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Background: Artificial Intelligence (AI) holds considerable promise for

diagnostics in the field of gastroenterology. This systematic review and meta-

analysis aims to assess the diagnostic accuracy of AI models compared with

the gold standard of experts and histopathology for the diagnosis of various

gastrointestinal (GI) luminal pathologies including polyps, neoplasms, and

inflammatory bowel disease.

Methods: We searched PubMed, CINAHL, Wiley Cochrane Library, and Web

of Science electronic databases to identify studies assessing the diagnostic

performance of AI models for GI luminal pathologies. We extracted binary

diagnostic accuracy data and constructed contingency tables to derive the

outcomes of interest: sensitivity and specificity. We performed a meta-analysis

and hierarchical summary receiver operating characteristic curves (HSROC).

The risk of bias was assessed using Quality Assessment for Diagnostic

Accuracy Studies-2 (QUADAS-2) tool. Subgroup analyses were conducted

based on the type of GI luminal disease, AI model, reference standard,

and type of data used for analysis. This study is registered with PROSPERO

(CRD42021288360).

Findings: We included 73 studies, of which 31 were externally validated and

provided sufficient information for inclusion in the meta-analysis. The overall

sensitivity of AI for detecting GI luminal pathologies was 91.9% (95% CI: 89.0–

94.1) and specificity was 91.7% (95% CI: 87.4–94.7). Deep learning models

(sensitivity: 89.8%, specificity: 91.9%) and ensemble methods (sensitivity:

95.4%, specificity: 90.9%) were the most commonly used models in the

included studies. Majority of studies (n = 56, 76.7%) had a high risk of selection

bias while 74% (n = 54) studies were low risk on reference standard and 67%

(n = 49) were low risk for flow and timing bias.
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Interpretation: The review suggests high sensitivity and specificity of AI

models for the detection of GI luminal pathologies. There is a need for

large, multi-center trials in both high income countries and low- and middle-

income countries to assess the performance of these AI models in real clinical

settings and its impact on diagnosis and prognosis.

Systematic review registration: [https://www.crd.york.ac.uk/prospero/

display_record.php?RecordID=288360], identifier [CRD42021288360].

KEYWORDS

artificial intelligence, systematic review, gastroenterology, diagnostic accuracy,
pathologies

Introduction

Gastrointestinal (GI) pathologies contribute to a significant
burden of disease worldwide. With 89 million global disability-
adjusted life years (DALYs), GI pathologies contributed 3.5%
(2,280 million cases) to the total global DALYs in 2019, with
a greater prevalence in low and middle-income countries
(LMICs) (1). In 2018, there were more than 36·8 million
ambulatory visits in the United States for GI symptoms and
43·4 million had a primary GI diagnosis. Annually, a total of
22.2 million GI endoscopies were performed, with 284,844 new
GI cancers diagnosed and 255,407 deaths (2). Other parts of
the world, including LMICs also have an increasing burden of
GI pathologies, as 80% of the esophageal cancer burden of the
world is from LMICs, with poor survival (3). The morbidity
and mortality due to GI causes is higher than other common
pathologies and hence underscores a significant burden that GI
adds to the overall health care system.

Despite this high burden of disease, there are multiple
challenges that hinder the provision of optimal GI care. In
LMICs, it is often the lack of resources such as endoscopy
equipment and availability of skills and experts for timely
diagnosis and intervention (4). In high income regions, these
challenges include high costs along with discrepancies in
facilities and training (5). Overcoming these challenges would
require significant amount of resources and time. Although
progress has been made globally to enhance these skills, this
capacity is still lagging. However, innovations in technology
have proven to be a beacon to overcome these challenges adeptly
and efficiently.

The introduction of artificial intelligence (AI) in health
care has led to innovations in diagnosis, management and
prognosis of many conditions at a fast pace. AI algorithms in
gastroenterology have been studied over many years to automate
the interpretation of diagnostic procedures in gastroenterology
albeit with varying levels of success. Since 2010, AI has explored
multiple procedures and pathologies in gastroenterology (6).

The AI models have been applied to the interpretation of
endoscopy, pill video endoscopy, ultrasound manometry, and
microcytoscopy (7–17). Traditionally, these procedures yield
large amounts of data which require an expert’s time and
attention to draw clinical conclusions. However, AI models
in these studies have shown to recognize polyps, areas of
inflammation, and degrees of inflammation accurately. A recent
randomized controlled trial reported much lower miss rates
for a deep learning model for polyp detection compared
to the standard (20.1% vs. 31.2%) (18). The massive influx
and availability of data, along with promising performance
of AI in lesion detection, makes incorporation of AI in
healthcare promising. However, there is a need to synthesize the
existing literature to quantify the accuracy of AI algorithm in
detection of GI disease.

The primary objective of this systematic review and meta-
analysis was to assess the diagnostic accuracy of AI models
compared with the gold standard of experts and histopathology
for the diagnosis of various gastrointestinal luminal pathologies,
including polyps, neoplasms, inflammatory bowel disease (IBD),
celiac disease, and Barrett’s esophagus. The secondary objective
was to describe the diagnostic accuracy of different types of AI
models for the diagnosis of each GI luminal pathology.

Methods

The protocol for this review was prospectively registered
at PROSPERO (CRD42021288360). We followed the Preferred
Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) guidelines for diagnostic test accuracy for analysis
reporting in this publication (19).

Eligibility criteria and search strategy

We included all observational studies that reported the
diagnostic results of an AI algorithm for the detection of GI
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luminal pathologies when compared to a reference standard
(expert opinion or consensus, histopathology, or laboratory
testing such as urea breath test for H. pylori etc.). No
restrictions were applied based on the age at diagnosis or
type of AI algorithm used in the study. Studies with an
unclear description of reference standard or type of GI luminal
pathologies, published in a language other than English,
and those that graded the severity of an already diagnosed
disease were excluded. We excluded letters, opinions, preprints,
scientific reports, and narrative reviews. Studies based on
animals or non-human samples or that presented duplicate
data were excluded.

We searched PubMed, CINAHL, Wiley Cochrane
Library, and Web of Science electronic databases to
identify relevant articles published until January 27, 2021.
The keywords used for the search included, “Algorithms,”
“Artificial Intelligence,” “Machine Learning,” “Deep Learning,”
“Supervised Machine Learning,” “Unsupervised Machine
Learning,” “Gastroenterology,” “Celiac Disease,” “Inflammatory
Bowel Disease∗,” “Irritable Bowel Syndrome,” “Polyp∗,”
“Crohn Disease,” “Gastro∗,” “Endoscopy,” “Scopy,” “Capsule
Endoscopy,” “Endomicroscopy,” “Colonoscopy,” “Ultrasound
Manometry,” “Diagnosis,” “Diagnos∗,” “Accuracy,” “Sensitivity
and Specificity,” “Area Under Curve,” “Sensitivity,” and
“Specificity.” A full search strategy for each database is available
in Supplementary material. All records were imported to
Covidence, and duplicates were removed.

Screening and data extraction

Two authors (AS and FR) independently screened titles
and abstracts to assess for potential eligibility. Full texts of all
screened studies were also reviewed by two authors for final
selection. We manually searched bibliographies and citations of
included studies and relevant systematic reviews to identify any
additional relevant articles that might have been missed in the
initial search. Eligibility assessment was done by two reviewers
at all stages independently, and disagreements were resolved by
involving a third reviewer (JKD, OP).

Two authors (AS and UJ) independently extracted
information to a pre-formed data extraction sheet on Excel.
Data obtained included information about the study (first
author, year of publication, journal, study title, country, income
region of the country according to the World Bank, aim of the
study, study design, study setting, sample size (including size of
training and test set), method of population selection, patient
characteristics (age range, type of GI luminal pathologies), the
AI algorithm used, the reference standard, the type of data used
for analysis (per-image, per-lesion, or per-patient analysis),
reported performance metrics (sensitivity, specificity, and area
under the curve), validation of the model (internal or external)
and sub-group data if present.

Risk of bias assessment

The risk of bias was assessed by two authors (AS, UJ)
independently using quality assessment for diagnostic accuracy
studies-2 (QUADAS-2) tool (20). Domains for risk of bias
included patient selection, index test, reference standard, and
flow and timing, with the first three domains also considered
in terms of applicability concerns. If one of the questions
within the domain was scored at high risk of bias, the domain
was scored as high risk. Disagreements in data extraction and
quality assessment were resolved by discussion with a third
reviewer (ZH or JKD).

Data analysis

Where possible, we extracted 2 × 2 contingency tables
or data to construct such tables. Contingency tables consisted
of true-positive, false-positive, true-negative, and false-negative
results, and were used to calculate sensitivity, specificity, and
accuracy. External validation is important to establish the
quality and generalizability of machine learning models (21),
while internally validation alone has a potential to overestimate
the accuracy of the model (22), therefore to estimate the
accuracy of AI algorithms, we conducted a meta-analysis of
studies that provided data for contingency tables separate for
externally validated data (test data) and internally validated data
(training data). If a study tested more than one AI model or
more than one dataset, all contingency tables were included in
the meta-analysis.

For all included studies, we entered the data provided
into Review Manager (RevMan 5.4.1) software (23) where
the sensitivity, specificity and their 95% confidence intervals
(CIs) were presented in the form of forest plots and receiver
operating characteristic (ROC) curves. This analysis utilized
the sensitivity and specificity results from each included
study using the metandi command for bivariate model in
STATA version 17 (24) to generate hierarchical Summary
ROC (HSROC) curves.

Subgroup analyses were conducted based on the type of
GI luminal pathologies, AI model, reference standard, and data
used for analysis (image, lesions, or patients). Subgroup analyses
were performed if at least four studies in each sub-group
could be analyzed together. Subgroup analysis was conducted
on the various GI luminal pathologies listed, types of AI
models used, reference standards and types of input data (per
patient, image, or lesion). We grouped AI models together
according to their class (Figure 1). We performed separate
analysis for externally and internally validated studies. We
also conducted an exploratory analysis on internally validated
studies to evaluate the diagnostic accuracy of AI models on
internally validated data.
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FIGURE 1

Model classification. Source: Brownlee (104).

Results

The search strategy identified 5,586 articles for title/abstract
screening, of which 219 full texts were screened for eligibility.
Altogether, 73 studies were included in the review. Of these
studies, 68 studies were externally validated and five were
internally validated. Among the externally validated studies 31
(42.5%) studies were included in the meta-analysis (10, 17, 25–
53) while 37 (50.7%) studies were narratively synthesized due to
insufficient information to calculate the contingency tables (11–
14, 54–86). The five (6.8%) internally validated studies provided
sufficient information to calculate contingency tables and were
included in the exploratory analysis (87–91). The details of the
study flow diagram have been shown in Figure 2.

Among the 73 included studies, 53 (72.6%) were case-
control, 17 (23.3%) were cohort, one (1.4%) was a mixed-
method study, and two (2.7%) studies failed to define the
study design (Tables 1,2). Majority of the included studies were
conducted in high income countries (HICs) (n = 54, 73.9%) and
upper–middle income countries (UMICs) (n = 14, 19.2%), while
four (5.5%) were conducted in both HICs and UMICs, and one
(1.4%) in both HIC and LMIC. Diagnostic performance of AI
was most tested on colorectal polyps (n = 29, 39.7%), followed
by ulcers (n = 7, 9.6%), celiac disease (n = 6, 8.2%), IBD (n = 5,
6.8%), Barrett’s esophagus (n = 3, 4.1%), and gastric polyps
(n = 3, 4.1%). Sixteen studies used AI to differentiate between

benign and precancerous or cancerous polyps, while 10 studies
used AI to diagnose more than one type of disease.

Only 23 (31.5%) studies reported the age of the participants.
Nineteen studies (82.6%) reported on adult population, three
(13%) on pediatric population and one (4.3%) study reported
on both. At least one dataset used in 16 (21.9%) studies, was a
publicly available database (34, 37–39, 42, 43, 47, 50, 54, 58, 60,
67, 68, 71, 76, 81). Sixty three (86.3%) studies used their own
data (10–14, 17, 25–36, 38–41, 44–46, 48, 49, 51–53, 55–59, 61–
66, 69, 70, 72–91), while 18 (28.6%) collected data prospectively
(11, 13, 26, 27, 32, 35, 38, 39, 45, 55, 56, 59, 65, 70, 73, 74, 80, 87).

Methodological quality of the included
studies

Details of risk of bias and applicability concerns are
presented in Figure 3. Fifty-six studies (76.7%) had a high risk of
bias in patient selection (11–13, 17, 25–27, 29–31, 34, 36–39, 41–
44, 46, 47, 50–54, 57, 58, 60–72, 74–79, 81, 83–86, 88–91), mostly
due to the case-control study design (n = 54, 74%) (11–13, 17,
25–27, 29–31, 34, 36–39, 41–44, 46, 47, 50–54, 57, 58, 60–64, 66–
72, 75–79, 81, 83–86, 88–91). Two studies had low risk of bias for
patient selection because of random participant sampling, and
due to appropriate exclusion of participants (55, 87), while 15
studies (20.5%) did not provide sufficient information for risk
classification (10, 14, 28, 32, 33, 35, 40, 45, 48, 49, 56, 59, 73, 80,
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TABLE 1 Table of included studies (polyps).

Author and
year published

Country and
income region

Age Study Design AI model Type of
gastrointestinal
pathologies

Reference
standard

Sample size External
validation

Sensitivity Specificity

Bagheri et al.,
2019 (54)

Iran, UMIC NR Case-control CNN Polyps Already labeled
open dataset

358 images Yes 0.83 0.99

Becq et al., 2019
(55)

USA, HIC >50 years Cohort CNN Polyps Experts 50 videos NR 0.99 NR

Blanes-Vidal
et al., 2019 (56)

Denmark, HIC NR Cohort CNN Polyps Experts 255 patients,
375 lesions,
11,300 images

Yes 0.97 0.93

Byrne et al.,
2019 (25)

Canada, HIC NR Case-control CNN Adenomatous polyps Histology 125 videos Yes 0.83 0.98

Chen et al., 2018
(26)

Taiwan, HIC >18 years Case-control CNN Neoplastic polyps Histology 2441 images Yes 0.96 0.78

Cho et al., 2018
(59)

South Korea,
HIC

19-75 years Cohort SVM Polyps Experts 113 patients No 0.82 0.89

Ding et al., 2019
(28)

China, UMIC NR NR CNN Inflammation,
ulcers, polyps,
protruding lesions,
vascular pathologies,
bleeding, parasites,
diverticula

Experts 8940 patients,
113,426,569
images

Yes 0.1 0.1

Fernandez-
Esparrach et al.,
2016 (60)

Spain, HIC NR Case-control WM-DOVA
energy maps

Polyps Experts 612 images,
24 videos,
31 lesions

NR 0.70 0.72

Figueiredo et al.,
2019 (29)

Portugal, HIC Mean: 57 years Case-control SVM Polyps Histology 42 patients,
3040 images

Yes LBP: 0.1 LBP: 0.78

LBP (without
inpainting): 0.1

LBP (without
inpainting): 0.73

LBP+P: 0.1 LBP+P: 0.8

M-LBP: 0.97 M-LBP: 0.85

M-LBP (without
inpainting):

M-LBP (without
inpainting):

0.98 0.75
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TABLE 1 (Continued)

Author and
year published

Country and
income region

Age Study Design AI model Type of
gastrointestinal
pathologies

Reference
standard

Sample size External
validation

Sensitivity Specificity

Fu et al., 2014
(86)

Taiwan, HIC 32-88 years Case-control SVM Adenomatous polyps Experts 100 patients,
100 images

Yes NR NR

Ganz et al., 2012
(61)

UK, HIC NR Case-control gPb-OWT-UCM Adenomatous polyps Dataset 1:
Experts
Dataset 2: NR

Dataset 1: 52
images
Dataset 2:93
images

Yes NR NR

Gross et al., 2011
(87)

Germany, HIC NR Cohort SVM Neoplastic polyps Histology 214 patients,
415 lesions

No 0.95 0.90

Guo et al., 2020
(30)

China, UMIC NR Case-control CNN Polyps, erosions,
ulcers, varices,
advanced cancer

Experts 117,005 lesions,
327,121 images

Yes Without
annotation: 0.71
With
annotation: 0.88

Without
annotation: 0.71
With
annotation: 0.90

Itoh et al., 2019
(62)

Japan, HIC NR Case-control CNN Polyps Experts 951 patients,
1027 videos

Yes 0.86 0.97

Jin et al., 2020
(32)

Korea, HIC NR Cohort CNN Adenomatous polyps Histology 2450 images Yes 0.83 0.92

Kudo et al., 2020
(33)

Japan, HIC Mean: 66.3 years Cohort SVM Neoplastic polyps Histology 100 lesions Yes 0.97 0.1

Lee et al., 2020
(34)

Korea, HIC NR NR DL Polyps Datasets 1 and 2:
NR
Dataset 3: Histology
Dataset 4:
Already labeled
open dataset
Datasets 5 and 6:
Experts

361,567 images Yes 0.89 0.87

Maslekar et al.,
2010 (35)

UK, HIC >18 years Cohort ANN Lower GI
pathologies: polyps,
colitis, and
colorectal cancer

Experts 350 patients Yes 0.88 0.92

Mori et al., 2018
(65)

Japan, HIC >18 years Cohort SVM Neoplastic polyps Experts 791 patients NR NR NR

Ozawa et al.,
2020 (69)

Japan, HIC NR Case-control CNN Polyps Experts 12,895 patients,
16,418 images

Yes 0.92 NR
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TABLE 1 (Continued)

Author and
year published

Country and
income region

Age Study Design AI model Type of
gastrointestinal
pathologies

Reference
standard

Sample size External
validation

Sensitivity Specificity

Patel et al., 2020
(37)

USA and China,
HIC and UMIC

NR Case-control CNN Adenomatous polyps Experts
annotated the
open datasets

157 videos,
35,981 frames

Yes VGG-19 (set 1):
0.84

VGG-19 (set 1):
0.63

VGG-19 (set 2):
0.84

VGG-19 (set 2):
0.74

VGG-19 BN (set
1): 0.72 VGG-19
BN (set 2): 0.79
ResNet50 (set 1):
0.81 ResNet50
(set 2): 0.71
DenseNet (set
1): 0.78
DenseNet (set
2): 0.71 SENet
(set 1): 0.77
SENet (set 2):
0.81

VGG-19 BN (set
1): 0.79 VGG-19
BN (set 2): 0.74
ResNet50 (set 1):
0.67 ResNet50
(set 2): 0.71
DenseNet (set
1): 0.70
DenseNet (set
2): 0.71 SENet
(set 1): 0.72
SENet (set 2):
0.62

MnasNet (set 1):
0.77 MnasNet
(set 2): 0.73

MnasNet (set 1):
0.66 MnasNet
(set 2): 0.68

Poon et al., 2020
(38)

Hong Kong,
HIC

NR Dataset 1–4:
case-control
Dataset 6: cohort

CNN Polyps Datasets 1–4:
already labeled
open datasets
Dataset 5: NR
Dataset 6:
Histology

4,443,728 images Yes Dataset A: 0.72
Dataset B: 0.72

Dataset A: 0.73
Dataset B: 0.92

Pu et al., 2020
(70)

Australia and
Japan, HIC

Dataset 1: NR
Dataset 2: >18

Case-control CNN Polyps Histology 283 lesions,
1304 images

Dataset 1: No
Dataset 2: Yes

NR NR

Qadir et al., 2020
(71)

Norway, HIC NR Case-control CNN, SSD Polyps Already labeled
open dataset

69 videos Yes FP model of
Faster R-CNN:
0.76 FP model of
SSD: 0.57

FP model of
Faster R-CNN:
0.1 FP model of
SSD: 0.98

Renner et al.,
2018 (39)

Germany, HIC >18 years Case-control Deep NN Adenomatous polyp Dataset 1:
already labeled
open dataset
Dataset 2:
Histology

1079 images Yes 0.92 0.62

Rodriguez-Diaz
et al., 2020 (40)

USA, HIC NR Cohort DL Neoplastic polyps Histology 405 patients,
887 lesions,
1265 images

Yes 0.96 0.84
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TABLE 1 (Continued)

Author and
year published

Country and
income region

Age Study Design AI model Type of
gastrointestinal
pathologies

Reference
standard

Sample size External
validation

Sensitivity Specificity

Saito et al., 2020
(41)

Japan, HIC Mean 60.1 years Case-control CNN Polyps, nodules,
epithelial tumors,
submucosal tumors,
and venous
structures

Experts 385 patients,
48,091 images

Yes 0.91 0.8

Shi et al., 2019
(73)

China, UMIC 40-64 years Cohort SSD Gastric polyps Experts 43 patients Yes NR NR

Shin et al., 2018
(43)

Norway, HIC NR Case-control Dictionary based
learning scheme,
SVM

Polyps Already labeled
open dataset

1891 images Yes 0.96 0.96

Shin et al., 2017
(42)

Norway, HIC NR Case-control SVM, CNN Polyps Already labeled
open dataset

1891 images Yes HOG+SVM: 0.7
Combined
feature+SVM:
0.87 CNN
(gray): 0.87
CNN (RGB):
0.91

HOG+SVM:
0.82 Combined
feature+SVM:
0.81 CNN
(gray): 0.32
CNN (RGB):
0.92

Silva et al., 2013
(44)

France, HIC NR Case-control LVQ, AdaBoost,
Hough
transform

Polyps Experts 1500 images Yes Hough
transform: 0.94
Log Gabor: 0.42
Real Adaboost:
0.77 Attentional:
0.91 LVQ
classification:
0.92

Hough
transform: 0.15
Log Gabor: 0.89
Real Adaboost:
0.93 Attentional:
0.95 LVQ
classification:
0.86

Song et al., 2020
(45)

Korea, HIC NR Cohort CNN Neoplastic polyps Dataset 1:
Histology
Dataset 2:
Experts

1169 images Yes Serrated polyps
(set 1): 0.82
Serrated polyps
(set 2): 0.74
MSMC (set 1):
0.84 MSMC (set
2): 0.88 DSMC
(set 1): 0.59
DSMC (set 2):
0.62

Serrated polyps
(set 1): 0.94
Serrated polyps
(set 2): 0.94
MSMC (set 1):
0.75 MSMC (set
2): 0.72 DSMC
(set 1): 0.93
DSMC (set 2):
0.97

Tajbakhsh et al.,
2016 (47)

USA, HIC NR Case-control RF Polyps Already labeled
open dataset

300 videos Yes 0.48 0.9

Tajbakhsh et al.,
2015 (46)

USA, HIC NR Case-control CNN Polyps Experts 40 videos Yes 0.5 0.1

Taunk et al.,
2019 (48)

USA, HIC 52-82 years Cohort SVM Neoplastic polyps Histology 26 patients,
47 lesions,
189 images

Yes 0.95 0.94

(Continued)

Fro
n

tie
rs

in
M

e
d

icin
e

0
8

fro
n

tie
rsin

.o
rg

https://doi.org/10.3389/fmed.2022.1018937
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fm
ed-09-1018937

O
ctober31,2022

Tim
e:14:27

#
9

P
arkash

e
t

al.
10

.3
3

8
9

/fm
e

d
.2

0
2

2
.10

18
9

3
7

TABLE 1 (Continued)

Author and
year published

Country and
income region

Age Study Design AI model Type of
gastrointestinal
pathologies

Reference
standard

Sample size External
validation

Sensitivity Specificity

Tischendosrf
et al., 2010 (74)

Germany, HIC NR Cohort Linear classifiers,
KNN, SVM

Neoplastic polyps Histology 128 patients,
209 lesions

No 0.9 0.7

Urban et al.,
2018 (14)

USA, HIC NR Cohort CNN Polyps Experts Dataset 1: 8641
images
Datasets 2 and 3:
20 videos

Yes 0.93 0.93

Viscaino
et al2019 (50)

Chile, HIC NR Case-control SVM, DT, KNN,
RF

Polyps Already labeled
open dataset

1132 images Yes SVM: 0.99
DT: 0.95
KNN: 0.98
RF: 0.97

SVM: 0.97
DT: 0.94
KNN: 0.97
RF: 0.95

Wang et al.,
2018 (76)

China, UMIC NR Case-control DL Polyps Dataset 1: expert
Dataset 2 and 4:
histology
Dataset 3:
already labeled
open dataset
Dataset 5: NR

Dataset 1:
5545 images,
1293 patients
Dataset 2: 27,113
images,
1138 patients
Dataset 3:
612 images
Dataset 4:
138 videos,
110 patients
Dataset 5: 54
videos,
54 patients

Yes 0.94 0.96

Wang et al.,
2020 (52)

China, UMIC 0-18 years Case-control CNN Polyps Experts 1600 children,
41500 images

Yes VGG-16 GAP
(CP CHILD A):
0.96 VGG-19
GAP (CP
CHILD A): 0.97
ResNet 101 GAP
(CP CHILD A):
0.97 ResNet 152
GAP (CP
CHILD A): 0.97
VGG-16 GAP
(CP CHILD B)
:0.97 VGG-19
GAP (CP
CHILD B): 0.98
ResNet 101 GAP
(CP CHILD B):
0.98 ResNet 152
GAP (CP
CHILD B): 0.98

VGG-16 GAP
(CP CHILD A):
0.99 VGG-19
GAP (CP
CHILD A): 0.1
ResNet 101 GAP
(CP CHILD A):
0.1 ResNet 152
GAP (CP
CHILD A) : 0.1
VGG-16 GAP
(CP CHILD B):
0.1 VGG-19
GAP (CP
CHILD B): 0.1
ResNet 101 GAP
(CP CHILD B) :
0.1 ResNet 152
GAP (CP
CHILD B): 0.1

(Continued)
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TABLE 1 (Continued)

Author and
year published

Country and
income region

Age Study Design AI model Type of
gastrointestinal
pathologies

Reference
standard

Sample size External
validation

Sensitivity Specificity

Xia et al., 2021
(53)

China, UMIC NR Case-control CNN Gastric erosions,
polyps, ulcers,
submucosal tumors,
and xanthomas

Experts 797 patients,
1,023,955 images

Yes 0.96 0.1

Yang et al., 2020
(91)

China, UMIC NR Cohort NVLLC, SVM Polyps Experts 1000 images No 0.96 0.96

Yuan et al., 2017
(79)

Hong Kong,
HIC

NR Case-control Stacked SAE Polyps Experts 4000 images NR NR NR

Zachariah et al.,
2020 (80)

USA, HIC NR Case-control CNN Adenomatous polyps Histology 5912 images Yes NBI: 0.96 WL:
0.95 NBI+WL:
0.96 Diagnose
and leave: 0.91

NBI: 0.90 WL:
0.88 NBI+WL:
0.90 Diagnose
and leave: 0.88

Zhang et al.,
2017 (81)

Hong Kong,
HIC

NR Case-control CNN Adenomatous polyps Dataset 1:
histology
Dataset 2:
already labeled
open database

2262 images No NR NR

Zhang et al.,
2019 (82)

China, UMIC NR Case-control SSD, CNN Gastric polyps Experts 575 images Yes NR NR

Zhao et al., 2011
(83)

Hong Kong,
HIC

NR Case-control HMM, KNN Polyps Experts 1520 images NR NR NR

Zhao et al., 2015
(84)

USA, HIC NR Case-control HMM Polyps Experts 5029 images No NR NR

ANN: artificial neural network; CNN: convolutional neural network; DL: deep learning; DSMC: deep submucosal cancer; DT: decision trees; GAP: global average pooling; gPb-OWT-UCM: global probability of boundary followed by the oriented watershed
transform and ultrametric contour maps; FP: false positive; HIC: high-income country; HMM: hidden markov model; HOG: histogram of oriented gradient; KNN: k-nearest neighbor; LBP: local binary pattern; LMIC: lower-middle-income country; LVQ:
learning vector quantization; M-LBP: monogenic local binary pattern; MSMC: mucosal or superficial submucosal tumor; NBI: narrow band imaging; NVLLC: normal variant locality-constrained linear coding; R-CNN: region-based convolutional neural
network; RF: random forest; RGB: red, green, blue; SAE: sparse autoencoder; SENet: squeeze-and-excitation network; SSD: single shot detector; SVM: support vector machine; UMIC: upper-middle income country; WL: white light; WM-DOVA: window
median depth of valleys accumulation; NR: not reported.

Fro
n

tie
rs

in
M

e
d

icin
e

10
fro

n
tie

rsin
.o

rg

https://doi.org/10.3389/fmed.2022.1018937
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fm
ed-09-1018937

O
ctober31,2022

Tim
e:14:27

#
11

P
arkash

e
t

al.
10

.3
3

8
9

/fm
e

d
.2

0
2

2
.10

18
9

3
7

TABLE 2 Table of included studies (other gastrointestinal luminal pathologies).

Author and year published Country and
income region

Age Study design AI model Type of
gastrointestinal

pathologies

Reference
standard

Sample size External
validation

Sensitivity Specificity

Charisis et al. (57) Greece, HIC NR Case-control BEEMD Ulcers Experts 6 patients, 80
images

No 0.95 0.96

Charisis and Hadjileontiadis (58) Greece, HIC NR Case-control SVM Crohn’s disease Dataset 1:
experts Dataset

2: already
labeled open

dataset

Dataset 1: 13
patients, 800
dataset 2: 102

images

No NR NR

de Groof et al. (27) Netherlands,
HIC

NR Case-control CNN Barrett’s
neoplasia

Experts 20 patients Yes 0.76 0.86

Huang et al. (88) Taiwan, HIC NR Case-control HHDF-SVM GERD Experts 147 patients No 0.95 0.93

Hwang et al. (31) South Korea,
HIC

NR Case-control CNN Hemorrhagic
and ulcerative

lesions

Experts 13,316 images Yes Binary model:
0.95 Combined

model: 0.98

Binary model:
0.98 Combined

model: 0.96

Klang et al. (63) Israel, HIC 21–40 years Case-control CNN Crohn’s disease Histology and 49 patients, No NR NR

expert 17,460 images

Li et al. (64) China and USA,
UMIC and HIC

NR SVM Celiac disease Experts 23 patients, 460
images

Yes NR NR

Maeda et al. (10) Japan, HIC Mean: 50 years Cohort SVM Ulcerative colitis Histology 187 patients,
22,835 images

Yes 0.74 0.97

Mossotto et al. (11) UK, HIC 1.6–17.6 years Case-control SVM Ulcerative colitis
and Crohn’s

disease

Experts 287 patients Yes NR NR

Namikawa et al. (36) Japan, HIC NR Case-control CNN Gastric cancer Experts 95,721 images Yes 0.99 0.93

Otani et al. (66) Japan, HIC Mean: 63.3 years Case-control Deep neural
network, SSD

Erosions, ulcers,
angioectasias,
and tumors

Experts 455 patients, No NR NR

Owais et al. (67) Korea, HIC NR Case-control CNN, RNN All GI
pathologies

Already labeled
open dataset

52,471 images,
77 videos

Yes NR NR

(Continued)
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TABLE 2 (Continued)

Author and year published Country and
income region

Age Study design AI model Type of
gastrointestinal

pathologies

Reference
standard

Sample size External
validation

Sensitivity Specificity

Owais et al. (68) Korea, HIC NR Case-control CNN, RNN All GI
pathologies

Already labeled
open dataset

52,471 images,
77 videos

Yes NR NR

Ozawa et al. (12) Japan, HIC 14–83 years Case-control CNN Ulcerative colitis Experts 558 patients, Yes NR NR

30,285 images

Sevo et al. (72) Bosnia, UMIC NR Case-control Kernel based
edge detection

Inflammation Experts 3 videos NR NR NR

Struyvenberg et al. (89) Sweden and
Netherlands,

HIC

NR Case-control CNN Barrett’s
neoplasia

Dataset 1:
Experts Datasets

2 and 3:
Histology

1,587 videos No Dataset 3: 0.88
Dataset 4: 0.85

Dataset 3: 0.77
Dataset 4: 0.83

Swager et al. (90) Netherlands,
HIC

Mean: 67 years Case-control SVM, DA,
AdaBoost, RF,
k-NN, naive
Bayes, linear

regression, and
logistic

regression

Barrett’s
neoplasia

Histology 60 images No 0.9 0.93

Syed et al. (13) Pakistan,
Zambia, and

USA, LMIC and
HIC

Median: 31
months

Case-control CNN Environmental
enteropathy and

celiac disease

Histology and
clinical findings

102 patients,
3,118 images

No NR NR

Tenorio et al. (49) Brazil, UMIC NR Cohort DT, Bayesian
inference, KNN,

SVM, ANN

Celiac disease Histology 216 patients Yes 0.93 0.96

Vecsei et al. (75) Austria, HIC NR Case-control KNN, SVMs,
and Bayes
classifier

Celiac disease Histology 391 images No NR NR

Wang et al. (77) China, UMIC NR Case-control CNN Ulcers Experts 1,416 videos,
1,416 patients

No 0.92 0.92

Wang et al. (51) China, UMIC NR Case-control CNN Ulcers Experts 47,202 images Yes 0.9 0.9

Wang et al. (78) China and USA,
UMIC and HIC

NR Case-control DL, SVM, KNN,
LDA, CNN

Celiac disease Experts 25 patients,
2,140 images

No 0.89 0.9

Zheng et al. (85) China, UMIC Mean: 48.5 years Case-control CNN H. pylori
infection

HHistology and
breath test

1959 patients,
15,484 images

Yes 0.81 0.9

Zhou et al. (17) China,
Hong Kong, and
USA, UMIC and

HIC

≥ 18 years Case-control CNN Celiac disease Experts 21 patients Yes 0.1 0.1

ANN, artificial neural network; BEEMD, bidimensional ensemble empirical mode decomposition; CNN, convolutional neural network; DA, discriminant analysis; DL, deep learning;; GERD, Gastro-esophageal reflux disease; HHDF-SVM, hierarchical
heterogeneous descriptor fusion support vector machine; HIC, high-income country; KNN, k-nearest neighbor; LDA, linear discriminant analysis; LMIC, lower-middle-income country;, re RF, random forest; RNN, recurrent neural network; SSD, single
shot detector; SVM, support vector machine; UMIC, upper-middle income country; NR, not reported.
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FIGURE 2

Study selection.

82). Majority of the studies had unclear (n = 63, 86.3%) (10, 11,
13, 14, 17, 25–33, 35, 36, 38, 39, 41–45, 48–55, 57–59, 61–88, 91)
or high (n = 9, 12.3%) (12, 34, 37, 46, 47, 56, 60, 89, 90) risk
of bias for index test, which was most often due to insufficient
information on blinding of the index test (n = 67, 91.8%) (11–
14, 17, 25–33, 36–39, 41–64, 66–72, 74–91) and pre-specification
of diagnostic threshold (n = 61, 83.6%) (10, 11, 13, 14, 17, 25, 26,
29–33, 35, 36, 38, 39, 41–45, 48–55, 57–59, 61–88, 91). Fifty-four
(74.0%) studies were classified as low risk for reference standard
due to correct classification of the condition and interpretation

of diagnostic test without the knowledge of the index test (10–
13, 17, 26–36, 38, 39, 41, 44, 45, 47–49, 51–53, 56, 58–63, 69–72,
74–79, 81–90), while 49 (67.1%) were categorized as low risk for
flow and timing biases due to inclusion of all the participants,
appropriate interval between index test and reference standard
and due to provision of same reference standard to the all the ails
of risk of bias and applicab participants (10, 11, 13, 17, 26–33,
35–37, 41, 45, 48, 51–53, 55–64, 69, 70, 72, 74–79, 81–85, 87–
89, 91). No study had concerns about applicability in all three
domains.
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Detection of any gastrointestinal
luminal pathology by externally
validated artificial intelligence models

Thirty-six studies provided sufficient information to
calculate contingency table values (10, 17, 25–53, 87–91). Of
these, 31 studies (86.1%) conducted external validation and
were included in the meta-analysis (10, 17, 25–53). Contingency
tables of per-image analyses were used for the meta-analysis;
if the study did not report per-image analyses, then per-lesion
results were included. If neither per-image nor per-lesion
analyses were reported, per-patient results were used. The
hierarchical summary ROC curve of these studies is shown in
Figure 4. The overall sensitivity from these studies was 91.9%
(95% CI: 89.0–94.1) while the specificity was 91.7% (95% CI:
87.4–94.7).

Subgroup analyses based on different
gastrointestinal luminal pathologies

Polyps (n = 13, 36.1%) (29, 34, 38, 42–48, 50, 52, 91) and
neoplasms (n = 14, 38.9%) (25–27, 32, 33, 36, 37, 39, 40, 45,
48, 87, 89, 90) were the most commonly reported GI luminal
pathologies. Two studies (5.5%) modeled AI for the detection of
celiac disease (17, 49), while ulcers (51), IBD (10), and GERD
(88) were reported in one study (2.8%) each. The sensitivity
of AI models for detecting polyps was 94.0% (95% CI: 88.7–
97.0) and the specificity was 95.4% (89.9–98.0) (Figure 5A).
AI models demonstrated a sensitivity of 86.3% (95% CI: 82.0–
89.7) and specificity of 82.6% (95% CI: 75.6–87.9) for diagnosing
GI luminal neoplasms (Figure 5B). No subgroup analyses were
performed for the other pathologies due to insufficient number
of studies.

Subgroup analyses based on artificial
intelligence model

Twenty-two studies used deep learning (61.1%) (17, 25, 26,
28, 30–32, 34, 36–42, 44–46, 51–53, 89) and 15 studies used
ensemble methods (41.7%) (10, 27, 29, 33, 42–44, 47–50, 87, 88,
90, 91) for the detection of GI luminal pathologies, while the
other AI models reported by the studies included artificial neural
networks (ANN) (n = 1, 2.8%) (35), k-nearest neighbors (kNN)
(n = 1, 2.8%) (50) learning vector quantization (LVQ) (n = 1,
2.8%) (44) and decision trees (n = 1, 2.8%) (50). The sensitivity
of deep learning models to detect any GI luminal pathology was
89.8% (95% CI: 85.9–92.7) while that of ensemble methods was
95.4% (95% CI: 91.3–97.6). The specificity of deep learning and
ensemble methods was 91.9% (95% CI: 85.7–95.6) and 90.9%
(95% CI: 86.2–94.1), respectively (Supplementary Figures).

ANN, k-NN, LVQ, and decision trees weren’t included in the
subgroup analyses due to the lack of sufficient number of studies.

Subgroup analyses based on different
reference standards

Twenty (55.5%) studies used expert diagnosis (17, 27, 28,
34, 36–38, 41–47, 50–53, 88, 91) and 14 (38.9%) studies used
histopathology as the reference standard (10, 25, 26, 32, 33,
38–40, 45, 48, 49, 87, 89, 90). The sensitivity and specificity
of AI models when compared to expert opinion was 90.5%
(95% CI: 86.5–93.4) and 93.3% (95% CI: 88.1–96.4). Studies that
used histopathology as the reference standard reported 79.8%
(95% CI: 38.2–96.2) sensitivity and 97.6% specificity (95% CI:
94.0–99.1) (Supplementary Figures).

Detection of any gastrointestinal
luminal pathology by internally
validated artificial intelligence models

The performance of AI models on internally validated data
(n = 5, 13.8%) (87–91) was similar to its performance on
externally validated data (sensitivity: 91.9%; 95% CI: 89.0–94.1,
specificity: 91.7%; 95% CI: 87.4–94.7). The exploratory analysis
of internally validated studies showed a sensitivity of 92.9% (95%
CI: 89.3–95.4) and specificity of 90.1% (83.8–94.1%).

Discussion

This meta-analysis aimed to synthesize the existing evidence
regarding diagnostic accuracy of AI models in detecting
common GI luminal pathologies as compared to the reference
standard. AI models such as deep learning techniques and
ensemble methods were the most commonly deployed models
to detect GI luminal pathologies with reported high sensitivity
and specificity (> 90%). The most common GI luminal
pathologies investigated were the occurrence of polyps and GI
neoplasm, both of which had high accuracy.

AI is rapidly gaining momentum across various industries
including healthcare. AI has been used in diagnostics,
management and improving administrative efficiency of
healthcare systems (92). Benefits of AI have been reported in
several fields of medicine including cardiology (93), radiology
(94) and pediatrics (95). Gastroenterologists are a subset of
clinicians who handle large volumes of clinical as well as
imaging data obtained through various procedures such as
endoscopy and colonoscopy (96). AI algorithms have proven to
show high accuracy in diagnosing various gastroenterological
pathologies such as polyps, Barrett’s esophagus, celiac disease
and Inflammatory Bowel disease (96). These algorithms range
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FIGURE 3

Risk of bias in the included studies.

FIGURE 4

Hierarchical summary ROC curve for externally validated studies.
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FIGURE 5

Hierarchical summary ROC curve for detecting GI luminal diseases. (A) GI polyps and (B) GI neoplasms.

from neural networks to ensemble methods such as support
vector machines and deep learning techniques (96). In the
current review, deep learning and ensemble methods were the
most commonly used AI models in the included studies. Our
study reported a sensitivity of 86.3% and specificity of 82.6%
for diagnosing GI luminal neoplasms. This is similar to the
meta-analysis done by Zhang et al. which reported a sensitivity
of 94% and specificity of 82% for AI models on esophageal
neoplasms only (97). Similarly, a meta-analysis of the accuracy
of AI was superior to experts in the detection of conditions such
as Barrett’s esophagus and helicobacter Pylori infection (98).

From the 73 studies included in this review, only one study
was from a LMIC (Pakistan) while the remaining were from
UMIC or HICs. As demonstrated by the Global Burden of
Disease data, the burden of benign and neoplastic GI pathologies
in LMICs is significantly higher than UMIC and HICs (99).
The disproportionately high prevalence of disease alongside
poor access to healthcare facilities, lack of equipment and
trained professionals in these regions contributes to poor health
outcomes (100). It is in these regions that AI may play a
disruptive role in healthcare. The areas of impact of AI in LMICs
have been well documented by the United States Agency for
International Development (USAID) where physician decision
support systems may be one of the domains where deployment
of these algorithms could help increase access and high-quality
care for medical conditions such as GI pathologies which are
highly prevalent in these regions (101). Despite this potential
implication and similar to other complex conditions prevalent

in LMICs (102), published literature on use of AI in healthcare
in these regions is lacking.

As seen in the current review as well, majority of literature
on AI in medicine is retrospective. The number of prospective
studies where AI is implemented in a clinical setting is limited.
There is lack of methodological rigor in the design and conduct
of the studies published with the risk of bias in most of the
domains stated as unclear or high. It is for this reason that
clinicians specifically and health systems in general, lack the
confidence in such algorithms thus precluding implementation
and large-scale benefits of AI in real world settings (103). Future
work needs to include methodological rigor in prospectively
designed collaborative studies to demonstrate the use of AI in
detection of GI pathologies in HICs as well as LMICs. With
higher accuracy of detecting these conditions as compared to a
human interpreter, the implications of AI in terms of efficient
use of resources and better patient outcomes can be substantial.

To the best of our knowledge, this is the first meta-analysis
on the diagnostic accuracy of AI algorithms in both upper
and lower GI pathologies. Compared to other reviews, we
also explored various subgroups in terms of best performing
AI models and across world regions where these studies
had been conducted. However, there are some limitations
of our work. Our review included studies published in the
English Language only. This review focused on certain GI
luminal pathologies and is no means an exhaustive exercise
to include other GI conditions such as liver, pancreatic and
biliary pathology. We also did not include studies where AI
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models utilized in gastroenterological radiology were compared
to expert radiologists.

AI models have the potential to accurately diagnose GI
lesions based on endoscopic findings as compared to experts.
These results could have significant implications for patient
related outcomes in resource constrained settings where trained
personnel to interpret these images are limited. However, to
fully reap the benefits of AI models, prospectively designed
large, multi-center studies are required to demonstrate the
effectiveness of the results and for implementation of AI into
routine clinical practice across HIC and LMICs.
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