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" Introduction: Glaucoma is a vision-threatening disease associated with accelerated aging of trabecular
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X : ‘ meshwork (TM) which results in elevated intraocular pressure (IOP). Increased oxidative stress in TM
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26 November 2022 plays an important role in cellular molecular damage which leads to senescence. Autophagy is an
Accepted 6 December 2022 intracellular lysosomal degradation process which is activated when cells are under stressful condition,
and emerging studies have demonstrated increased expression of modulators of apoptosis and expres-
sion of autophagic cascade in ex-vivo TM specimens or cultured TM cells under oxidative stress. Recently,

ﬁg:gﬁify'mal stem cell studies have shown neuroprotective and I0P-lowering effects after transplanting mesenchymal stem
Apoptosis cells (MSCs) or injecting condition medium (CM) of MSCs into ocular hypertension animal models.
Autophagy However, knowledge of the underlying mechanism accounting for these effects is limited. Using con-
Trabecular meshwork cell dition medium (CM) from human bone marrow-derived mesenchymal stem cells (BM-MSCs), we

investigated the effects of the CM derived from BM-MSCs on TM autophagy and apoptosis.

Methods: H;0, was added to culture medium of human TM cells to mimic oxidative damage in glau-
comatous eyes, and the autophagic and anti-apoptotic effects of BM-MSCs-derived CM was explored on
the oxidatively damaged cells. Mitochondrial ROS production was examined by MitoSOX™, apoptosis
was evaluated using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) staining,
and the expression of proteins involved in autophagy as well as extracellular matrix was investigated via
Western blot.

Results: There were no significant differences in TM cell viability when the cells were treated with
different concentrations of CM in the absence of oxidative stress. Cell viability was significantly higher in
oxidatively damaged TM cells treated with 1X or 5X CM compared to untreated TM cells under oxidative
stress. The mitochondrial ROS level significantly increased with oxidative stress, which was mitigated in
the CM treatment groups. DNA fragmentation significantly decreased in oxidatively stressed TM cells
after treatment with CM. LCB3 II/LCB3 I was significantly elevated in the oxidative stress group compared
to the control group and was significantly decreased in the CM treatment groups. Expression of fibro-
nectin was not significantly different among the groups.

Conclusion: The CM derived from human BM-MSCs has the capacity to rescue oxidatively damaged
human TM cells associated with decreased autophagy and apoptosis. The BM-MSCs CM has potential for
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slowing down age- and disease-related degeneration of TM in patients with glaucoma, facilitating suc-

cess in the control of IOP.

© 2022, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

1. Introduction

Glaucoma, a leading cause of irreversible blindness worldwide,
is a degenerative optic neuropathy that manifests as progressive
visual field loss. An estimated 8 million people will suffer from
bilateral blindness caused by this disease in the near future [1,2].
Elevated intraocular pressure (IOP) and aging are two of the most
important risk factors for glaucoma. Currently, IOP-lowering ther-
apy is the only effective treatment to slow the progression of visual
field loss [3,4].

The IOP depends on the balance between the production of
aqueous humor from the ciliary process and excretion of it
through the trabecular meshwork (TM). As the production of
aqueous humor in patients with glaucoma remains comparable to
that of individuals without glaucoma [5,6], the balance relies
mostly on the function of the TM, a reticular structure in the
anterior chamber angle of the eye. Studies on human TM speci-
mens have shown significantly fewer TM cells and increased
extracellular matrix (ECM) accumulation in glaucomatous eyes
compared to those of age-matched controls [7—9]. In addition,
reactive oxygen species (ROS) generated through a light-
dependent reaction with melanin in the iris may induce mito-
chondrial dysfunction and oxidative damage of TM cells, impair-
ing aqueous humor outflow [7—10]. Human studies have shown
that glaucomatous eyes have a higher level of oxidative damage to
both the nuclear and mitochondrial DNA, which is proportional to
the severity of the visual field defect. This phenomenon is present
even in eyes with well-controlled IOP treated by glaucoma
medication, indicating ongoing oxidative damage in the TM
despite treatment [11—14].

Autophagy is a survival reaction when tissue is under stress or
environmental change. It has a variety of physiological and patho-
physiological roles and acts as a cellular housekeeper to control
functional qualities. Autophagy has been reported to be associated
with the development of some neurodegenerative diseases and ag-
ing [15,16]. Porter et al. demonstrated a decrease in autophagic ac-
tivity in porcine TM cells using an experimental model mimicking
chronic oxidative stress, which is in line with the notion that
oxidative stress may decrease autophagic activity [16,17].

In the field of ophthalmology, stem cell therapy is a promising
strategy for the treatment of glaucoma [18—20]. In particular,
bone marrow-derived mesenchymal stem cells (BM-MSCs) have
been broadly explored as a new e via the secretion of cytokines
and growth factors [21—23]. Compared to stem cells themselves,
stem cell-derived conditioned medium (CM) has the advantages
of being easier to manufacture and simpler to pack and transport
[24]. Recent studies have shown the neuroprotective and IOP-
lowering effects of transplanting MSCs or injecting the CM of
MSCs (MSC CM) into a rat model of ocular hypertension [25].
However, the cellular mechanisms for how MSCs or MSC CM
achieve these effects on TM cells have not been discussed in the
literature. Here, we investigate the capacity of CM derived from
human BM-MSCs to promote the survival and maintain the
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functions of human TM cells by evaluating cell proliferation,
autophagy, and apoptosis.

2. Materials and methods
2.1. Culture of human TM cell

Human TM cells (6590, ScienCell Research Laboratories, USA)
were cultured in Trabecular Meshwork Cell Medium (TMCM, 6591,
ScienCell Research Laboratories, USA) containing 2% fetal bovine
serum (FBS, 0010, ScienCell Research Laboratories, USA), 1%
Trabecular Meshwork Cell Growth Supplement (6592, ScienCell
Research Laboratories, USA), and 1% penicillin/streptomycin solu-
tion (P/S, 0503, ScienCell Research Laboratories, USA). The cultured
cells were incubated at 37 °C in a 5% CO, atmosphere. The cell
culture media was changed every 3 days.

2.2. Preparation of CM from human BM-MSCs

BM-MSCs (7500, ScienCell, USA) were cultured in Mesen-
chymal Stem Cell Medium (7501, ScienCell, USA) composed of
basal growth medium, 5% FBS (0025, ScienCell, USA), 1% Mesen-
chymal Stem Cell Growth Supplement (7552, ScienCell, USA), and
1% P/S (0503, ScienCell, USA). The cell culture media was changed
every 3 days. BM-MSCs at passage 9 were seeded in the culture
dish for 16 h and washed three times with PBS. BM-MSCs were
cultured in basal medium for an additional 24 h at 37 °C in a 5%
CO; atmosphere. The medium was collected and concentrated 40x
using a 10 kDa centrifugal filter (Amicon Ultra-15, Millipore, USA)
[25]. The CM from human BM-MSCs (BM-MSC CM) was stored at
4 °C until use.

2.3. Evaluating the effects of cell proliferation by BM-MSC CM on
human TM cells

The cell viability of 1, 5, and 10-fold concentrated BM-MSC CM
on TM cells was determined using Cell Counting Kit 8 (CCK-8,
Dojindo, USA) after cultivation for 16 h. Human TM cells were
cultured at a density of 5000 cells per well in a 96-well plate and
maintained for 1 day. The TMCM containing detached cells was
removed and replaced with basal growth medium or the BM-
MSC CM. The basal growth medium and 1, 5, or 10-fold
concentrated BM-MSC CM were then separately added to the
wells (200 pl per well) as the culture medium throughout the
culture. At 16 h, cells were washed with PBS and then incubated
with CCK-8 reagent following the manufacturer's instructions.
The optical density (OD) at 450 nm was measured by enzyme-
linked immunosorbent assay (ELISA, Sunrise remote, TECAN,
USA). The cell viability was calculated using the following
formula:

ODexperimental group 0Dblank

Cell viability (%)= ODontrol group — ODblank

x100
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2.4. Constructing an oxidatively damaged CM-treated TM cell
model

TM cells were cultured in 24-well plates at a cell density of
10,000/well. After proper adhesion of the cells, 250 M H,0; were
added. After culturing for 30 min, CM was added to a final con-
centration of 1X or 5X. After another 15.5 h, the mitochondrial ROS
production, autophagy-related protein expression, DNA fragmen-
tation, cell viability, and ECM-related protein levels were analyzed.
The H,0,-damaged TM cells without further treatment was called
the H group. The damaged cells treated with 1X and 5X BM-MSC
CM were called the H-1X CM and H-5X-CM groups, respectively.

2.5. Mitochondrial ROS production

Mitochondrial ROS production was evaluated by MitoSOX™
(M36008, Invitrogen, USA). At the end of culture, cells were
collected and 1 mL of 5 uM reagent working solution added. Cells
were protected from light and incubated at 37 °C for 30 min. Cells
were trypsinized and then washed twice with PBS. Ten thousand
cells were analyzed using a BD Biosciences FACSCalibur flow cy-
tometer with excitation and emission wavelengths of 510 and
580 nm, respectively.

2.6. Terminal deoxynucleotidyl transferase dUTP nick end labeling
(TUNEL) staining

Apoptotic cells were identified by the TUNEL assay
(11684795910, Roche, USA) according to the manufacturer's in-
structions. The cells were washed with PBS and then fixed in a 4%
paraformaldehyde solution for 1 h at room temperature. The cells
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were washed with PBS and then permeabilized using 0.1% Triton X-
100 (T8532, Sigma, USA) and 0.1% sodium citrate (71497, Sigma,
USA) for 2 min on ice. After washing twice with PBS, 50 ul of the
TUNEL reaction mixture was added and then incubated at 37 °C.
After 1 h, the samples were washed with PBS and 10,000 cells
analyzed using a BD Biosciences FACSCalibur flow cytometer.

2.7. Cell viability

Cell viability was evaluated using CCK-8 as described in Section
2.3.The OD was measured at a wavelength of 450 nm by ELISA. The
cell viability was calculated and compared to the control group
(100%).

2.8. Western blot assay of proteins involved in autophagy and
extracellular matrix

The levels of microtubule-associated protein 1A/1B-light chain 3
(LC3) I and I and fibronectin were detected by Western blot anal-
ysis. Cells were collected at the end of culture. The protein con-
centration in each sample was determined using the bicinchoninic
acid (BCA) protein assay kit (500-0001, Bio-Rad, USA) according to
the manufacturer's instructions. Total cellular protein was sepa-
rated on sodium dodecyl sulfate polyacrylamide gels and trans-
ferred to polyvinylidene fluoride membranes. The membranes
were blocked with 5% nonfat dry milk and incubated at 4 °C
overnight with specific primary antibodies for fibronectin (F3648,
Sigma, USA) or LC3I/LC3II (27758, Cell Signaling, USA) and GAPDH
(8245, Abcam, USA). The membranes were then incubated with
secondary anti-rabbit or anti-mouse antibodies conjugated to
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Fig. 1. Cell viability of normal trabecular meshwork (TM) cells and TM cells treated with conditioned medium (CM). Cell viability was evaluated using CCK-8 for untreated TM cells
(Control group), and cultured TM cells treated with 1X, 5X, and 10X CM from bone marrow-derived mesenchymal stem cells (BM-MSCs). n = 3, p > 0.05.
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Fig. 2. Flow cytometric analysis of normal, oxidative-stressed, and conditioned medium (CM)-treated trabecular meshwork (TM) cells. The mitochondrial reactive oxygen species
content was evaluated by flow cytometry of normal TM cells (without treatment, Control), TM cells exposed to 250 uM H,0; (H group), and TM cells under H,0, -induced oxidative
stress treated with 1X CM (H-1X CM group) or 5X CM (H-5X CM group). n = 3, *p <0.05.
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Fig. 3. TUNEL staining of normal, oxidative-stressed, and conditioned medium (CM)-treated trabecular meshwork (TM) cells. TUNEL staining was performed on normal TM cells
(without treatment, Control), TM cells exposed to 250 pM H,0, (H group), and TM cells under H,0, -induced oxidative stress treated with 1X CM (H-1X CM group) or 5X CM (H-5X
CM group). n = 3, *p <0.05.
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Fig. 4. Cell viability of normal, oxidative-stressed, and conditioned medium-treated trabecular meshwork (TM) cells. Cell viability was evaluated using CCK-8 for untreated TM cells
(control), TM cells exposed to 250 uM H,0, (H group), and TM cells under H,0,, -induced oxidative stress treated with 1X CM (H-1X CM group) or 5X CM (H-5X CM group). n = 3, *p
<0.05.
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Fig. 5. LCB3 II/LCB3 I protein expression of normal, oxidative-stressed, and conditioned medium (CM)-treated trabecular meshwork (TM) cells. LCB3 II/LCB3 I protein expression
was examined by Western blot analysis and the relative ratio determined in normal TM cells (without treatment, Control), TM cells exposed to 250 uM H,0, (H group), and TM cells
under H,0, -induced oxidative stress treated with 1X CM (H-1X CM group) or 5X CM (H-5X CM group). n = 3, *p <0.05.
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Fig. 6. Fibronectin expression in normal, oxidative-stressed, and conditioned medium (CM)-treated trabecular meshwork (TM) cells. Western blot of fibronectin in normal TM cells
(without treatment, Control), TM cells exposed to 250 uM H,0, (H group), and TM cells under H,0, -induced oxidative stress treated with 1X CM (H-1X CM group) or 5X CM (H-5X

CM group). n = 3, *p <0.05.

horseradish peroxidase. For data quantification, the samples were
analyzed using the UVP BioSpectrum Imaging System.

2.9. Statistical analysis

Statistical analysis was performed using the Student's t—test,
one-way or two-way analysis of variance (ANOVA) test, and
Tukey's test as appropriate. Data are reported as the
means + standard deviation (SD) of at least three experiments.

Significance was set to p < 0.05.

3. Results
3.1. Cellular viability of TM cells

After culturing for 16 h under different concentrations of BM-
MSC CM, TM cell viability was not significantly different between
the control and 1X, 5X, and 10X CM treatments (Fig. 1). Therefore,
we used 1X and 5X CM concentrations for TM culture under
oxidative stress and analyzed the mitochondrial function, cell
apoptosis, cell autophagy, and cellular ECM protein expression. In
order to check the rescue effect of the basal growth medium
without BM-MSC CM, concentrated basal growth medium was then
added to a final concentration of 1X or 5X. The cell viability of the
control, the H0,-damaged TM cells (H group), and the damaged
cells treated with 1X and 5X concentrated basal growth medium
(H-1X BM and H-5X BM groups) was determined (Supplement 1).
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3.2. Anti-apoptotic effect of TM cultured with BM-MSC CM under
oxidative stress

TM cells were exposed to 250 uM H,0; for 30 min, and then
cultured with or without CM. After 16 h, mitochondrial ROS were
significantly increased in the H group but decreased in the H-1X CM
and H-5X CM groups (Fig. 2). In addition, TUNEL assay (Fig. 3)
showed increased DNA fragmentation in TM cells exposed to
250 uM H,0,, which significantly decreased after treatment with
1X or 5X CM. TM cell viability decreased under H;0;-induced
oxidative stress, but treatment with 1X or 5X CM significantly
increased the cell viability over the H group (Fig. 4).

3.3. Effects on autophagy and ECM protein expression

Fig. 5 shows the protein expression of LCB3 Il and LCB3 L. The
LCB3 II/LCB3 I ratio represents the effect of autophagy. The LCB3 II/
LCB3 I ratio was significantly elevated in the H group compared to
control and significantly decreased in the H-1X CM and H-5X CM
groups compared to the H group. Elevated IOP may be caused by
the excessive expression of fibronectin. In Fig. 6, the expression of
TM fibronectin was not significantly different among the H group,
H-1X CM group, and H-5X CM group.

4. Discussion

We analyzed the treatment effect of BM-MSC CM on oxidatively
damaged TM cells by evaluating apoptotic and autophagic effects in
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the model. The results showed that 1X and 5X CM from MSCs de-
creases the mitochondrial ROS production after oxidative damage
and decreases apoptosis-related DNA fragmentation. As many
studies have demonstrated a major role of oxidative stress in the
pathogenesis of glaucoma [26—28], we used an oxidatively
damaged TM cell model to simulate glaucomatous TM cells, which
are characterized by increased expression of oxidative markers and
diminished antioxidant potential [29—31].

In recent years, some research has shown that TM-derived MSCs
are progenitors of the mature TM and play a key role in regener-
ating diseased TM tissue. Furthermore, studies have shown that
TM-derived MSCs possess similarities with MSCs derived from
other tissues, including surface markers, cytoskeletal constituents,
and transcription factor expression [25,32]. In the field of
ophthalmic research, CM has been reported to stimulate the pro-
liferation of corneal endothelial cells and maintain their pheno-
types [33,34]. In the present study, cellular viability after CM
treatment of TM cells did not vary by CM concentration.

The therapeutic potential of BM-MSCs has been broadly
studied, including in the treatment of ocular diseases [21—25]. Li
et al. [21] described a beneficial effect of BM-MSCs on TM cells
under oxidative stress, with the potential to predict candidate
genes associated with this process. In another study [25], injec-
tion of CM from BM-MSCs significantly decreased the IOP in a
laser-induced rat model of open angle glaucoma. We used BM-
MSCs because they share a neuroprotective presentation and
possess growth factors or cytokines with MSCs. After treating
oxidatively damaged human TM cells with BM-MSC CM, we
found a high level of correlation between autophagy and cellular
functions. Thus, MSC CM could be a promising strategy for the
treatment of glaucoma.

Under stressful conditions, autophagy occurs as an intracellular
lysosomal degradation process. It is a highly evolutionarily
conserved method of cellular degradation and recycling, elimi-
nating damaged cellular constituents and providing raw materials
for energy and substrates for reconstruction in the body [35]. De-
fects in autophagy have been associated with the progressive
deterioration that occurs during aging [15,16]. Some studies have
shown an autophagic effect in TM senescence [36—38]. The auto-
phagolysosome, as the final product of autophagy, degrades under
the actions of lysosomal enzymes and transforms into a phag-
ophore [39]. Activation of the microtubule-associated LC3 binding
system is involved in elongation of the phagophore. LC3-II is spe-
cifically associated with autophagosome formation and used as a
marker of autophagosome accumulation [40]. Therefore, the func-
tion of autophagy can be presented by evaluating LCB3 Il and LCB3 I
protein expression.

5. Conclusion

The cell viability analysis showed no cytotoxic effects when TM
cells were cultured with 1, 5, and 10-fold concentrated CM from
BM-MSCs. Treatment of H,0,-damaged TM cells with CM improved
cell viability by decreasing the mitochondrial ROS and apoptosis.
H,0,-damaged TM cells treated with MSC CM had low levels of
autophagy based on the LCB3II/LCB3I ratio and normal levels of
fibronectin. These results suggest that CM from human BM-MSCs
has potential for promoting the survival and maintenance of hu-
man TM functions.
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