WEGPK: 3.223 mg/mL; GPP: 4.668 mg/mL;
GVPLT: 2.8819 mg/mL) [39], and skate cartilage (FIMGPY: 1.61 mg/mL; GPAGDY: 1.66 mg/mL;
IVAGPQ: 1.82 mg/mL) [37]. However, the EC50 values of STP2, STP3, and STP5 were higher than
those of peptides from protein hydrolysates of croceine croaker muscle (YLMR: 0.450 mg/mL) [55],
swim bladder of miiuy croakers (FPYLRH: 0.34 mg/mL; GIEWA: 0.30 mg/mL) [47], round scad
(HDHPVC: 0.265 mg/mL; HEKVC: 0.235 mg/mL) [56], monkfish muscle (FLHRP: 0.101 mg/mL;
LMGQW: 0.042 mg/mL) [57], and croceine croaker scales (GFRGTIGLVG: 0.463 mg/mL; GPAGPAG:
0.099 mg/mL; GFPSG: 0.151 mg/mL) [58]. Therefore, STP2, STP3, and STP5 can serve as superoxide
anion radical scavengers to eliminate radical damage together with SOD in organisms.

2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) Cation Radical Scavenging Assay

2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) is a popular measure of the
antioxidant capacities of peptides because ABTS is converted to its radical cation by the addition of
sodium persulfate, which shows a blue color with the absorbance at 734 nm. As shown in Figure 5D,
the ABTS cation radical scavenging ratios of five antioxidant peptides (STP1–STP5) increased with
an increasing concentration ranging from 0.1 to 5.0 mg/mL, but their activities were still lower than
that of GSH at the same concentration. The EC50 values of STP2 and STP5 were 0.41 and 0.21 mg/mL,
respectively, which were significantly lower than those of the other three peptides. Furthermore,
the EC50 values of STP2 and STP5 were lower than those of peptides from protein hydrolysates
of salmon (FLNEFLHV: 1.548 mg/mL) [44], skate cartilages (FIMGPY: 1.04 mg/mL; GPAGDY:
0.77 mg/mL; IVAGPQ: 1.29 mg/mL) [37], bluefin leatherjacket heads (WEGPK: 5.407 mg/mL; GPP:
2.472 mg/mL; GVPLT: 3.124 mg/mL) [39], and grass carp skin (VGGRP: 0.465 mg/mL) [49]). These
results indicated that the five antioxidant peptides (STP1–STP5), especially STP2 and STP5, could
effectively inhibit the ABTS cation radical chain reaction by converting it to the colorless form.

2.4.2. Lipid Peroxidation Inhibition Assay

The oxidative process is complicated in food and biological systems and embroiled in multifarious
reactions for the propagation of lipid radicals hydroperoxides [41,47]. As a consequence, we used
the lipid peroxidation inhibition assay in a linoleic acid model system to determine the antioxidant
abilities of five antioxidant peptides (STP1–STP5). As presented in Figure 6, the absorbance values at
500 nm of the STP2 and STP5 solutions were significantly lower than that of the blank control (without
antioxidant) and the other three peptides (STP1, STP3, and STP4). Furthermore, the absorbance values
at 500 nm of the STP2 and STP5 solutions were a little higher than that of the positive control of GSH.
The data indicated that the abilities of STP2 and STP5 on lipid oxidation inhibition were similar to that
of GSH in the tested system during 7 days incubation.

2.4.3. Relationship among the Molecular Size, Amino Acid Composition, and Antioxidant Activity
of STP1–STP5

Molecular size and amino acid composition and sequence are thought of as the key roles in the
antioxidant capacities of peptides [41]. In the study, the five antioxidant peptides (STP1–STP5) from
the gelatin hydrolysate of skipjack tuna bone are tetrapeptide to octapeptide with MWs ranging from
374.39 Da to 756.84 Da (Table 3). The data indicated that the five isolated peptides have a higher
possibility of interacting with free radicals to prevent lipid peroxidation [42,43].

Hydrophobic amino acids, such as Pro, Leu, Met, Ala, Val, and Ile, have a high reactivity to
hydrophobic PUFAs and exert their significant effects on radical scavenging in lipid-rich foods [41,59].
Therefore, the hydrophobic amino acid resides of Ala, Ile, and Val in STP2, and Ala and Ile in STP5
will help antioxidant peptides more easily contact with target free radicals. Moreover, aromatic groups
of Phe, Trp, and Tyr can keep radicals stable during the scavenging process by contributing protons to
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electron deficient radicals [60]. Therefore, Phe residues in the sequences of STP5 should contribute to
its antioxidant activity.

Polar amino acids are reported to play a critical role in hydroxyl radical scavenging and metal ion
chelating activities because of their carboxyl and amino groups in the side chains [61,62]. Zhu et al.
reported that peptides consisting of Glu, Lys, and Asp have strong abilities to chelate metal ions as
well as scavenge hydroxyl radicals [62]. Ren et al. reported that Arg had a greater capacity to scavenge
hydroxyl radicals [63]. A single hydrogen atom of Gly residue can provide high flexibility to the
peptide backbone and serve as a proton-donator to neutralize active free radicals [46,64]. Therefore,
polar amino acids, including Gly, Asp, and Arg residues in STP2, and Gly and Glu residues in STP5,
could play a critical role in their radical scavenging and lipid peroxidation inhibition activities.

3. Experimental Section

3.1. Materials

Bones of kipjack tuna (K. pelamis) were kindly supplied by Zhejiang Hailisheng Group Co. Ltd.
(Zhejiang, China). Type I collagen from the bones of skipjack tuna (STB-C) was prepared by our
lab. DEAE-52 cellulose, bovine serum albumin (BSA), and Sephadex G-25 were purchased from
Shanghai Source Poly Biological Technology Co., Ltd (Shanghai, China). Acetonitrile (ACN) of liquid
chromatogram grade and trifluoroacetic acid (TFA) were purchased from Thermo Fisher Scientific
Co., Ltd (Shanghai, China). DPPH, Superdex® Peptide 10/300 GL column, and ABTS were purchased
from Sigma–Aldrich (Shanghai) Trading Co., Ltd. (Shanghai, China). GPDGR (STP1), GADIVA
(STP2), GAPGPEMV (STP3), AGPM (STP4), and GAEGFIF (STP5) with purity higher than 98% were
synthesized in China Peptides Co. (Suzhou, China). All other reagents were analytical grade and
purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).

3.2. Preparation of Gelatin (STB-G) and Gelatin Hydrolysate (STB-GH) of Kipjack Tuna Bone

Bones of kipjack tuna were prepared following a previously established protocol [3]. Briefly,
frozen bones were unfrozen and processed into small pieces (1–2 cm). Then, bone debris were mixed
with 0.1 M NaOH at a bone/solution ratio of 1:10 (w/v) for 6 h, and the solution was replaced
every 2 h to remove non-collagenous proteins. The alkaline-bone pieces were washed with tap
water at a ratio of 1:20 (w/v) for 3 times. After that, the bone pieces were demineralized with 0.5 M
EDTA-2Na (pH 7.4) at a ratio of 1:10 (w/v) for 12 h, and the solution was changed every 12 h. Then,
the demineralized-bone pieces were washed with tap water at a ratio of 1:20 (w/v) for 10 min and the
washing was performed 3 times. The demineralized-bone pieces were then soaked in 0.2 M acetic
acid solution with a bone/solution ratio of 1:10 (w/v) for 24 h, and acidic solution was changed every
12 h to swell the collagenous material in the bone. Acid treated bone pieces were washed with tap
water until the wash water became neutral and finally washed with distilled water (DW) to remove
other residues.

The gelatin was extracted from pretreated bone pieces of kipjack tuna using the method described
by Shyni et al. with a slight modification [19]. The gelatin extraction was carried out in DW at 60 ◦C for
8 h with a bone/water ratio of 1:10 (w/v). Finally, the extracting solution was filtered with filter paper,
and the filtrate was centrifuged at 12,000 g for 15 min. The resulting supernatant, named as STB-G,
was obtained and lyophilized. The yield of gelatin was calculated on the dry matter of freeze-dried
collagens in comparison with the wet weight of bones used for extraction.

STB-G hydrolyzed under in vitro gastrointestinal digestion (pepsin-trypsin system) was
performed following the method of Phongthai et al. [35]. Gelatin dispersions (pH 1.5, 1%, w/v)
were hydrolyzed using pepsin at pH 1.5, 37.0 ◦C with a total enzyme dose of 1% (w/w, 1 g enzyme/100
g gelatin). In 2 h, the mixture was neutralized with NaOH solution (1.0 M) and hydrolyzed using
trypsin at pH 7.0, 37.0 ◦C with a total enzyme dose of 1% (w/w, 1 g enzyme/100 g gelatin) for 2 h.
After that, the gelatin hydrolysate was heated at 90 ◦C for 15 min to terminate trypsin digestion and
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centrifuged at 8000 g for 15 min at room temperature. The resulting supernatant, referred to as STB-GH,
was collected, freeze-dried, and kept at −20 ◦C for further analysis. The concentrations of STB-GH and
its fractions were expressed as mg protein/mL and measured by the dye binding method of Bradford
with BSA as the standard protein.

3.3. Characterization of Gelatin (STB-G)

3.3.1. Proximate Analysis

Moisture, ash, fat, and protein contents of the skull, spine, and collagen were determined
according to the methods of Association of Official Analytical Chemist (AOAC) with the method
numbers of 950.46B, 920.153, 960.39 (a), and 928.08, respectively [65].

3.3.2. Determination of Amino Acid Composition

Amino acid analysis was measured according to the methods described by Zhao et al. [47]. STB-G
was dissolved in DW to obtain a final concentration of 1 mg/ml, and an aliquot of 50 mL was dried
and hydrolyzed in vacuum-sealed glass tubes at 110 ◦C for 24 h in the presence of constant boiling of
6 mM HCl containing 0.1% phenol and using norleucine as the internal standard. After hydrolysis,
samples were again vacuum-dried, dissolved in application buffer, and injected into an automated
amino acid analyser (HITACHI 835-50 Amino Acid Analyzer, Tokyo, Japan).

3.3.3. SDS-PAGE

Electrophoretic patterns of STB-G and STB-C were measured according to the previous method
with a slight modification, using 7.5% separating gel and 4% stacking gel [14]. The samples (10 µg
proteins) were mixed with the sample loading buffer (60 mM Tris-HCl, pH 8.0, containing 25% glycerol,
2% SDS, 0.1% bromophenol blue) at a 4:1 (v/v) ratio in the presence of β-ME, then applied to sample
wells and electrophoresed in an electrophoresis instrument (AE-6200, ATTO Corporation, Japan).
The electrophoresis was carried out for about 4 h at a constant voltage of 100 V. After electrophoresis,
the gel was fixed with 50% (v/v) methanol and 10% acetic acid for 30 min. The gel was then stained for
3 h with 0.05% (w/v) Coomassie blue R-250 in 15% (v/v) methanol and 5% (v/v) acetic acid. The gel
was finally destained with 30% (v/v) methanol and 10% (v/v) acetic acid. High MW marker was used
to estimate the MWs of proteins. Type I collagen from the bones of skipjack tuna (STB-C) was used as
a standard.

3.3.4. FTIR

The infrared spectra (450–4000 cm−1) of STB-G and STB-C were recorded in KBr disks with a
Fourier transform IR spectrophotometer (Nicolet 6700, Thermo Fisher Scientific Inc., Waltham, MA,
USA). One milligram of dry sample was mixed with 100 mg of dry KBr, and the mixture was pressed
into a disk for spectrum recording.

3.4. Isolation of Peptides from STB-GH

3.4.1. Fractionation of STB-GH

STB-GH was fractionated using ultrafiltration (8400, Millipore, Hangzhou, China) with 3 and
5 kDa MWCO membranes (Millipore, Hangzhou, China), and three fractions termed STB-GH-I
(MW <3 kDa), STB-GH-II (MW 3–5 kDa), and STB-GH-III (MW >5 kDa) were collected and lyophilized.

3.4.2. Anion-Exchange Chromatography

STB-GH-I solution (5 mL, 40.0 mg/mL) was injected into a DEAE-52 cellulose column (1.6 cm
× 80 cm) pre-equilibrated with DW, and stepwise eluted with 150 mL DW, 0.1 M NaCl, 0.5 M
NaCl, and 1.0 M NaCl solution at a flow rate of 1.0 mL/min, respectively. Each eluate (5 mL) was
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monitored at 214 nm. Finally, five fractions (GH-I-1 to GH-I-4) were pooled and lyophilized on the
chromatographic peaks.

3.4.3. Gel Filtration Chromatography

GH-I-3 solution (5 mL, 20.0 mg/mL) was separated on a Sephadex G-15 column (2.6 cm × 160
cm) eluted with DW at a flow rate of 0.6 mL/min. Each eluate (3 mL) was collected and monitored at
214 nm, and the fraction of GH-I-3B solution (25 µL, 10.0 mg/mL) was further separated by ÄKTA
avant 25 (GE Healthcare Life Sciences, Chicago, IL, USA) with a Superdex® Peptide 10/300 GL column
(300 mm × 10 mm, 13–15 µm) at a flow rate of 0.75 mL/min. The eluted DW was monitored at 214 nm,
and three subfractions (GH-I-3A, GH-I-3B, and GH-I-3C) were collected and lyophilized.

3.4.4. RP-HPLC

GH-I-3B2 was further purified on an Agilent 1260 HPLC system (Agilent Ltd., Santa Rosa, CA,
USA) with a Zorbax, SB C-18 column (4.6 mm × 250 mm). The sample was eluated with a linear
gradient of acetonitrile (0–50% in 0–35 min) in 0.1% TFA at a flow rate of 0.8 mL/min. Five antioxidant
peptides (STP1 to STP5) were isolated on the absorbance at 214 nm and lyophilized.

3.5. Amino Acid Sequence and Molecular Mass Analysis

The amino acid sequences and molecular masses of five isolated peptides (STP1 to STP5) were
measured on an Applied Biosystems 494 protein sequencer (Perkin Elmer/Applied Biosystems Inc.,
Foster City, CA, USA) and a Q-TOF mass spectrometer coupled with an electrospray ionization
source, respectively.

3.6. Antioxidant Activity

The lipid peroxidation inhibition and radical scavenging assays of five isolated peptides (STP1 to
STP5) were determined by the previous method [47], and the results of the radical scavenging assays
were expressed as a half elimination ratio (EC50) defined as the concentration where a sample caused a
50% decrease of the initial concentration of DPPH radical, hydroxyl radical, superoxide anion radical,
and ABTS cation radical, respectively. The calculation method of EC50 was according to the linear
relationship of radical scavenging rates and concentrations of samples.

3.7. Statistical Analysis

The data are reported as the mean ± standard deviation (SD) with three determinations.
A one-way analysis of variance (ANOVA) test for differences between the means of each group was
applied to analyzed data using SPSS 19.0 (Statistical Program for Social Sciences, SPSS Corporation,
Chicago, IL, USA). A p-value of less than 0.05 was considered statistically significant.

4. Conclusions

In the experiment, the gelatin (STB-G) of skipjack tuna (K. pelamis) bone was extracted using hot
water and its physicochemical properties (SDS-PAGE, FT-IR, and amino acid composition) indicated
that it was similar to collagen from skipjack tuna bone and was more suitable for preparation of
hydrolysate than mammalian gelatin. Therefore, STB-G was hydrolyzed under in vitro gastrointestinal
digestion and five antioxidant peptides were purified from the resultant hydrolysate and identified as
GPDGR, GADIVA, GAPGPQMV, AGPK, and GAEGFIF, respectively. The five peptides exhibited high
radical scavenging and lipid peroxidation inhibition capabilities, and their activities benefitted from
their small molecular sizes and the antioxidant amino acid residues in their sequences. The present
results indicated that gelatin hydrolysate and antioxidant peptides from skipjack tuna bones may be
applied as an ingredient in new functional foods. In addition, cell and animal level experiments will
be performed to discuss the antioxidant mechanism of the five antioxidant peptides.
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