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Abstract  
Background: We previously reported significant correlations between a direct measure of 
insulin sensitivity (IS) and blood levels of proteins measured using the Proximity Extension 
Assay (PEA) in two European cohorts. However, protein correlations with IS within non-
European populations, in response to short-term interventions that improve IS, and any causal 
associations with IS have not yet been established. 
 
Methods: We measured 1,470 proteins using the PEA in the plasma of 1,015 research 
participants at Stanford University who underwent one or more direct measures of IS. 
Association analyses were carried out with multivariable linear regression within and across 
Stanford subgroups and within each of the two European cohorts. Association statistics were 
also meta-analyzed after transformation and harmonization of the two direct measures of IS. 
Lastly, we performed genome-wide association studies of IS and used genetic instruments of 
plasma proteins from the UK Biobank to identify candidate causal proteins for IS through 
Mendelian Randomization (MR) analysis.  
 
Results: In age and sex adjusted model, 810 proteins were associated with baseline IS among 
652 self-reported European participants in the Stanford cohort at a false discovery rate (FDR) 
< 0.05. Effect sizes for these proteins were highly correlated with those observed in 122 South 
Asian, 92 East Asian, 85 Hispanic, and 52 Black/African American persons (r= 0.68 to 0.83, all 
P≤4.3×10-113). Meta-analysis of the full Stanford cohort with the two European cohorts 
(N=2,945) yielded 247 significant protein associations (FDR < 0.05), with 75 remaining 
significant after further adjustment for body mass index. In a subset of Stanford participants 
undergoing insulin sensitizing interventions (N=53 taking thiazolidinediones, N=66 with weight 
loss), 79.6% of protein level changes were directionally consistent with the respective baseline 
association (observed/expected p=6.7x10-16). MR analyses identified eight candidate causal 
proteins for IS, among which were SELE and ASGR1, proteins with established drug targets 
currently under investigation.  
 
Conclusion: Plasma proteins measured using the PEA provide a robust signature for IS across 
diverse populations and after short-term insulin sensitizing interventions highlighting their 
potential value as universal biomarkers of insulin resistance. A small subset of markers 
provided insights into potential causal molecular mechanisms and therapeutic targets. 
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Introduction 
Insulin resistance (IR) is a physiological state characterized by impaired insulin-stimulated 
glucose uptake, leading to hyperinsulinemia, aberrant glucose homeostasis, elevated blood 
pressure, atherogenic dyslipidemia, and disorders of coagulation, inflammation and endothelial 
function [1, 2]. Collectively, these co-occurring abnormalities are often referred to as the insulin 
resistance syndrome, and they substantially increase the risk of type 2 diabetes, 
atherosclerotic cardiovascular disease (CVD), metabolic associated fatty liver disease, 
obstructive sleep apnea, polycystic ovary syndrome and certain cancers [3].  
 
The molecular mechanisms underlying the development and progression of IR remain 
incompletely characterized yet, understanding these mechanisms is crucial for developing new 
therapies. Accurate quantification of insulin sensitivity (IS) is essential, but current gold-
standard methods, including the hyperinsulinemic-euglycemic clamp (HEC) and the insulin 
suppression test (IST) [4], are labor-intensive and invasive [4, 5]. Proxy measures of IS exist 
and, while these measures are much easier to obtain, they correlate only moderately with the 
two gold standard measures [6-11]. This situation underscores the need for alternative 
approaches considering the high cost and complex nature of acquiring a gold standard 
measure.  
 
Using the proximity extension assay (PEA)[12], we previously identified a protein signature that 
correlates highly with the M-value derived from HEC test [13]. We found that LASSO derived 
models that included 34 to 67 of the measured proteins increased the absolute variance 
explained of the HEC-derived M-value by as much as 24% over clinical variables alone. While 
these results are promising, further improvements of this signature are needed before it can 
serve as an effective surrogate for a direct test. Here, we build on our prior work by 
successfully measuring close to 1500 proteins using an expanded PEA panel in a more 
diverse cohort of research participants who underwent one or more ISTs at Stanford University. 
The new data allowed us to expand discovery of proteomic associations, assess consistency 
of these associations across major self-reported racial/ethnic groups and after insulin 
sensitizing interventions, and enabled the first extensive MR study of plasma proteomic 
correlates of direct measures of IS.  
 
Methods 
Study Cohorts 
We utilized data from three cohorts: the Relationship between Insulin Sensitivity and 
Cardiovascular Disease (RISC), Uppsala Longitudinal Study of Adult Men (ULSAM), and 
Stanford studies of insulin resistance (IR). The details and methodology of RISC and ULSAM 
have been previously described [14, 15]. Briefly, the RISC study was a multicenter, prospective 
observational cohort that spanned 19 centers in 14 European countries [15]. It involved up to 
1,030 participants with protein data and 786 participants with genotype data, all healthy 
individuals aged between 30 and 60, aiming at predicting cardiovascular disease risk based on 
insulin sensitivity during a 3 to 10-year follow-up [15]. The ULSAM study is an ongoing 
longitudinal epidemiological study of up to 900 participants with protein data and 1,030 with 
genotype data, consisting of men born between 1920 and 1924 in Uppsala County, Sweden 
[14], with HEC performed at age 70 in the early 1990s. These participants underwent 
interviews and examinations at the ages of 50, 60, 70, 77, 82, 88 and 93 [16, 17].  
 
The Stanford studies of IR included 1,015 volunteers who participated in 14 research protocols 
approved by the Institutional Review Board evaluating the role of insulin resistance in human 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 12, 2024. ; https://doi.org/10.1101/2024.11.09.24317011doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.09.24317011
http://creativecommons.org/licenses/by-nd/4.0/


disease between April 2001 and January 2020 [18-21]. Participants were recruited through 
print and social medial advertisements and provided written informed consent. The participants 
were generally in good health and ranged in age from 18 to 80 years. This cohort was 
racially/ethnically diverse by self-report, and included 652 White/European, 122 South Asian, 
92 East Asian, 85 Hispanic, and 52 Black/African American. The participants with diabetes 
were either receiving treatment with one or more glucose lowering medications for 
management of hyperglycemia or had fasting glucose level ≥126 mg/dL on more than one 
occasion.  
 
A subset of participants in the Stanford studies of IR underwent insulin sensitizing interventions 
including taking thiazolidinediones (TZDs) or adopting a diet protocol leading to significant 
weight loss [22-24].  In these protocols, participants underwent a second IST to assess 
improvements in IS. From these studies, we included the subset of subjects who had ≥ 25% 
decrease in steady-state plasma glucose (SSPG) concentration (improvement in IS) following 
TZD treatment (N=53) or attained ≥ 5% weight loss and ≥ 20% decrease in SSPG 
concentration with diet (N=66). These thresholds were chosen to ensure the detection of 
meaningful and marked physiological changes. 
 
Among TZD subgroup, 45 were treated with pioglitazone, and 8 were treated with rosiglitazone 
[22-24]. Participants underwent baseline measurements prior to initiating treatment with 
pioglitazone or rosiglitazone. Pioglitazone treatment was started at a dose of 15 mg daily for 
the first 2 weeks. At the end of 2 weeks, pioglitazone dose was increased to 30 mg daily for the 
next 2 weeks, followed by 45 mg daily for 8 weeks. Rosiglitazone treatment was started at a 
dose of 4 mg daily for weeks, followed by 4 mg twice daily for 8 weeks. All participants were 
instructed to maintain their usual physical activity level for the duration of the study. Following 
treatment with pioglitazone or rosiglitazone, all baseline measurements were repeated.  
  
Among the 66 participants in the weight loss subgroup [22, 25, 26], 45 achieved weight loss 
through a reduced-calorie diet (RCD), 12 through a combination of RCD and liraglutide, and 9 
underwent bariatric surgery.  Participants undergoing weight loss through a RCD were 
provided dietary instructions by a registered dietitian, aiming to achieve a weekly weight loss of 
0.5 kg. Participants were seen every 1 to 2 weeks for weight measurements and dietary 
advice. In the liraglutide group (N = 12), in addition to RCD, participants began treatment with 
liraglutide at a daily dose of 0.6 mg. The liraglutide dose was increased by 0.6 mg each week, 
reaching a maximum dose of 1.8 mg. In the bariatric surgery arm, participants underwent 
weight loss bariatric surgery. The period of weight loss was 3 months. Upon completing the 
weight loss phase, participants were instructed on a weight maintenance diet. After maintaining 
a stable weight for 2 weeks, all baseline measurements were repeated.   
 
Measurement of Insulin Sensitivity (IS) 
IS was assessed directly across the cohorts using two different established but highly 
correlated methods. In RISC and ULSAM cohorts [14, 15], IS was obtained through the HEC 
[27]. This method involves administration of a constant infusion of insulin to achieve 
hyperinsulinemia and a variable infusion of glucose to maintain euglycemia. During the test, 
the rate of glucose infusion (M value) needed to maintain euglycemia serves as a measure of 
insulin sensitivity, where a higher M value indicates higher IS. In the Stanford cohort, IS was 
measured as the SSPG, obtained via the IST [28]. This method involves administering a 
constant infusion of insulin, octreotide, and glucose. During the test, the magnitude of SSPG 
concentration achieved under a similar level of hyperinsulinemia approximately 3 hours after 
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the start of the infusions serves as the measure of IS, where a lower SSPG concentration 
indicates higher IS [29, 30]. These measures are considered “gold standard” measures of IS 
[31, 32], and are highly correlated with each other [5, 33]. To harmonize these measures where 
needed, SSPG values were converted to M values using established formulae [5]. 
 
Proteomic profiling 
Blood samples were collected after an overnight fast on the day of the IST from all participants 
in the Stanford studies of IR. Following collection, plasma was immediately separated, 
aliquoted, and stored at -80 Celsius. All samples were not thawed before the measurements. 
Proteins were quantified by Psomagen, a certified provider of Olink Proteomics services, using 
the initial Olink Explore release that included four disease and biological process focused 384-
plex panels of proteins: cardiometabolic, inflammation, oncology, and neurology  [12]. All 
protein values, quantified as Normalized Protein eXpression (NPX), were transformed within 
Olink’s MyData Cloud Software using a log2 scale across studies. This transformation ensures 
consistency in the comparison of effect estimates and the combination of these estimates in 
meta-analysis.  
 
A total of 1,144 plasma samples were sent for proteomic profiling including the subset of 
persons with one sample before and one sample after intervention. To minimize batch effects, 
participants with two samples before and after interventions were plated on the same plate. 
After quality control (QC) procedures, 1,134 participants and 1,470 proteins were retained for 
analysis, with 1,015 participants having baseline phenotypic data and 119 having post-
intervention phenotypic data (Supplementary Table 1). QC procedures are described in detail 
in the supplementary file. 
Proteomic measurements and QC for the RISC and ULSAM is extensively described 
elsewhere  [13]. In brief, 787 proteins were measured and passed QC in these two cohorts 
using nine Olink Target panels. All proteins were also available and passed QC in our new data 
generated in the Stanford studies of IR using the first commercially available Explore panel. 
 
Genotyping 
We genotyped 937 samples from the Stanford cohort using the AxiomTM Precision Medicine 
Diversity Array by Applied Biosystem and imputed genotypes to the TOPMed reference panel 
[34-36]. Genotyping and imputation for the RISC and ULSAM cohorts are described in detail 
elsewhere [37]. Our genome-wide association studies (GWAS) and Mendelian Randomization 
(MR) analyses were restricted to European participants and included 571 out of 596 samples 
that passed quality control (QC), of which 512 also had IS data. QC procedures are described 
in detail in the supplementary file. We applied the same QC as the Stanford cohort, with 767 
and 1,030 European samples passing QC in RISC and ULSAM, respectively. 
 
Statistical Analysis 
Associations of plasma proteins and insulin sensitivity in cross-sectional studies 
We ran two regression models to identify plasma proteins linked to SSPG in the Stanford 
studies of IR while accounting for potential confounders. The first model controlled for age, 
sex, and study protocol, while the second additionally controlled for BMI, a primary determinant 
of IS. We applied both false discovery rate (FDR) and Bonferroni corrections to p-values to 
determine significance in the presence of multiple testing. The Bonferroni correction, while 
being more stringent, controlled for the number of proteins tested, whereas the FDR 
correction, while being more lenient, controlled for false positives while allowing for the 
correlation between proteins.  
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Proteins that showed significant associations in White/European participants were 
subsequently tested for their associations with SSPG in each of the other self-identified 
race/ethnicity (SIRE) groups. To assess the generalizability of these associations across these 
groups, we determined the Pearson correlation between the beta effect estimates in 
white/European persons with that observed in each of the four non-European subgroups. 
Lastly, we carried out a random-effect meta-analysis across the three cohorts to extend 
discovery of associations with IS for the 802 protein measures available in all three cohorts. 
For this analysis, we used the Restricted Maximum Likelihood (REML) method in the “metafor” 
package to account for between-study heterogeneity [38]. To accomplish this task, we first 
conducted linear regressions within RISC and ULSAM. Then, we repeated regression 
analyses in all participants of the Stanford studies of IR after transforming the SSPG to an M-
value and additionally controlling for self-reported race/ethnicity. Once again, we applied both 
FDR and Bonferroni corrections to p-values to address multiple testing.  
 
Evaluation of changes in protein levels after insulin sensitizing interventions  
Proteins with significant associations at FDR < 0.05 from the BMI-unadjusted meta-analysis 
were selected for further evaluation within the insulin sensitizing intervention subgroup who 
underwent a second proteomic profiling after the intervention. In this subset, we used linear 
regression to assess the relationship between changes in protein levels and corresponding 
changes in SSPG concentration between the first and the second IST. We compared the 
direction of the effect sizes observed in the meta-analysis of cross-sectional studies (using M 
values) with those from the Stanford Intervention Studies (using SSPG concentration as the 
measure of IS). Given the strong inverse correlation between M values and SSPG 
concentration, this comparison allowed us to assess the consistency of the protein 
associations across different studies. All analyses were repeated after further adjusting for 
BMI. 
 
Causal relationships between candidate proteins and insulin sensitivity 
To investigate the causal relationships between 247 candidate proteins and IS, we employed 
two-sample MR analysis [39]. Prior to the MR analysis, we conducted a GWAS of insulin 
sensitivity (measured as M value) within European participants of each cohort using REGENIE 
[40]. M values were inverse rank transformed prior to GWAS. REGENIE’s two-step regression 
approach allowed us to account for relatedness and population structure, with age, sex, 
protocol number and top 10 principal components included as covariates [40]. We 
subsequently integrated summary statistics from the RISC, ULSAM and Stanford cohorts (N = 
2,309) using a fixed-effect model in METAL software [41].  
 

We used the summary-level data from the UK Biobank to identify instrumental variables for 
247 candidate proteins [42]. These instrumental variables were primarily cis-protein 
quantitative trait loci (cis-pQTLs), selected based on their strong associations with protein 
levels (P-value < 5x10-8) and their proximity within +/- 500kb of the corresponding protein-
coding genes. Where cis-pQTLs were not available, trans-pQTLs were used. To ensure 
independence of the instrumental variables, we clumped SNPs using a 10Mb linkage 
disequilibrium (LD) window with an r2 threshold of < 0.001, using the 1000 Genomes European 
Project [43] as the reference panel.  Eight proteins located on chrX (ACE2, ADGRG2, F9, IDS, 
IL13RA1, ITM2A, LAMP2, and VEGFD) were excluded from MR analysis, where we focused 
solely on autosomal SNPs. We performed Wald-type ratio and inverse variance weighted 
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(IVW) analyses as MR primary analyses, depending on whether one or multiple SNPs were 
available as instrumental variables. We also performed sensitivity analyses to evaluate the 
robustness and validity of the results while accommodating the presence of different levels of 
pleiotropy. These sensitivity analyses included weighted median regression, weighted mode 
regression, and MR-Egger regression. All MR primary and sensitivity analyses were performed 
using the “TwoSampleMR” package in R [39]. For each protein, we calculated the proportion of 
variance (R2) explained by instrumental variables using the following formula [44]: 

�� �
��2�� ��	
 � �1 ��	


�����������
 

where � is the effect size of a given SNP on the plasma protein level, and MAF is the minor 
allele frequency of the SNP,  is the standard error of the effect size, and N is the total sample 
size.  
 
Results 
Key characteristics of the 1,015 Stanford participants included in our association analyses are 
summarized in Table 1.  Approximately 35% of the sample was of non-White/European SIRE 
group. There were no significant differences in sex and fasting plasma glucose distributions 
across race/ethnic groups (Table 1). However, significant variations were observed in age with 
South Asians being the youngest and White/Europeans the oldest (Table 1). BMI also showed 
significant differences across races with South Asians had the lowest mean BMI whereas 
Black/African Americans had the highest (Table 1). SSPG levels also differed significantly with 
Hispanics having the highest and White/Europeans having the lowest (Table 1). Accordingly, 
converted M values varied equivalently but in the expected opposite direction to the SSPG 
levels across groups. 
 
 
We identified 810 proteins associated with SSPG concentration in the Stanford 
White/European participants at FDR < 0.05, with 395 passing Bonferroni correction 
(Supplementary Figure 1; Supplementary Table 2). Adjusting for BMI reduced this number 
to 570 at FDR < 0.05, with 200 passing Bonferroni correction (Supplementary Figure 1; 
Supplementary Table 3). Pearson correlation analysis documented a moderately high 
correlation between the effect sizes in White/European participants and each of the four other 
major SIRE groups (r=0.68 to 0.83, all P<= 4.3×10-113) for the 810 associated proteins that 
were associated with SSPG concentration in the Stanford White/European at an FDR < 0.05. 
The correlation coefficients increased when considering only the 395 proteins that passed 
Bonferroni correction (r=0.79 to 0.89 all P<=7.3×10-85) (Figure 1). These correlations were 
consistent with analogous analyses using significantly associated proteins in models that 
further adjusted for BMI.  
 
A total of 778 unique protein measures passed QC in all three cohorts (RISC, ULSAM, and 
Stanford). Pearson correlation analysis revealed a strong correlation of effect sizes (r = 0.89) 
between the 164 proteins that were nominally significant in both the meta-analysis of the RISC 
and ULSAM cohorts (P<0.05) and the multi-ethnic Stanford studies of IR (P<0.05), which 
increased to 0.94 restricting to the 102 and 38 proteins passing FDR and Bonferroni 
corrections respectively(Supplementary Figure 2a; Supplementary Tables 2 and 4). When 
we next integrated all three sets of data (Stanford n=1,015, RISC n=1,030, and ULSAM n=900) 
through meta-analysis, we identified 247 unique candidate plasma proteins at an FDR < 0.05, 
with 49 remaining significant after BMI adjustment (Figure 2; Supplementary Table 5). Of 
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these, 142 of the BMI-unadjusted and 29 of the BMI-adjusted significantly associated proteins 
were measured in all cohorts while 106 and 21, respectively were only measured in the 
Stanford cohorts. 
 
Next, we compared the baseline associations with IS for the 247 significant proteins identified 
from the meta-analysis levels with the change in SSPG levels (delta SSPG) of these same 
proteins occurring after TZD or weight lost intervention among the Stanford participants 
(Supplementary Tables 6-7). We compared the effect sizes (betas) of baseline protein levels 
with M values with those from changes in protein levels with improvements in SSPG after 
interventions. We observed a 79.6% concordance between the baseline direction of effect and 
the expected direction of effect for the change (x2, p=6.7x10-16, Figure 3). Concordance 
proportions were lower within each intervention subgroup, with 64.7% concordance in TZD 
treatment subgroup (x2 p=6.3x10-3) and 67.8% in weight loss subgroup (x2 p=6.7x10-6, Figure 
3, Supplementary Table 8).  
 
Lastly, we explored the causal relationships of these 247 candidate proteins of IS using two-
sample MR analysis. Leveraging cis-pQTLs as instrumental variables, we identified twelve 
proteins with potential causal associations with M values in MR primary analysis at P < 0.05 
(Figure 4, Supplementary Table 9). Ten of twelve proteins were further corroborated by at 
least one sensitivity analysis when available (Figure 4, Supplementary Table 9). CDHR5, 
CES3, INHBC, PTPRN2 MASP1 and MVK were positively correlated (greater insulin 
sensitivity) while IL10RB, ASGR1, SELE, and SHMT1 were negatively correlated (lower insulin 
sensitivity) with M values. Among the proteins analyzed, PLXNB2 had the strongest 
instrumental variable, with its cis-pQTLs explaining 24.2 % of the variance in plasma PLXNB2 
levels (Supplementary Table 9). Despite its strong instruments, PLXNB2 did not achieve 
statistical significance in the MR primary analysis. For significantly associated proteins 
(p<0.05) in the primary MR, the proportion of the variance explained by the cis-pQTLs used as 
instruments ranged from 0.32% to 13.3% (Supplementary Table 8). For the 22 proteins 
without available cis-pQTLs, we leveraged trans-pQTLs as instrumental variables. However, 
none of these proteins showed significant associations with M values in the MR analysis at P < 
0.05. 
 
Discussion 
We report the first large-scale investigation of the proteomic determinants of direct measures 
of insulin sensitivity (IS) across diverse populations and among subjects undergoing 
randomized interventions. We identified novel proteins associated with IS and demonstrate a 
high consistency of the magnitude and direction of associations across multiple cohorts and 
multiple ancestral groups, highlighting the reproducibility and the generalizability of the 
associations. These proteins also track with changes in IS following insulin sensitizing 
interventions, suggesting their potential utility in monitoring therapeutic effectiveness. Lastly, 
instrumental variable analyses prioritize eight proteins with potential causal effects on IS 
including at least two, ASGRI and SELE, that are targets of existing drugs.  
 
Our previous work profiled participants exclusively of European ancestry within the RISC and 
ULSAM cohorts based in Europe using nine Olink 96-plex Target panels that combine the PEA 
assay technology with an integrated microfluidic chip and a qPCR based data readout [13]. 
Here, we leveraged the first four 384-plex high-throughput panels of the Explore platform 
integrating a next generation sequencing data readout to profile over 1,000 subjects of diverse 
SIRE living in the San Francisco Bay Area. A large majority (778/829, 94%) of the proteins that 
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were previously successfully profiled in RISC and ULSAM also passed QC in the Stanford 
cohorts using the Explore platform. This design allowed for a comparison as well as a 
harmonization and meta-analysis of results across all three cohorts.   
 
We found over half of the proteins (810/1,470, 55%) measured among the SIRE 
white/Europeans in the Stanford cohorts to be associated with SSPG at a conventional FDR 
threshold with about one half of these (or 25% overall) meeting the more stringent Bonferroni 
threshold of significance. This remarkable degree of significance was validated by comparing 
protein-associations available in all cohorts which demonstrated not only a high rate of 
replication but also a high correlation of effect sizes. About one in five proteins remained 
significant among the subset of proteins available in all cohorts after meta-analysis (142/778, 
or 18%) while about one in six measured only in the Stanford cohorts was significant (106/693, 
or 15%). The number and the fraction of significantly associated proteins dramatically reduced 
after adjusting for BMI (29/778, or 3.7% and 21/693, or 3%), reinforcing the well-established 
importance of adiposity as a primary driver of IS. Overall, these findings likely reflect a 
combination of factors including the presence of a strong proteomic signature in the plasma for 
a key physiologic state such as IS, a biased selection of measured proteins matching the traits 
most relevant to IS including adiposity, dyslipidemia and hypertension (e.g. cardiometabolic 
and inflammation panels), and a modest but pervasive correlation of protein levels selected for 
measurement overall.   
 
We demonstrate the potential utility of using a proteomic signature to more optimally quantify 
and track changes in IS in the setting of clinical care through our analyses of 
nonwhite/European populations and changes in protein levels after interventions leading to a 
substantially improved IS. First, we demonstrated moderate-to-high concordance of 
associations of proteins with IS across race/ethnic groups in our multi-ancestry Stanford cross-
sectional study. However, some differences were noted between White/European and 
Black/African American participants. The differences could be due to statistical power 
limitations, as we have less than one tenth Black/African Americans in this study compared to 
white/Europeans. Nonetheless, the overall consistency suggests these associations can 
potentially be extrapolated across populations. Additionally, we must not discount the 
possibility that true differences in protein-IS associations exist across populations. Notably, 
adiponectin levels, a key adipokine known for its insulin-sensitizing properties, are lower in 
Black/African populations compared to White/European populations [45, 46]. Furthermore, 
adiponectin has been independently linked to insulin clearance [46], providing insights into the 
biological mechanisms that may underlie population variations in IS. Second, we found that 
these proteins effectively tracked changes in IS in both BMI-adjusted and unadjusted models, 
with high concordance. This underscores their potential predictive values for monitoring 
changes in IS.  
 
Our previous published work did not include instrumental variable analyses to infer causality of 
associations. With the expanded sample, we attempted to prioritize causal relationships 
among the 247 significant protein-IS associations observed in the meta-analysis using two-
sample MR analysis. Eight candidate proteins showed evidence of causal effects on IS. 
Among these, Protein Tyrosine Phosphatase Receptor Type N2 (PTPRN2) is recognized as an 
autoantigen in insulin-dependent diabetes [47]. Additionally, increases in PTPRN2 protein 
levels have been shown to positively impact insulin secretion by increasing the number of 
dense core vesicles[48, 49]. While increased insulin secretion does not necessary equate to 
improved insulin sensitivity, our findings suggest that elevated PTPRN2 levels improve IS. This 
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relationship warrants further investigation to clarify whether PTPRN2 influences IS directly or 
indirectly, possibly through mechanisms like insulin secretion regulation at different glucose 
levels. 
 
Two candidate causal proteins are currently targets of drugs under investigation in registered 
clinical trials including Asialoglycoprotein Receptor 1 (ASGR1) and E-selectin (SELE). These  
drugs could ultimately demonstrate improvement in health outcomes through improved IS. For 
the former, our findings suggest lower levels of ASGR1 causally improved IS. This 
directionality is consistent with multiple lines of experimental and observation evidence 
demonstrating improved hepatic IS, reduced non-HDL cholesterol and triglycerides, and 
reduced risk of CVD in transformed human hepatocytes, mouse models, and population 
genetic studies of ASGR1 deficiency [50-54]. These insights also suggest that ASGR1 
inhibitors such as Asiaglycorotein receptor 1 binding agent, initially explored for familial partial 
lipodystrophy treatment (ClinicalTrials.gov ID: NCT03514420), a condition often associated 
with IR due to abnormal fat distribution and impaired lipid as well as glucose metabolism [54] 
could potentially be repurposed for the treatment of IR. SELE is currently the target of several 
drugs under investigation in registered clinical trials. SELE is an indicator of endothelial 
dysfunction, a condition often present in metabolic diseases such as type 2 diabetes and 
cardiovascular diseases, both of which are characterized by IR [55]. Our finding suggests that 
increasing level of E-selectin reduces IS which aligns with multiple prior studies showing that 
serum SELE levels are inversely associated with IS [55-57] but evidence to support a causal 
association has generally been lacking. E-Selectin is a target for Selectin E antagonists, and 
several such antagonists such as Uproleselan, Rivipansel are in the third phase of clinical trials 
targeting the treatment of liver and kidney disease (ClinicalTrials.gov ID: NCT02871570, 
NCT02813798). Altogether, our findings suggest repurposing E-selectin antagonist to improve 
IS could improve cardiometabolic health.   
 
In addition to PTPRN2 and SELE, we identified that Serine Hydroxymethyltransferase 1 
(SHMT1), a key enzyme in serine and one-carbon metabolism, is linked to lower IS in our 
observational and MR analyses. Studies have identified SHMT1 as a novel biomarker for IR 
[58], and it has been found to be upregulated in diabetic mice[59]. Pharmacological inhibition 
of SHMT1/2 has been shown to increase circulating glycine levels[60], and dietary glycine 
supplementation has demonstrated benefits in improving insulin response, glucose tolerance 
and insulin sensitivity [61]. 
 
While PTPRN2, ASGR1, SELE and SHMT1 emerged as the most relevant proteins influencing 
IS, several other proteins such as MASP1, MVK, CES3, INHBC, and CDHR5 showed potential 
roles but had conflicting results between observational and MR analyses, warranting further 
investigation. Additionally, the tissue-specific roles of IL10RB in IR require additional 
investigation. More detailed discussion of these proteins and their potential effects on IS are 
included in the Supplementary Data. 
 
A key strength of our study lies in its large-scale, multi-ethnic approach using gold standard 
measures of IS. The consistency between observational and interventional results, along with 
MR results, underscores the potential of these plasma proteins as therapeutic targets and 
biomarkers for IS. However, we acknowledge that circulating protein levels may not fully reflect 
the proteome in muscle cells or the pancreas, necessitating further research in these areas. 
Additionally, we restricted profiling our intervention study participants to a small subset 
demonstrating a very substantial improvement in IS potentially limiting the generalizability of 
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our findings. Future studies should examine a broader spectrum of changes in IS in both 
directions to provide a more comprehensive understanding of how plasma protein levels 
change with changes in IS. Further, a limitation of this study includes the composition of the 
sample population in the Stanford cohort, where 3.7% (38 out of 1,015) of the participants had 
diabetes. However, only 22 of 38 were undergoing treatment with antidiabetic medications and 
the medications used were not expected to affect the IS measurements, which may mitigate 
concerns regarding their potential confounding effects. While MR is a powerful tool for inferring 
causality, its effectiveness can be constrained by limited statistical power, particularly when the 
genetic instruments (cis-pQTLs) used explained only a small proportion of the variance in the 
plasma protein levels. Additionally, the robustness of the method may be compromised when 
the sample size for the gold standard measure of IS is low. Furthermore, our MR approach 
was performed on individuals of European descent only. Thus, the MR results may not be 
generalizable to other populations.  
 
Conclusion 
Overall, our comprehensive integrative study of plasma proteins and genetic data offers 
insights into the molecular mechanisms of IS. Our study underscores the utility of these 
proteins as potential universal biomarkers for IS, serving not only as biomarkers but also as 
monitoring tools for changes in IS. Furthermore, our findings highlight the potential of these 
proteins as targets for drug development or repurposing. These insights contribute to the 
advancement of understanding and management of IR.  
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Figure Captions 
 
Figure 1. Comparison of regression coefficients for different populations in (a) BMI-
unadjusted and (b) BMI-adjusted models, using White/Europeans in the Stanford study 
as reference. The comparisons are based on the proteins associated with SSPG in Whites. 
Pearson correlations between each pair of populations are also reported. 
 
Figure 2. Manhattan plot of meta-analysis combining cross-sectional studies of plasma 
proteins and M values from RISC, ULSAM and Stanford. Top panel shows the BMI-
unadjusted model and the bottom panel shows the BMI-adjusted model. Proteins are color-
coded according to their Olink panel. Red dotted lines indicate Bonferroni-corrected P-values 
(P < 0.05/1,471 proteins tested = 3.4×10-5) while blue dotted lines indicate FDR-corrected P-
values. Proteins that passed Bonferroni correction are annotated, and the direction of effect of 
each protein on M values is indicated by the direction of the triangle.  
 
Figure 3. Correlation of regression Z-score between meta-analysis of cross-sectional 
studies and Stanford intervention study of (a) all participants, (b) those who underwent 
TZD intervention and (c) those who underwent weight loss intervention, using 255 
candidate proteins identified in the meta-analysis of cross-sectional studies at FDR < 
0.05. Insulin sensitivity was measured as M values in meta-analysis of cross-sectional studies, 
and as SSPG in Stanford Intervention study. Proteins with significant associations at P < 0.05 
were annotated. 
 
Figure 4. Mendelian randomization analysis of cis-pQTLs only of candidate causal 
proteins on M values. The proteins shown are those with evidence of causal associations in 
MR primary analyses at P < 0.05. Candidate causal proteins supported by at least one 
sensitivity analysis (where available) at P < 0.05 are marked with an asterisk. 
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