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Patrolling monocytes (PMo) are the organism’s preeminent intravascular guardians by
their continuous search of damaged endothelial cells and harmful microparticles for their
removal and to restore homeostasis. This surveillance is accomplished by PMo crawling
on the apical side of the endothelium through regulated interactions of integrins and
chemokine receptors with their endothelial ligands. We propose that the search mode
governs the intravascular motility of PMo in vivo in a similar way to T cells looking for
antigen in tissues. Signs of damage to the luminal side of the endothelium (local death,
oxidized LDL, amyloid deposits, tumor cells, pathogens, abnormal red cells, etc.) will
change the diffusive random towards a Lèvy-like crawling enhancing their recognition and
clearance by PMo damage receptors as the integrin aMb2 and CD36. This new
perspective can help identify new actors to promote unique PMo intravascular actions
aimed at maintaining endothelial fitness and combating harmful microparticles involved in
diseases as lung metastasis, Alzheimer’s angiopathy, vaso-occlusive disorders,
and sepsis.

Keywords: patrolling monocytes, crawling, search theory, Lèvy-like walk, intravascular surveillance, microparticle
deposits, aMb2 integrin, CD36
INTRODUCTION

Among the two main subsets of circulating monocytes, non-classical monocytes (CCR2-

CX3CR1highLy6Clow in mouse, CCR2- CX3CR1highCD14dimCD16+ in humans) are also called
patrolling monocytes (PMo) by their ability to actively patrol the vascular endothelium to search for
harmful microparticles (pathogens, circulating tumor cells, amyloid deposits, abnormal red blood
cells, etc.) or dying endothelial cells and promote their removal to restore homeostasis (1–5).
Therefore, PMo are considered protective in pathological contexts such as lung metastasis,
Alzheimer’s disease angiopathy, atherosclerosis, sepsis, and vaso-occlusive disorders (1–3, 6–9).
Once PMo extravasate, although they do it rarely, their actions can be beneficial or detrimental
depending on the context and the environmental cues that drive their differentiation into distinctive
types of macrophages (10–13).

Since pioneering studies by Geissmann’s group (1), PMo have been observed patrolling in the
microvasculature of dermis, mesentery, brain, lung, kidney and muscle, and in carotid and femoral
arteries under homeostatic and inflammatory conditions [reviewed in (4)]. PMo differentiate from
classical monocytes in defined vascular niches of the bone marrow and spleen through an
org September 2021 | Volume 12 | Article 7308351

https://www.frontiersin.org/articles/10.3389/fimmu.2021.730835/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.730835/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.730835/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:agarroyo@cib.csic.es
https://doi.org/10.3389/fimmu.2021.730835
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.730835
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.730835&domain=pdf&date_stamp=2021-09-17


Moreno-Cañadas et al. Search-Based Patrolling Monocyte Crawling
intermediate subpopulation (5, 14). PMo numbers in the
circulation are also regulated by b-adrenergic stimulation during
exercise and stress (15, 16), pattern recognition receptors as NOD2
(17), soluble factors as tumor exosome-derived PEDF (18), and
chemokines as CX3CL1 (17, 19, 20) indicating that their
abundance is exquisitely sensitive to signals triggered by
damage, stress or inflammation as a protective response.

PMo perform their surveillance function by crawling on the
endothelium (1, 19), but the influence of their primary PMo search
function into their motility has been overlooked. Recent reports
suggest, however, that particle encounter and patrolling activity can
be related (21, 22). Following the “search theory,” we propose to
consider PMo crawling as amovement guided by the “exploration-
exploitation trade off” (23), which comprises, but is not limited to,
non-informed explorative search without much guidance cues and
informed exploitative searchwith input from the environment.We
will describe intravascular PMo crawling from this perspective
taking as a reference walks described for T cells in search of an
antigen in the lymph node and other tissues (23, 24).
PATROLLING MONOCYTE CRAWLING:
A SEARCH MODE MOTILITY

Intravascular PMocrawling is defined as the scanningmovement of
the apical surface of endothelial cells, which in themicrovasculature
does not depend on the direction of blood flow, travels long
distances without greater directionality, performs looped
trajectories and without immediate extravasation (1, 4, 25). In
large vessels, PMo crawling displays an overall with-the-flow
direction with no typical hairpin and loop patterns (26). Unlike
rolling leukocytes, PMoadherefirmlywhile crawling and are slower
by a factor of 100 to 1,000 (1).

As an exploration movement, intravascular PMo crawling
must transition among random motility modes balancing
migration speed with sufficient dwell time and meandering for
a thorough survey of the endothelial surface. Diffusive random
crawling involves walks with little or no directional persistence
(Brownian-type tracks) with the intention of surveying the
largest surface in the shortest possible time to find local alarm
signals. Tracks of PMo crawling consistent with this mode are
observed in steady-state and inflammatory conditions (1, 2, 25–
28). However, PMomodify their crawling pattern in the presence
of local endothelial damage (19, 29) or microparticles (8, 21, 26).
Tracks in these cases resemble superdiffusive random walks,
particularly the Lèvy-like walk, which consists of an alternation
of long, quick, and directed trajectories (flights) with short and
slow random turning directions. In this situation, PMo no longer
perform only exploration, but signal-informed movement to find
their final target. Both diffusive random and Lèvy-like crawling
can coexist in the microvasculature [see Movie S2 in (1)].
Additionally, a high density of local damage will disrupt PMo
Lèvy-like walk and promote confined crawling by the frequent
encounter of PMo with their target. Intravascular crawling often
ends with PMo detachment and continuation of patrol. PMo rarely
perform a truly directional crawling leading to transendothelial
migration, in contrast to classical and intermediate monocytes that
Frontiers in Immunology | www.frontiersin.org 2
arrest and transmigrate more frequently (13, 27), so we will not
consider it further as it is not related to intravascular surveillance.

Kinetic parameters of the different types of intravascular PMo
search crawling are summarized in Table 1. In general, diffusive
random PMo crawling is faster and longer to scan large surfaces
efficiently. In contrast, Lèvy-like PMo walks comprise slower and
shorter tracks connected by fast-speed steps (although information
on individual tracks of this type is not available). These parameters
are further reduced during confined crawling. Speed better captures
the different modes, while straightness seems less informative in
describing PMo crawling, as both random and confined walks can
show similar values, however reflecting different search and find
behaviors (Table 1). Analogous motilities are found in NKT cells
randomly searching for antigens in liver sinusoids (31) or T cells
performing Lèvy-like and confined walks to look for antigen in
tissues (30, 32, 33, 35) (Table 1).

The morpho-dynamics and the locomotion mode of PMo are
not well defined. PMo appear round and seem to crawl in vivo in
a millipodia-like manner (36) during diffusive random crawling
(2, 28). In this mode, cells do not polarize, probably allowing
them to move faster. During Lèvy-like crawling, PMo alternate
between elongating, while crawling in a more meticulous manner
by an amoeboid movement, and being round during flights to
the next location (3, 8, 21, 29) (Figure 1A). The possible
mechanisms underlying the amoeboid locomotion of PMo
(actin polymerization, blebbing, etc.) remain unexplored (37).
REGULATORS OF DIFFUSIVE RANDOM
VERSUS LÈVY-LIKE PMo CRAWLING

We will review recognized intrinsic and extrinsic players in PMo
crawling from the search theory perspective and suggest how
they can determine diffusive random and Lèvy-type crawling
modes. Particularly, we will highlight the relevance of local
endothelial damage signals in PMo locomotion.

Diffusive Random Crawling
PMo perform diffusive random crawling in most steady-state
and inflammatory contexts to explore large endothelial areas
without expecting much damage. These kinds of tracks are
observed in PMo crawling in mesentery vessels and in arteries
but also in dermis, lung, and kidney capillaries (1–3, 21, 25–29).
For this type of crawling, PMo need to be sufficiently attached to
resist shear stress but with dynamic adhesions to allow fast
movement. In the microvasculature, PMo adherence depends
on b2 integrins, mostly on aLb2 integrin (LFA-1, CD11a/CD18)
in steady-state conditions by its interaction with ICAM-1 and
with additional contribution of aMb2 integrin (Mac-1, CD11b/
CD18) in inflamed conditions (1, 2, 27, 38) (Figure 1A). Indeed,
aMb2 integrin seems to determine the fast velocity of diffusive
random crawling in steady-state conditions since its inhibition
does not affect the abundance of PMo crawlers, but it reduces
their speed in mesenteric vessels (29). Diffusive random crawling
is also favored in the microvasculature by the interaction of
CX3CR1 in PMo with CX3CL1 (Figure 1A), a transmembrane
ligand abundantly produced by endothelial cells in lung and
September 2021 | Volume 12 | Article 730835
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kidney (1, 3, 29, 38). Moreover, in vascular territories with high
shear stress like arteries and the glomerulus, resistance to
detachment to support diffusive random crawling is provided
by the interaction of a4b1 integrin with its endothelial ligand
VCAM-1, with minor or no role of CX3CR1 (26, 38), probably
related to CX3CL1 downregulation by shear stress (39).

So far millipede-like crawling has been described in T cells in
which it relied on the rapid turnover of traction points formed by
high-affinity aLb2 integrin interactions with endothelial ICAM-
1 (36). However, since this type of T cell motility leads to
extravasation and not to intraluminal surveillance as in PMo,
further research will be required to explore if a similar b2
Frontiers in Immunology | www.frontiersin.org 3
integrin-mediated mechanism accounts for PMo millipodia-
based crawling (40). Nevertheless, the drastic reduction of this
type of crawling in arteries in steady state in the absence of
kindlin-3, an inside-out regulator of b2 integrins, points to the
requirement of high-affinity b2 integrin interactions (22).
Accordingly, CX3CR1 favors diffuse random crawling of PMo,
probably by its outside-in upregulation of b2 integrin affinity
(41) as also supported by reduced PMo crawling in inflammatory
conditions under GPCR signaling inhibition (2, 29). Of note,
endothelial ligands involved in diffusive random PMo crawling
are not distributed homogeneously on the luminal side of the
endothelial cells increasing the possibility that they serve as
TABLE 1 | Cellular kinetic parameters of the proposed crawling modes in various territories and conditions: mean speed (mm/min), length (mm), duration (min), and
straightness (distance traveled/length of the trajectory).

Diffusive random crawling Lèvy-like walk Confined crawling References

PMo NKT cells PMo LT PMo LT

Lung (capillaries)
Healthy
≈10 mm/min

Tumor cells (4 h)
6.7 mm/min

LPS lung
2.3 mm/min

Tumor cells (24 h)
1.5 mm/min

LPS lung
0–1 mm/min

(3, 30)

Other organs
Healthy
Kidney
≈9 mm/min
≈80 mm
≈9 min
≈0.6

Healthy
Liver sinusoids
16.5 mm/min

0.4

TLR7/8 agonist
Kidney
≈7.5 mm/min
≈150 mm
≈22 min
≈0.3

Tumor skin
4.3 mm/min
0.4

Infected brain
6.4 mm/min

Tumor skin
1.4 mm/min
0.5

(2, 31–33)

Arteries
Healthy
Carotid
36 mm/min
134 mm
4.7 min
0.2
Femoral
12 mm/min
nd
≈0.6

Hyperlipidemia
Carotid
30 mm/min
140 mm
6.1 min
0.22
Femoral
5 mm/min
≈200 mm
≈0.6
TLR7/8 agonist
Carotid
19 mm/min
124 mm
5.7 min
0.1

Atheroma plaque
Carotid
20 mm/min
167 mm
7.7 min
0.05

(21, 26)

Venules
Healthy
Mesentery
≈9 mm/min
≈200 mm
≈20 min
≈0.6
Dermis
17 mm/min
249 mm
14 min
0.6
Cremaster
≈10 mm/min
147.3 mm
≈0.7

TLR7/8 agonist
Mesentery
≈5-6 mm/min
≈180 mm
≈23 min
≈0.4

(1, 27, 29, 34)
September 2021 | Volume 12 |
Most of the values given are approximate; for accurate values, please refer to the original articles. The parameters for PMo and NKT are intravascular, while for LT they are in the tissue.
Note that the parameters do not correspond to individual tracks but to the average of all observed tracks.
PMo, patrolling monocytes; NKT cells, natural killer T cells; LT, T lymphocytes.
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A

B

FIGURE 1 | Schematic representation of the different modes, steps, and players in intravascular PMo crawling. (A, Top) Representative tracks performed by PMo
crawling on the vascular endothelium according to the search theory: diffusive random crawling (left) and Lèvy-like walk (right); the bold arrow indicates blood flow
direction. Middle, side views of PMo morphology (round and elongated) and the corresponding locomotion modes (millipodia and amoeboid) during diffusive random
crawling and Lèvy-like walks; in the last, the flight phase is also indicated. Bottom, magnifications display the molecular players and interactions relevant to each type
and step of crawling as described in the text; molecular interactions depicted for the flight phase are speculative. (B) The cleavage of aM integrin by the protease
MT4-MMP is proposed as a possible mechanism for PMo post-crawling detachment (12), an important step to maintain PMo intravascular surveillance; scissors
indicate cleavage. The b2 integrins are represented in the folded (inactive) and extended (active) conformations.
Frontiers in Immunology | www.frontiersin.org September 2021 | Volume 12 | Article 7308354
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footholds for the millipodia. Thus, apical microdomains organized
by tetraspanins or the actin cytoskeleton contain pre-formed
clusters of about 2.5 ICAM-1 (42) and 3-to-7 CX3CL1 (43, 44)
molecules (Figure1A) and thematricellular proteinCYR61/CCN1,
another aMb2 integrin ligand, also forms hotspots in the
mesenteric vessels (29). Interestingly, the nanoarchitecture of the
apical endothelial membrane is sensitive to factors such as shear
stress or the cytokineTNFa, able topromote upward protrusions of
about 160 nm, that increase the abundance and/or accessibility of
ICAM-1 nanoclusters (45, 46). These effects could influence PMo
intravascular crawling.

Lèvy-Like Crawling
How do PMo perceive that they have to increase the frequency of
Lèvy-like walks for a more efficient search, especially for small
targets, and how do they re-adapt their arsenal of adhesion and
chemokine receptors to this type of movement?

PMo show an amoeboid morphology when crawling in the
slow phase of Lèvy-like walk suggestive of signals driven by b2
integrin interactions as shown in neutrophils (47, 48). This is
supported by the presence of a few Lèvy-like tracks in steady-
state in the lung and kidney capillaries, territories with abundant
endothelial CX3CL1, upregulator of b2 integrin affinity (3, 19).
Indeed, PMo surface expression of b2 integrins, particularly
aMb2, is higher in the lung than in the blood, pointing to its
tissue-dependent regulation (22, 49). Hyperlipidemia does not
change the kinetic parameters of PMo except for the reduced
speed, which correlates with a higher proportion of Lèvy-type
tracks (21, 26) (Table 1). Lèvy-like walks are also visible in
carotid arteries stimulated with a TLR7/8 agonist that induces
endothelial cell damage (26). In this context, a4b1 integrin is
required to resist shear stress (26), but since inhibition of the
aLb2 integrin reduces the number of PMo crawlers but not the
frequency of Lèvy-type walks, aMb2 integrin seems the main
actor for this type of locomotion (26) (Figure 1A). Likewise,
aMb2 is necessary for longer interactions and above a shear
stress threshold in contrast to aLb2 integrin in neutrophils (50).

Nevertheless, the highest frequency of tracks resembling
intermittent Lèvy-like motility is found in mouse vascular
territories with deposits of harmful microparticles or aggregates
including oxidized LDL (oxLDL) in the carotid artery of
atheroprone mice fed a high-fat diet (21); b-amyloid aggregates in
the lumen of brain veins in Alzheimer’s angiopathy (8, 51);
apoptotic endothelial cells upon TLR7/8 stimulation in kidney
glomerulus (2); circulating tumor metastasizing cells in lung
capillaries (3); CYR61 secreted by platelets in mesenteric vessels
after TLR7/8 addition (29); and sickle red blood cells (9, 52, 53),
among others (Figure 1A). Notably, many of these particles can be
recognized by aMb2 integrin itself or in cooperation with other
scavenger receptors suchasCD36andTLR(54, 55); in fact,CD36or
TLR7 deficiency decreased Lèvy-like PMo crawling on the
vasculature of mice fed a high-fat diet or stimulated with a TLR7/
8 agonist, respectively (2, 21). aMb2 integrin is a promiscuous
receptor that can bind more than 50 ligands including b-amyloid,
iC3b, andCYR61 (56, 57). AlthoughaMb2 integrin binds ICAM-1
with lower affinity thanaLb2 integrin, it binds other ligands such as
Frontiers in Immunology | www.frontiersin.org 5
fibrinogen with 25-fold more affinity, which, together with their
counter-regulated expression by inflammatory cytokines as TNFa
(27), may confer aMb2 integrin an advantage for endothelial
interaction in the presence of deposits or damage. Indeed,
blockade of aMb2 integrin eradicates Lèvy-like tracks in for
example steady-state mesenteric veins similarly to blockade of its
ligand CYR61 after TLR7/8 stimulation (29). We propose to
consider aMb2 integrin as the essential damage receptor in PMo
(beyond its function as an adhesion receptor) that seems to govern
the Lèvy-likewalk, acting as a decision-making receptor to integrate
intravascular search and motility in homeostasis and pathology.

Outside-in signals by multivalence interaction may favor
microparticle-induced clustering of aMb2 integrin and thus its
higher avidity (40) (Figure 1A). It will be interesting to explore
whether aMb2 integrin can reside in preformed nanoclusters in
GPI domains as shown for aLb2 integrin in monocytes and serve
for its dynamic recruitment at adhesion sites for amoeboid
locomotion (58). Indeed, PMo engulfing oxLDL via CD36
increased their levels of F-actin and upregulated genes related to
Rab GTPases, integrin recycling, and lamellipodia formation (21),
suggesting that this machinery may contribute to actin-driven
amoeboid PMo motility during Lèvy-like walks in line with the
role of actin flows in coupling speed and directional persistence
(59). Intrinsic factors identified for intermittent (Lèvy-like) tissue
motility in T cells include the unconventional myosin MYO1G
that acts as a turning motor (35) and the Rho-associated protein
kinase (ROCK) required for high-speed and directionality (30).
Whether similar intrinsic regulators of speed fluctuations and
turning patterns exist in PMo remains unknown.

aMb2 integrin activity can also be regulated in circulating
PMo by its crosstalk with other scavenger receptors as CD36
(Figure 1A), able of recognizing a variety of damage signals
ranging from apoptotic cells to modified lipids (55). In a mouse
model of atherosclerosis, CD36 uptake of oxLDL in PMo induces
DAP12/Src family kinase (SFK) signaling and leads to increased
F-actin polymerization (and probably higher b2 integrin avidity)
and enhanced PMo Lèvy-like crawling (21), and a similar
boosting of PMo particle engulfment is observed in sickle red
blood cell clearance (9, 52, 53). This intravascular educational
program constitutes an interesting feedforward mechanism for
more efficient search and removal of particles by PMo, thus
helping to prevent spread of inflammatory damage to the tissues.

Extrinsic factors as shear stress may regulate b2 integrin affinity
(60) and ICAM-1 clustering (46), alter endothelial glycocalyx (61),
and favor endothelial cell damage (26) or deposition of oxLDL (62)
in areas of disturbed blood flow. The deposited microparticles can
themselves promote local changes in the apical endothelial
membrane that can augment the frequency of PMo Lèvy-like
walks, such as increased membrane stiffness by the uptake of
oxLDL by endothelial CD36 (62) and the pathogen-induced
protrusion of microvilli (63), by altering specific lipid domains in
both cases.

After meticulous amoeboid crawling on the endothelium
during the slow phase of Lèvy-like walk, PMo become rounder
and move quickly and directionally (flight) to the next area for
another meticulous search (8) using mechanisms yet to be
September 2021 | Volume 12 | Article 730835
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clarified. Several factors can underlie speed fluctuations (23), but
although aLb2 integrin/ICAM-1 interactions support high-speed
and straight migration of T cells in the lymph node (64), movies of
PMo Lèvy-like crawling show that this acceleration step seems to
relate to PMo decreased adhesiveness (Figure 1A). Similar flights
are perceived during PMo crawling in mice deficient in kindlin-3
or treated with SFK inhibitors pointing to reduced b2 integrin
affinity as permissive for PMo high-speed step (2, 21, 22). PMo
sliding behavior is also visible in CX3CR1-deficient mice (3, 22).
Thus, although CX3CR1-CX3CL1 axis modulates Lèvy-like walks
by regulating b2 integrin affinity (2, 3), it seems dispensable for the
acceleration phase, and its absence does not seem to decrease the
frequency of these tracks (1, 26, 29). The low-adhesive contact of
PMo with the endothelium points to the involvement of low
affinity and reversible receptor-ligand pairs resembling selectin
interactions during rolling (4), although in the movies PMo seem
to jump or slide rather than roll (8, 26). Since PMo do not express
selectins, PSGL1 is a candidate to underlie PMo flights by its
interaction with P-selectin expressed by the endothelium under
certain stimulation and regulated by preformed membrane
microdomains (65) (Figure 1A). The carbohydrate modification
of PSGL-1 Slan is a marker for a subset of PMo and modulates
innate and adaptive immune responses, but its possible
contribution to PMo crawling has not been investigated (66, 67).

Therefore, the local presence of microparticles or damage on
endothelial cells are the key factors to promote environmental-
guided Lèvy-like PMo migration. This fact may explain the lack of
Lèvy-like tracks in vitro since although inflammatory cytokines
and flow were incorporated, no aggregates were present (25).
Moreover, if there is massive endothelial damage or larger
deposits, Lèvy-like walk will change into confined meticulous
crawling (23) as observed in the lung 1 day after injection of
tumor cells (3) and near arterial atheroma plaques (26) (Table 1),
allowing enough time for PMo interaction to increase the
likelihood of engulfment. Increased retention during Lèvy-like
or confined crawling due to the geometric constraints of certain
vascular territories could also induce the production of
chemokines and cytokines by PMo and/or the endothelial cells
with which they interact. These soluble factors will serve to recruit
cooperating circulating leukocytes such as neutrophils to cope
with dying endothelial cells in response to TLR7/8 stimulation in
the glomerulus (2) and natural killer cells to help eliminate
circulating tumor cells in the lung microvasculature (3).

Post-Crawling Detachment
After crawling PMo usually undergo detachment, a key step to
maintain PMo surveying the vasculature by avoiding their
extravasation. This allows several rounds of endothelial scanning
by PMo and prevents spreading of damaging microparticles to the
tissues. Our group recently identified that the GPI-anchored
protease MT4-MMP could cleave the aM integrin chain at N977L
position (not conserved in aL integrin) serving as a possible
mechanism for PMo post-crawling detachment (12) (Figure 1B).
Accordingly, inMT4-MMP absence there were increased numbers
of PMo crawling on the activated endothelium of the cremaster
muscle in an aMb2 integrin-dependent manner and also
transmigrating into the inflamed aorta (12). These data support
Frontiers in Immunology | www.frontiersin.org 6
that PMo detachment post-crawling prevents b2 integrin-
dependent transendothelial migration (27). These findings also
indicate that a pool of aMb2 integrin molecules reside at GPI
microdomains of the PMo plasma membrane what could account
forfine-tunedcontributionofaMb2 integrin todiffusive randomor
Lèvy-like walk crawling, and in particular to PMo post-crawling
detachment. Of interest, shear stress can induce aM integrin
cleavage by cathepsin B in neutrophils (68). Whether this
cleavage, b2 integrin processing by other proteases (69, 70), or
proteolysis-independent mechanisms play additional roles in PMo
detachment post-crawling remains unknown.

CONCLUSIONS AND PERSPECTIVES

Leaving aside the discussion about true Lèvy-like walks in biological
systems (24), we consider interesting to complement the current
perspective of intravascular PMo crawling with the point of view
that the search mode influences PMomotility as proposed for tissue
T cells (23). Although PMo motility patterns are far more complex
than the simplification herein proposed, this change of paradigm
may help understand PMo crawling better and identify novel
regulators to boost PMo protective intravascular actions and
prevent disease. Open questions remain about the dynamic
regulation of integrins and other intrinsic actors (actin, GTPases),
endothelial players, and extrinsic factors (shear stress) during these
distinct modes of PMo crawling. It would also be necessary to
determine instantaneous and individual track PMo kinetic
parameters in future work.

These questions undoubtedly raise the need to implement
innovative techniques and tools to fully understand these events
at the single-cell scale and in vivo. For example: (i) novel in vitro
settings for live time-lapse to recapitulate in vivo complexity
using immobilized ligands in lipid bilayers and under flow (46);
(ii) advanced microscopy techniques for visualization and 3D
reconstruction of intravascular PMo (71) together with novel
PMo markers as PD-L1 (34) to avoid the limitation of CX3CR1
heterozygous mice; and (iii) innovative techniques for in vivo
single-molecule tracking to characterize receptor and ligand
clustering at PMo and endothelial plasma membrane (29, 72, 73).
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