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Abstract

It is important to model biological variation when analyzing spatial transcriptomics data from
multiple samples. One approach to multi-sample analysis is to spatially align samples, but this
is a challenging problem. Here, we provide an alignment-free framework for generalizing a
one-sample spatial factorization model to multi-sample data. Using this framework, we de-
velop a method, called multi-sample non-negative spatial factorization (mNSF) that extends the
one-sample non-negative spatial factorization (NSF) framework to a multi-sample dataset. Our
model allows for a sample-specific model for the spatial correlation structure and extracts a low-
dimensional representation of the data. We illustrate the performance of mNSF by simulation
studies and real data. mNSF identifies true factors in simulated data, identifies shared anatomi-
cal regions across samples in real data and reveals region-specific biological functions. mNSFs
performance is similar to alignment based methods when alignment is possible, but extends
analysis to situations where spatial alignment is impossible. We expect multi-sample factoriza-
tion methods to be a powerful class of methods for analyzing spatially resolved transcriptomics
data.

Background

Spatially resolved transcriptomics (SRT) measures gene expression levels in the context of spatial
positions (KH Chen et al., 2015; Ståhl et al., 2016; Rodriques et al., 2019; Stickels et al., 2021; Y Lee
et al., 2021; Zhao et al., 2022; Lubeck, Cai, 2012; Eng et al., 2019; Goltsev et al., 2018; Keren et al.,
2019; Thornton et al., 2021), either at the single cell level or as a local aggregate of multiple cells
across a spatial location, also termed a spot. The last 30 years of genomics have established that it is
essential to consider biological replicates when trying to understand a biological system (Schurch
et al., 2016; Mendelevich et al., 2021). Indeed, technology does not remove biological variation
(Hansen et al., 2011).

Multisample (population-level) analysis of spatial data is common in functional magnetic reso-
nance imaging (fMRI) brain data, and it is instructive to briefly review the approach in this field
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(FIXME, 2019). In fMRI analysis, the first step is to spatially align the samples to a common coordi-
nate system (known as template-based alignment). The unit of measurements are 3D cubes known
as “voxels”. Following alignment, analysis then proceeds separately for each voxel (or sometimes
region), typically by using a general linear model across samples. For fMRI data, spatial alignment
makes it possible to deploy standard statistical models for each voxel separately, substantially
simplifying downstream analysis.

In spatially resolved transcriptomics, a number of methods for spatial alignment has been proposed,
including PASTE (Zeira et al., 2022), PASTE2 (Liu et al., 2023), STalign (Clifton et al., 2023) and
GPSA (Jones et al., 2023). Some of these methods align to a common coordinate system, others
align the samples to each other. However, we posit that there are natural limitations to the potential
success of this approach to multi-sample analysis. In fMRI imaging, alignment is helped by the
fact that the whole brain is imaged in 3D in each sample. In contrast to fMRI data, the alignment
of spatially resolved transcriptomics is complicated by the possibility that different samples may
be collected from different anatomical areas and have differences in the shape, size, and rotation
of the sections. Indeed, SRT samples can represent completely disjoint areas; in this case, spatial
alignment is impossible except to a common coordinate system. But even then, it is unclear how
downstream analysis should proceed, when the samples are non-overlapping.

Factor analysis has been a successful approach to unsupervised discovery of patterns in genomics.
There are a few existing methods for the factor analysis of SRT data that model the spatial de-
pendency of gene expression data (Townes, Engelhardt, 2023; Velten et al., 2022; Shang, Zhou,
2022). NSF (Townes, Engelhardt, 2023) and MEFISTO (Velten et al., 2022) are focused on the fac-
torization of data from a single biospecimen, as each factor is modeled using a single Gaussian
Process. Nevertheless, the models are straightforward to apply to data that has been spatially
aligned by treating the aligned samples as one larger sample; the performance of this approach is
not evaluated in the associated publications. In contrast, spatialPCA can be applied to multiple
unaligned samples. Shang, Zhou (2022) compares clusters obtained from the jointly analyzed data
to manually annotated cortical layers. However, they conclude that the clusters obtained by using
a joint analysis across multiple samples do not outperform the clusters obtained from a single
sample. This suggests that across-sample factorization of SRT data still has substantial challenges.
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Results

Bypassing spatial alignment by parameter modeling

It is important to account for sample-to-sample variation in the analysis of genomics data. We are
considering this question in the context of applying matrix factorization methods, such as non-
negative matrix factorization (NMF), to spatially resolved transcriptomics data. Gene expression
data exhibits a spatial dependence whereby genes measured at two locations which are spatially
close show a different dependence from genes measured at two distant spatial locations. Such
dependence can be driven by a variety of sources including spatial patterns in the distribution of
cell types as well as correlated measurement error. The goal of any analysis of spatially resolved
transcriptomics data is to identify systematic changes in gene expression which are associated with
spatial location. Broadly, we refer to such dependence as “spatial dependence”.

One approach to analysis of multi-sample spatially resolved transcriptomics data is to start the
analysis with spatial alignment of the samples into a common coordinate system. This process
essentially defines spatial neighbourhoods and maps these neighbourhoods between samples. But
spatial alignment is well-recognized to be a challenging problem, due to the need to account for
differences in shape, rotation, and placement of anatomical regions or other features between
samples.

Here, we provide a general recipe for extending a one-sample spatial factorization framework to
allow multi-sample analysis. Our approach bypasses the need for spatial alignment.

In a spatial factorization framework, we represent spatial expression data on a single sample as a
sum of products between gene loadings and spatial factors,

Y =
L

∑
l=1

wl Fl

Here Y is the spatial data matrix, l = 1, . . . , L is the number of spatial factors, wl are gene loadings
and Fl are the spatial factors. The gene loadings and spatial factors represent systematic changes
in gene expression. Accounting for spatial dependence in such a model is done by additional
modeling of the spatial factors; an example is the proposed non-negative spatial factorization (NSF)
of Townes, Engelhardt (2023) where the spatial factors are modelled using Gaussian processes.

In a multi-sample dataset we have an additional m index for the different samples. Our recipe
prescribes letting the spatial factors be sample-specific while the gene loadings are shared across
samples (Methods), giving rise to the following factorization

Ym =
L

∑
l=1

wl Fm,l

Note the absence of the m index on the gene loadings wl . Sharing the gene loadings across samples
is exactly what happens when NMF is applied to data without spatial information such as bulk
RNA-seq data (Methods).

With such a parameterization, our recipe enforces each factor to have the same association with
genes across samples, while allowing spatial dependence to be modeled separately in each sample.
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Fitting such a model will usually require the development of new software (Methods), often by
extending existing software.

As a proof of concept, here we have applied this recipe to non-negative spatial factorization (NSF).
We allow each sample to have its own spatial dependence structure (or more specifically a sample-
specific covariance term in the Gaussian process). We call this extended model mNSF (multi-
sample NSF). We provide a python package implementing our model.

The performance of mNSF in simulations

We examined the performance of our mNSF model using a simulation study which is a simple
extension of the study conducted by Townes, Engelhardt (2023), but adapted to examine issues that
are particularly relevant for multi-sample analysis of SRT data. Briefly, we specify true latent spatial
factors and generate gene expression data with noise. We only depict the true and estimated spatial
features, and not the gene loadings. We use T1-4 to denote the 4 true factors in the simulation, and
use M1-4 to denote the 4 mNSF spatial features. There are no particular order to the mNSF output
so we manually identify the best true factor which matches a given estimated factor.

First, we examined how mNSF handles the important case where the spatial factors are rotated
between samples (T1-T4 in Figure 1a). For each factor, its spatial distributions are the same in the
two samples, but rotated 90 degrees. We find the mNSF factors among M1-4 each corresponding
to one simulated factor among T1-4, according to their spatial pattern (M1, M2, M3 and M4, cor-
responding to T2, T1 T4 and T3). We use Moran’s I to measure the spatial dependency for each of
the mNSF factors (i.e. M1-4) (Figure 1c), and we find that all four mNSF factors show high spatial
dependency. Those validations suggest that mNSF successfully identifies these simulated spatial
features.

Second, we examined mNSF in the case where one of the factors has a spatial pattern only in
one sample, and has constant low value in the other sample (i.e. T1 among the factors T1-T4 in
Figure 1b). We find mNSF factors each corresponding to one simulated factor (M1, M2, M3 and M4,
corresponds to T2, T4, T3 and T1). For each set of simulations, we use Moran’s I to measure the
spatial dependency of each of the mNSF factors among M1-4 (Figure 1d). We find that factor M4,
which corresponds to factor T1 (i.e. the factor which is only operational in one of the samples by
design), show high spatial dependency in sample 1 and almost zero spatial dependency in sample
2. Those results suggest that mNSF is capable of identifying factors that represent patterns that are
operational only in some of the samples.

Analysis of a mouse sagittal brain dataset

To assess the ability of mNSF to identify spatially-resolved features in an actual, multi-sample,
SRT dataset, we next analyzed the adult mouse sagittal brain dataset generated by 10X genomics,
generated using the Visium technology (Ståhl et al., 2016). This dataset consists of two sagittal
sections from a single mouse brain. Each section was cut in two halves, one anterior and one
posterior, for a total of 4 samples. Each sample was assayed using a separate Visium slide. We
know that certain anatomical regions are present only in the anterior (e.g. olfactory bulb) or the
posterior (e.g. cerebellum), while other anatomical regions will be split across the two halves
(e.g. the hippocampus). This provides an opportunity to assess the ability of mNSF to identify
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Figure 1. Multi-sample NSF on simulated data | (a) We generate 4 true factors for 2 samples,
labelled T1-T4. Using these 4 spatial features, we generate noisy expression data for 500 genes
following the approach in (Townes, Engelhardt, 2023). Simulated true factors are shown in the
top two rows. Factors in sample 2 are the same as sample 1 except they are each rotated 90
degrees anticlockwise. mNSF factors are shown in the bottom two rows. The order of the
factors estimated by mNSF is arbitrary and we manually pair each true factor with the
estimated factor which best represent it. (b) As (a) but factor T1 for sample 2 is set to 0. (c,d)
Moran’s I for each of the 4 estimated factors across the 2 samples in the (c) first and (d) second
simulation.

sample-specific factors as well as both common factors and factors that vary across the anterior
and posterior sections.

Townes, Engelhardt (2023) applies NSF to one of the two anterior samples. They use 20 factors with
a split of 10 spatial factors and 10 spatially-unrestricted features. Despite this demarcation, they
find that most of the 20 learned patterns have strong spatial components. They establish that most
of these factors correspond to known anatomical regions in the anterior mouse brain. Consistent
with their parameter choices, we apply mNSF to all 4 samples using 20 spatial features.

To interpret each mNSF factor, we find a list of genes that are highly associated with, and most
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specific for each factor by analyzing the gene loading matrix using the patternMarkers approach
identified in (Fertig et al., 2010). We then use the set of genes associated with each factor to interpret
the cell types, biological functions, or anatomical regions represented by each factor.

Some mNSF factors reflect specific anatomical regions, only present in some of the samples. For
example, factor M9 can be identified as highlighting the gyri of the cerebellum (Figure 2). This
hindbrain-specific factor is close to zero for the two anterior samples and visually similar in in-
tensity and distribution across the two replicate sections for the posterior brain. The top genes
identified by patternMarkers include Pcp2, Calb1, Car8, and Itpr1 which are specific markers for
Purkinje cells within the cerebellum (X Chen et al., 2022), as well as Cbln1 and Cbln3 which are
known to exhibit high expression in the cerebellum, and Zic1 which is a specific marker for cere-
bellar granular cells (Aruga et al., 1998) (Table S1). This result highlights the ability of mNSF to
identify factors associated with a signal that is present only in some, but not all, of the samples.

Some mNSF factors represent anatomical regions that span the posterior and anterior brain (Fig-
ure 2). For example, factor M17 predominately marks both the hippocampus and hypothalamus,
with moderate signal in select layers of the cortex. Note how the estimated factor varies smoothly
across the posterior and anterior brain, specifically across the CA1-3 layers(which appear as a ro-
tated U in these samples). The regions labeled by this factor are considered regions of increased
synaptic plasticity. For example, the hippocampus, which functions primarily in learning and
memory (Bliss, Collingridge, 1993), requires this plasticity for the formation and consolidation
of short-term memories. The hypothalamus plays a crucial role in maintaining homeostasis in
the body (Saper, Lowell, 2014), regulating a variety of essential functions such as hunger, thirst,
sleep, circadian rhythms, stress responses, and reproductive behaviors. Synaptic plasticity in the
hypothalamus is important for adaptation to changes in physiological states and the environment
(Dietrich, Horvath, 2013; Serrenho et al., 2019; Bains et al., 2015; Horvath, 2006). Consistent with
this categorization, patternMarker genes for M17 are associated with synaptic plasticity, includ-
ing AMPA receptor regulation (Cnih2, Herring et al. (2013)), dendritic spine development (Ddn,
Ncdn, Yang et al. (2024) and Nicolas et al. (2022)), and synaptogenesis (Nptxr, SJ Lee et al. (2017))
(Table S1).

Broadly, across the 20 spatial features, our observations about factors M9 and M17 hold for other
spatial features. Specifically, we observe (a) consistency between each factor across the two replicate
sections (b) there are multiple factors which continuously vary across the anterior and posterior
brain (Supplementary Figure S1) (c) a few factors (M10, M19) are specific to either the anterior or
posterior brain.

Analysis of human DLPFC data

Next, to evaluate mNSF across a dataset with replicate samples from different donors, we apply
mNSF to a widely used spatially resolved transcriptomics dataset from the Visium platform on
human dorsolateral prefrontal cortex (DLPFC) Maynard et al. (2021). This data consists of 4
samples from each of 3 donors. The 4 samples from each donor consist of parallel sections (Figure 3).
Each section has a width of 10µm and we label the sections as A-D, representing the physical
ordering of the sections. The physical separation is as follows: the AB pair is separated by 0 µm,
the BC pair is separated by 300 µm and the CD pair is separated by 0 µm. Furthermore, the data are
supplied with manual annotations of cortical layers based on expression and H&E staining, with
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Figure 2. mNSF factors of mouse sagittal data reflect anatomical structures | The dataset is
composed of four samples from the same mouse. The sagittal brain was divided into an
anterior and a posterior half and two parallel sections were obtained for each half, for a total
of 4 samples. We depict the results of applying mNSF using 20 factors to these 4 samples.
Factor M9 (left) exhibits high use in the cerebellum and is an example of a factor specific to the
posterior brain. Factor M17 (right) exhibits high use in both the hippocampus and
hypothalamus regions, where the hippocampus region spans the posterior and anterior areas.
This is an example of a factor which varies continuously across disjoint samples. All 20 factors
are depicted in Supplementary Figure S1

labels of white matter (WM), cortical layers 1 to 6 and NA (which are excluded from our analysis).
Not all layers are present in all samples; specifically, the 4 samples from individual 2 do not have
layers 1 and 2 present.

We apply mNSF to all 12 samples using 10 spatial features. The model does not encode the
design of the experiment with 4 sections from 3 donors. We expect that different samples from
the same donor are more similar than different samples from different donors; this is true for
the manual annotations of the samples (Figure 3). We do not necessarily expect that different
cortical layers form distinct “clusters” in expression space. For example, it is understood that some
genes are expressed in a gradient across the cortical layers (O’Leary et al., 2007; Lau et al., 2021;
Lodato, Arlotta, 2015). Nevertheless, we expect some relationship between cortical layers and
mNSF spatial features. To compare the mNSF factors with the discrete manual annotation, we use
the following approach: we group each spatial location in each sample according to its manual
annotation and display each factor value across the layers (Figure 4). The M6 factor displayed
in Figure 4 is particularly high in cortical layer 2, followed by blending into cortical layer 3. The
lowest layer is cortical layer 1 and the factor is almost absent in white matter.

Figure 5 depicts 3 mNSF spatial features. Due to size restrictions, we display 4 samples, 1 sample
from each donor as well as an additional parallel section from each donor. This display depicts both
between-donor variability and between-sections-within-a-donor variability. For completeness, we
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Figure 3. Layer annotation of DLPFC data | Manually annotated layer for each spatial
location in each sample from each donor in DLPFC dataset. Each donor contributes 4 different
sections, arbitrarily labelled A-D. For samples from donor one and three, each sample has
seven layers: layer 1-6 and white matter. The samples from donor 2 do not cover layers 1 and
2. While the manual annotation includes the NA (not available classification), these spatial
locations are excluded from our analyses.

depict all 12 samples and 10 factors in Supplementary Figures S2-S11.

Factor M6 has high values in the spatial locations manually annotated as layer 2, intermediate
values in spatial locations manually annotated as layer 3 and close to zero values for spatial loca-
tions manually annotated as white matter (Figure 5a). PatternMarker genes for this factor include
HPCAL1 (Table S2), which is a marker for layer 2 excitatory neurons (Wei et al., 2022). This factor
is consistent with the manual annotation across the 3 donors, and across parallel sections within
each donor.

Factor M2 is consistently high for spatial locations annotated as white matter (Figure 5b) and
low otherwise. PatternMarker genes for this factor include known oligodendrocyte and myelin-
associated genes, such as MOG, MOBP, MBP, and BCAS1 (Cahoy et al., 2008; Plant et al., 2014)
(Table S2), which are expected to be specific to white matter. This factor is consistent with the
manual annotation across the 3 donors, and across parallel sections within each donor.

Factor M5 has high values in the spatial locations manually annotated as white matter in the
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Figure 4. Cross-layer trend of the M6 factor in sample 1 | The left plot depict the spatial
distribution of factor M6 on the spatial locations from sample 1 (donor 1, section A). The
middle plot depicts the distribution of this factor, stratified by which layer each spatial
location belongs to (according to the manual layer annotation). The right plot depicts the
manual annotation for this sample. The color scale in the left plot is the factor values whereas
the color in the middle and left plot is used to depict the manual annotation.

samples from donor 1 and 3, but consistently low values across all the spatial locations in the
samples from donor 2 (Figure 5c). It therefore suggests an inconsistency, potentially in tissue
processing or orientation, across the samples from different donors. PatternMarker genes for this
factor include genes that mark oligodendrocytes and myelination (PLP1, TF, CNP, ENPP2) (Cahoy
et al., 2008; Plant et al., 2014), and genes potentially associated with neurovasculature, blood,
and vascular endothelial cells (HBA2, HBB, CLDND1) (Günzel, Yu, 2013) (Table S2). We believe
differences in this factor across donors may reflect variation in how tissue blocks were dissected
where sections from donor 2 are cut at a more horizontal plane that does not contain layers 1
and 2. This was confirmed to be a possible interpretation by the original manual annotator (K.
Maynard, personal communication). This factor represents a pattern only present in some, but not
all samples, once again showcasing the ability of mNSF to identify such patterns.

We conclude that mNSF shows encouraging performance on this dataset. It produces factors which
make biological sense and are consistent across parallel sections within the same tissue block. Many
of the factors are also consistent across the donors. However, the scale of the factors sometime vary
(see white matter for factor M2, Figure 5). This might reflect variability in the manual annotation,
biological variability between samples or unwanted (technical) variation which might be possible
to remove with additional normalization.

Comparison with spatial alignment

The DLPFC dataset is an excellent candidate for spatial alignment. However, considering the
manual annotations (Figure 3) it is clear that aligning different sections from the same donor is
much easier than aligning different sections from different donors. For example, layers 1 and 2 are
absent in donor 2 and this complicates spatial alignment. Zeira et al. (2022) describes PASTE, a
method for spatial alignment, and apply PASTE to the DLPFC dataset to perform direct alignment
of these samples. However, for exactly the challenges described above, Zeira et al. (2022) only
attempt to align samples from the same donor to each other, doing both pairwise and 4-sample
alignment. Using these data allows us to compare mNSF to spatial alignment on a dataset which
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Figure 5. mNSF factors represent layers of the prefrontal cortex | mNSF (a) factor M6, (b)
factor M2 and (c) factor M6 in sample 1 (donor 1, section A), sample 5 (donor 2, section A),
sample 7 (donor 2, section B) and sample 12 (donor 3, section D).

is particularly well suited for spatial alignment.

Specifically, we compare the result of using mNSF on multiple samples to the result of using PASTE
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to align samples followed by NSF on the aligned samples, an approach which we term pasteNSF.
Following Zeira et al. (2022) we evaluate pairwise alignment, where we only consider pairs of
adjacent sections (either AB, BC or CD). We expect, and this is confirmed by the authors, that
PASTE performs best with adjacent tissue sections separated by 0µm (ie. comparisons AB or CD).
In this analysis we use 10 spatial spatial features. Following factorization, we use a multinomial
model to predict the 5 or 7 manually annotated layers (depending on the donor) as a function of
the 10 estimated spatial features, and we use the model fit to assess performance. The model fit
measures the association between the 10 inferred factors and the manual annotation.

This approach shows that mNSF has comparable performance to pasteNSF (Figure 6a-b). PASTE
supplies the user with a mapping score which represents how well the spatial alignment is per-
formed (higher is better). The pair with the lowest mapping score (donor 1, BC) is the pair where
mNSF outperforms pasteNSF the most (Figure 6c-d).

In summary, mNSF has at least comparable performance to PASTE followed by NSF when spatial
alignment is easy, but extends factorization to data where spatial alignment is hard (between
donors in the DLPFC dataset) or impossible (between anterior/posterior sections in the mouse
sagittal dataset).

Discussion

In this study, we describe a general approach to extending a matrix factorization method to multi-
sample datasets. Using this approach, we extended non-negative spatial matrix factorization (NSF)
by Townes, Engelhardt (2023) to spatial transcriptomics datasets with multiple samples. Our model
allows for a sample-specific spatial dependence structure. Our method bypasses the need to align
factors between samples into a consensus coordinate system, which is a challenging problem. Both
real and simulated data analysis support that the method yields usable results when applied to
data from multiple sources, even if it is impossible to perform spatial alignment. Classic matrix
factorization methods are widely used in expression analysis and it is well recognized that it is
hard to identify the biological or technical process(es) associated with each factor or pattern. Our
method retains this limitation.

There are multiple possible downstream applications of our method, including spatial domain
detection. These applications are left for future work. Our evaluation is focused on comparing
factors to known anatomical regions, and we have not considered the impact on downstream anal-
yses. Nevertheless, we believe that our method can serve as a foundation or input to downstream
analysis of multi-sample data.

Batch effects could cause differences in spatial patterns between samples. Such differences would
appear as factors which are variable across samples. Our current method cannot distinguish
batch effects from biological variation. It will be an important question for future research to
appropriately model and correct batch effects in spatially resolved transcriptomics data.

In applications, researchers are sometimes aware of existing patterns or factors across samples,
either at sample level or at the level of spatial features. Accounting for such known biology will
require the application of a semi-supervised matrix factorization method. Such methods have been
suggested for other analysis domains (Haddock et al., 2022). We believe it will be important to
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Figure 6. A comparison of mNSF to spatial alignment using PASTE | The performance of
mNSF compared with applying NSF on the aligned coordinates by PASTE. Each consecutive
sections (within donor) (i.e. sections AB, sections BC or section CD) are used to fit either
mNSF, or a combination of PASTE alignment and NSF, using three spatial features. For the
factor sets inferred from each pair of samples in each method, we run a multinomial regression
of the layer as a categorical variable, against the three spatial features, and calculated the (a)
the accuracy of layer prediction using a multinomial model (Methods, higher is better). (b)
The multinomial model deviance (lower is better, Methods). (c) Difference in the layer
prediction accuracy between mNSF and the combination of PASTE and NSF, compared to the
mapping score of PASTE. (d) Difference in the deviance of the multinomial regression
between mNSF and the combination of PASTE and NSF, compared to the mapping score of
PASTE. The BC sections, which are separated by 300 µm, are highlighted in red.

develop such models for spatially resolved transcriptomics data and it is likely that our framework
will allow for the extension of such models to multiple samples.

Conclusions

Here, we provide an alignment-free framework for generalizing a one-sample spatial factorization
model to multi-sample data. In simulations, our method is capable of identifying spatial structures
which are rotated between samples, as well as structures which only appear in some, but not all,
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samples. Using real data, we show our method is capable of identifying matched functional regions
in multi-sample spatial transcriptomics data.
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Methods

A general approach to multi-sample spatial factorization

Spatially resolved transcriptomic (SRT) data for a single sample can be represented as a matrix
Y = (yg,i) of expression measures indexed by genes g with associated spatial (physical) location
x = (xi). We use the index i to index the spatial locations.

Consider a standard non-negative matrix factorization model applied to SRT data on a single
sample:

Y =
L

∑
l=1

wl Fl

In this model, we decompose the expression values into a term wl representing genes and a term
Fl representing the spatial locations. The model does not impose any kind of spatial structure on
Fl . This model is widely used for non-spatially resolved bulk and single-cell transcriptomic data.
Adapting this model to spatial data is usually done by additional requirements on the Fl terms to
account for expected spatial dependence. Such extensions are considered below, but for the sake
of clarity, we first consider a matrix factorization model without spatial dependency.

Our suggested approach to extend this model across M samples is to use the following (simplified)
model

Ym =
L

∑
l=1

wl Fm,l

where the gene loadings are shared across samples, but the (spatial) factors Fm,l are sample-specific.
The model is easy to fit using standard software for non-negative matrix factorization models, by
concatenating the involved matrices:

[Y1 · · ·YM] =
L

∑
l=1

wl [F1,l · · · FM,l ]

where [·] is concatenation. This is possible because of the simple model formulation where we do
not impose spatial structure on the spatial features.

As argued by Townes, Engelhardt (2023), this model could be improved by (a) incorporating the
digital (discrete) nature of the expression data and (b) modelling the spatial dependence between
spots.

As a first step towards a better model for SRT data, Townes, Engelhardt (2023) describes proba-
bilistic NMF (PNMF) which models the discrete nature of digital expression data using a Negative
Binomial distribution but does not address the spatial dependence. We propose a multi-sample
version of PNMF (mPNMF) specified as

Ym ∼ NB(smΛm, ϕm)

Λm =
L

∑
l=1

wl exp(Fm,l)

Fm,l ∼ N(µl , σ2
l )
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Here, sm is a vector of known sample-specific size factors (one for each spot), and σ2
l are factor-

parameters which are not sample-specific. Any software that fits single-sample PNMF can fit
multi-sample PNMF by concatenating the data matrices.

To model the spatial dependence of SRT data, Townes, Engelhardt (2023) develops non-negative
spatial factorization (NSF) by using a Gaussian process to model the spatial factors Fl . We propose
a multi-sample version of this model (mNSF), which is stated as follows (Figure 7):

Ym ∼ NB(smΛm, ϕm)

Λm =
L

∑
l=1

wl exp(Fm,l)

Fm,l ∼ GP(µm,l(xm), km,l(xm))

where µm,l is a sample- and factor-specific mean function and km,l is a sample- and factor-specific
covariance kernel, both depending on the sample-specific vector of spatial locations xm. Unlike the
multi-sample version of PNMF, fitting mNSF requires sample-specific parameterization to handle
the sample-specific spatial features.

We have implemented mNSF by extending the code provided by Townes, Engelhardt (2023). Our
extension includes the interpolated version of NSF, where the model is fit using a subset of spatial
locations which are then interpolated to encompass the entire data matrix.

Data processing

Mouse sagittal section data

The spot-level gene expression counts data, as well as the 2-dimensional coordinates denoting
the position of each spot, are downloaded from 10X website: https://cf.10xgenomics.com/
samples/spatial-exp/1.1.0/V1_Mouse_Brain_Sagittal_Anterior_Section_1, https:
//cf.10xgenomics.com/samples/spatial-exp/1.1.0/V1_Mouse_Brain_Sagittal_Anterior_
Section_2, https://cf.10xgenomics.com/samples/spatial-exp/1.1.0/V1_Mouse_
Brain_Sagittal_Posterior_Section_1, andhttps://cf.10xgenomics.com/samples/
spatial-exp/1.1.0/V1_Mouse_Brain_Sagittal_Posterior_Section_2.

Top 500 genes are selected based on the maximal Poisson deviance of each gene across all four
samples, calculated by a built-in function in NSF package (see code on GitHub for details).

DLPFC data

DLPFC dataset are downloaded from the SpatialExperiment (Righelli et al., 2022) package. Top 500
genes are selected based on the maximal Poisson deviance of each gene across all twelve samples
(see code on GitHub for details).

PASTE alignment

For each sample pair used in this study, spatial locations on the pairwise aligned coordinate sys-
tem are downloaded from PASTE GitHub website: https://github.com/raphael-group/
paste_reproducibility
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Figure 7. Multi-sample NSF model | Multi-sample NSF model for a dataset with two samples
and three spatial features. As input, we use expression data from the two samples where rows
are genes and columns are spatial spots. Each factor is modeled by a Gaussian process which
represents the spatial dependency between spots; this process has sample-specific parameters.
The gene loadings are shared between the two samples.

The 500 genes selected in the 12-sample mNSF analysis for DLPFC data are used for this analysis.

For each sample pair used in this study, one-sample NSF is applied on the aligned data, i.e. the
concatenated gene expression matrix of the two samples as well as the coordinate of each spatial
location in each sample on the aligned coordinate system. mNSF is then used on the unaligned
data, i.e. the gene expression matrix of each sample as well as the coordinate of the spatial locations
in each sample in the original coordinate system.
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Models without induced points

One-sample NSF

As reference, we describe the one-sample NSF model proposed in (Townes, Engelhardt, 2023).
Briefly, the model assumes that the log value of each non-negative factor follows a Gaussian
process across the spatial locations in the sample, with the intercept equal to a linear combination
of the coordinates. The gene expression level in each spatial location follows a Poisson distribution
with the mean equal to the product of a loading matrix and the factor matrix, multiplied by the
size factor (i.e. library size) of the spot.

Assume there are n spatial locations in total at locations X measuring G genes. We will use L to
denote the number of non-negative spatial spatial features; this is a user-supplied parameter.

Let Ygi denote the observed count value for gene gth and spatial location i. It is assumed to follow
a Negative Binomial distribution

Ygi ∼ NB(exp
(
λgi · szi

)
, ϕ)

Here szi is a known size factor for spatial location i , ϕ is the dispersion parameter and

λgi =
L

∑
l=1

wgl exp ( fil)

Here wgl denotes the loading of gene g for the lth factor, and fil denotes the value of the lth factor
at spatial location i.

The value of lth factor on the observed spatial locations X follows a Gaussian process distribution
with a linear mean and a Matern kernel for covariance. In particular, this means that Fl(X) – the
specification of the factor on the grid X follows a normal distribution

Fl(X) ∼ N(µl(X), Kl(X), l = 1, 2, . . . , L

with
µl(X) = β0,l + β1,lX

and
[Kl(X)]i,i′ = kl(xi, xi′)

where the kernel function for the lth factor is of Matern class,

kl(a, b) = αl exp
(
∥a − b∥

Bl

)
Here

∥a − b∥ =
√
(a1 − b1)2 + (a2 − b2)2

denotes the distance between two spatial locations with coordinates a and b, both of which are
vectors of length 2.

In summary, Kl is an N × N matrix denoting the correlation of Fl , αl is the length scale parameter
and Bl is the amplitude parameter for the kernel of Gaussian process.
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Multi-sample NSF

If no interpolation is used, multi-sample NSF assumes that the log value of each non-negative fac-
tor follows a Gaussian Process across the spatial locations in each sample, with the intercept equals
a linear combination of the coordinates. And the gene expression level in each spatial location
follows a Poisson distribution with the mean equals a weighted sum of the factors multiplied by
the size factor (i.e. library size) of the spot, where the weights are shared across different samples
and the other parameters are all sample-specific.

Assume there are Nm spatial locations in total at locations Xm, G genes used, and L non-negative
spatial spatial features.

The observed count value for gth gene at ith spatial location in the mth sample, denotes as Ymgi,
follows a Negative Binomial distribution

Ymgi ∼ NB(eλmgi · szmi, ϕm),

where szmi is the scale factor of spatial location i, ϕm is the dispersion parameter, and

λmgi =
L

∑
l=1

wgle( flmi)

.

Here wil denotes the loading of gene j for the lth factor, and flmi denotes the value of the lth factor
at spatial location i in the mth sample.

The value of lth factor on the observed spatial locations X conditional on Ulk follows a GP distribu-
tion

flm ∼ N(β0ml + β1mlX, Km f f l), l = 1, 2, ..., L

Here Km f f l is an Nm × Nm matrix denoting the correlation of flm, with

[Km f f l ]i,i′ = klm(xi, xi′)

where the kernel function for the lth factor in sample m is

klm(a, b) = αlm exp
(∥a − b∥

Blm
)

where αlm is the length scale parameter and Blm is the amplitude parameter for the kernel of
Gaussian Process for the lth factor in the kth sample.
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Models with inducing points

One-sample NSF

If a set of interpolated points is used, one-sample NSF assumes that the log value of each non-
negative factor follows a Gaussian Process across both the observed and interpolated spots, with
the mean equals a linear combination of the coordinates. A set of parameters are created for
the interpolated points, and the posterior distribution of the observed point conditional on the
interpolated points is derived. The overall likelihood of both the observed and interpolated points
is calculated through the likelihood of the interpolated points and the posterior likelihood of the
observed points.

Assume there are N spatial locations in total at locations X, J genes used, n spatial locations inter-
polated at locations Z, and L non-negative spatial spatial features.

The observed count value for gth gene at ith spot, denotes as Ygi, follows a Negative Binomial
distribution

Ygi ∼ NB(λgi · szi, ϕ),

where szi is the scale factor of spatial location i, ϕ is the dispersion parameter, and

λgi =
L

∑
l=1

wgle( fil)

.

Here wil denotes the loading of gene j for the lth factor, and fil denotes the value of the lth factor at
spatial location i.

The distribution of Ul (i.e. the value of the lth factor on the induced points) and Fl follows a
Gaussian Process distribution,

⌈
Ul
fl

⌉
∼ N(β0l + β1l

⌈
X
Z

⌉
, Σl),

where

Σl =

⌈
Kuul Ku f l
K f ul K f f l

⌉
Here Kuul is an n × n matrix denoting the correlation of Ul , K f f l is an N × N matrix denoting the
correlation of Fl , and Ku f l is an n × N matrix denoting the correlation between Ul and fl .

[Kuul ]j,j′ = kl(zj, zj′)

[K f f l ]i,i′ = kl(xi, xi′)

[Ku f l ]j,i = kl(zj, xi)

where the kernel function for the lth factor is

kl(a, b) = αl exp
(∥a − b∥

Bl
)
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where αl is the length scale parameter and Bl is the amplitude parameter for the kernel of Gaussian
Process for the lth factor.

Decomposing the joint distribution of Ul and Fl into P(Ul) and P(Fl | Ul), we have

P(Ul , Fl) = P(Ul)P(Fl | Ul)

where P(Ul) could be derived by

Ul ∼ N(β0l + β1lZ, Ωl), l = 1, 2, ..., L

and P(Fl | Ul) could be derived by

Fl | Ul ∼ N(β0l + β1lX + K⊺
u f lK

−1
uul(Ul − β0l − β1lZ), K f f l − K⊺

u f lK
−1
uulKu f l)

Multi-sample NSF

In multi-sample NSF, for each factor, the loading of the same gene is shared across the samples,
while all the other parameters are sample-specific. The observed data from different samples are
assumed to be independent.

Assume there are K samples, with the mth sample containing Nm spatial locations at Xm, nm in-
terpolated points at Zm. The same set of G genes are used in all the samples. Assume there are
L non-negative spatial factors for each sample, with the loadings of those G genes for each factor
shared by samples.

For sample m, the observed count value for gth gene at ith spot, denotes as Ymgi, follows a Negative
Binomial distribution

Ymgi ∼ NB(λmgi · szmi, ϕm),

where szmi is the scale factor of spatial location i in sample m, ϕm is the dispersion parameter of
sample m, and

λmgi =
L

∑
l=1

wgle( fmil)

.

Here wgil denotes the loading of gene j for the lth factor for sample m, and fmil denotes the value
of the lth factor at spatial location i in sample m.

The value of the lth factor on the interpolated locations of sample k are assumed to follow a GP
distribution

Uml ∼ N(δml , Ωml), l = 1, 2, ..., L, m = 1, 2, ..., M

.

The distribution of Uml and Fml follows a Gaussian Process distribution,

⌈
Uml
Fml

⌉
∼ N(βm0l + β1l

⌈
Xm
Zm

⌉
, Σml),

Wang et al. | 2024 | bioRχiv | Page 20

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.07.01.599554doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.01.599554
http://creativecommons.org/licenses/by/4.0/


where

Σml =

⌈
Kmuul Kmu f l
Km f ul Km f f l

⌉
Here Kmuul is an nm × nm matrix denoting the correlation of Uml , Km f f l is an nm × nm matrix
denoting the correlation of fml , and Kmu f l is an n × N matrix denoting the correlation between Ulm
and flm.

[Kmuul ]j,j′ = kml(zj, zj′)

[Km f f l ]i,i′ = kml(xi, xi′)

[Kmu f l ]j,i = kml(zj, xi)

where the kernel function for the lth factor in the mth sample is

klm(a, b) = αlm exp
(∥a − b∥

Blm

)
where αlm is the length scale parameter for sample m and Blm is the amplitude parameter for the
kernel of Gaussian Process for sample m for the lth factor.

Decomposing the joint distribution of Ulm and Flm into P(Ulm) and P(Flm | Ulm), we have

P(Ulm, Flm) = P(Ulm)P(Flm | Ulm)

where P(Ulm) could be derived by

Ulm ∼ N(β0ml + β1mlZm, Ωlm), l = 1, 2, ..., L

and P(Flm | Ulm) could be derived by

Flm | Ulm ∼ N(β0ml + β1mlXm + K⊺
mu f lK

−1
muul(Umkl − β0ml − β1mlZm), Km f f l − K⊺

mu f lK
−1
muulKmu f l)

Model fitting

Firstly, let’s assume a one-sample data with the distribution in the same form of one-sample NSF,
as described in the first subsection under Method section, and discuss it’s model fitting approach.

For one-sample spatial data, in NSF paper, it has been shown that by maximizing the following
function (called ELBO function), we will get the MLE estimates of all the parameters involved in
the model (Townes, Engelhardt, 2023):

Eq(U;F,|Θ)

[
log

p(Y | F; Θ)p(F | U; Θ; X, Z)p(U; Z; Θ)

q(U; F | Θ)

]
(1)

where Θ denotes the parameter space, F[, l] is defined by letting F[, l] = fl , and q(U, F | Θ) is the
product of the posterior likelihood of F conditional on U, denoted as q(F | U, X, Z, Θ), and the
approximated likelihood of U, denoted as q(U | Z) .
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Next, we will discuss the model fitting approach for multi-sample data, where the distribution of
the data is in the same form of the mNSF model.

The statement that ”maximizing the ELBO function will give us the MLE estimates of all parameters
involved in the model” is hold in general regardless of the form of distribution settings, such
statement also holds for a data that is concatenated by data from multiple samples, where each
data has the same form of distribution but with different values of parameters, i.e.

Eq∗(U∗;F∗,|Θ∗)

[
log

p∗(Y∗ | F∗; Θ)p∗(F∗ | U∗; Θ∗; X∗, Z∗)p∗(U∗; Z∗; Θ∗)

q∗(U∗; F∗ | Θ∗)

]
(2)

where
Y∗ = [Y1, ..., YM]

U∗ = [U1, ..., UM]

F∗ = [F1, ..., FM]

X∗ = [X1, ..., XM]

Z∗ = [Z1, ..., ZM]

Θ∗ = {Θ1, ..., ΘM}

where Ym is the observed data at all spatial locations in sample m, Um denotes the latent factors at
induced points in sample m, Fm is the factor at all spatial locations in sample m, Xm is the spatial
locations in sample m, and Zm is the induced points in sample m.

As discussed in the last paragraph, the statement ”maximizing the ELBO function will give us the
MLE estimates of all parameters involved in the model” holds true for function (2), so in the next
step, we will discuss the approach to maximize the function (2) above.

One way to maximize function (2) is using ”Adam algorithm (Kingma and Ba, 2014) with gradients
computed by automatic differentiation in Tensorflow” (Townes, Engelhardt, 2023), which calculate
the gradient of a target function with respect to a set of parameters and update the parameters by
adding s · g to each of the parameter where s denote the ’step size’ (a constant scalar that has the
same value for fitting different parameters) in the gradient approach and g denotes the gradient
of a parameter. To satisfy the non-negativity constraint of W parameter, we can set any negative
values in W to zero after the parameters’ update in each iteration.

In the setting that the distributions of data from different samples are independent, we can re-write
function (2) as

Eq∗(U∗;F∗,|Θ∗)

[
log

p∗(Y∗ | F∗; Θ)p∗(F∗ | U∗; Θ∗; X∗, Z∗)p∗(U∗; Z∗; Θ∗)

q∗(U∗; F∗ | Θ∗)

]
=

M

∑
m=1

Eqm(Um;Fm,|Θm)

[
log

pm(Ym | Fm; Θ)pm(Fm | Um; Θm; Xm, Zm)pm(Um; Zm; Θm)

qm(Um; Fm | Θm)

] (3)

Wang et al. | 2024 | bioRχiv | Page 22

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 1, 2024. ; https://doi.org/10.1101/2024.07.01.599554doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.01.599554
http://creativecommons.org/licenses/by/4.0/


The equation (3) above suggests that, in terms of the gradient calculation and the parameters
update within each iteration of applying Adam gradient approach in the multi-sample model
fitting, it equals to

Step 1: calculate the gradient of the parameters involved in each sample, only using the data of the
corresponding sample;
Step 2: for the parameters that are sample-specific, update those parameters in the same way
of fitting one-sample NSF model; for the parameters that are shared by samples (here for mNSF
model, it is the loadings parameter W), the gradient of this parameter for function (3) equals the
sum of the gradients of the parameter across m samples.

Note that as long as the ’step size’ parameter are the same for the individual sample’s model fitting,
the sample-specific parameter fitting in ”Step 2” equals:

Step 2*: for the sample-specific parameters, update those parameters separately in the same way
of fitting one-sample NSF model, (here in mNSF model, we will get M sets of updated Ws, written
as Wm,new), then average those updated parameters to get the updated parameter with respect to
the full model (here for mNSF model, the updated W parameter can be calculated by Wnew =

∑M
m=1 Wm,new/M)

Based on all the discussions above in this subsection, we can draw the conclusion that the following
two model fitting process will give us the same parameter estimates:

Process 1: maximize the ELBO function of the full mNSF model, using Adam gradient approach
with step size of s and updating the parameters with 100 iterations, where at the end of each
iteration, set the non-negative values in the averaged W to zeros.

Process 2: repeat the following parameter updating step for up to 1000 iterations, until converge:
for each sample: firstly do the parameter updates in the same way as one iteration in ’Process
1’ excluding the step of setting the negative values in W to zero; then for parameter W , get the
average of its updated value across the M samples, set the non-negative values in the averaged W
to zeros, and use this non-negative W as the updated W

In mNSF, we use ”Process 2” to fit the model, which will, assuming the approximated likelihoods
used in NSF model fitting are close enough to the non-approximated likelihoods, give us a estimate
of parameters that is close to the MLE estimates of the model.

Availability of data and materials

The Visium data for mouse sagittal section is available through 10X portal (https://www.10xgenomics.
com). The Visium data for DLPFC is available for download through SpatialExperiment package.
Code for generating the aligned spatial coordinates using PASTE is available through GitHub
(https://github.com/raphael-group/paste_reproducibility). All code to analyze
the data and generate figures is available at https://github.com/hansenlab/mNSF_paper.
Our mNSF package is available at https://github.com/hansenlab/mNSF.
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1 Supplemental Tables

Factor Gene symbol
M1 Tcf7l2, Bc1, Acta2, Slc17a6, Dcn, Trh, Tnnt1, Cabp7, Atp2a3, Ccn2
M2 Ttr, Enpp2, Ecrg4
M3
M4 2010300C02Rik, Arpp21, Ppp3ca, Cx3cl1, Lamp5, Rgs4, Chst1, Pdp1, Ndrg4, Kcnip2
M5 Hba-a1, Hbb-bs, Hba-a2, Hbb-bt, Alas2
M6 mt-Co1, mt-Nd5, mt-Co2, mt-Atp8, mt-Nd2, mt-Nd4, mt-Atp6,

mt-Nd4l, mt-Co3, mt-Nd3
M7 Lypd1, Ly6h, Pgrmc1, Hap1, Lmo3, Gap43, Ccn3, Crym, Atp2b4, Ahi1
M8 Vxn, Stx1a, Lingo1, Dkk3, Tbr1, Cck, Mef2c, Nrn1, 1110008P14Rik, Slc30a3
M9 Pcp2, Car8, Cbln1, Rgs8, Calb1, Itpr1, Cbln3, Gng13, Zic1, Inpp5a
M10 Penk, Gpr88, Ppp1r1b, Pde10a, Tac1, Pde1b, Rgs9, Adcy5, Scn4b, Rasd2
M11 Scg2, Nap1l5, Resp18, Tuba1b, Gnas
M12 Prkcd, Adarb1, Nefm, Cplx1, Slc24a2, Rasgrp1, Uchl1, Thy1, Atp1a3
M13 Tmsb10, Fxyd6, Rpl37, Rplp1, Rpl13, Rpl9, Rps19, Rps27, Rpl37a, Clu
M14 Ptgds, Mgp, Igf2, Myoc, Nnat, Igfbp2
M15 Plp1, Mobp, Mbp, Trf, Mag, Mal, Cldn11, Cryab, Cnp, Mog
M16 Fabp7, S100a5, Slc6a11, Ptn, Apoe, Nrsn1, Aqp4, Vtn, Sparcl1, Pla2g7
M17 Cnih2, Ddn, Ptk2b, Nptxr, Ncdn, Nsmf, Nell2, Mmd, Thra, Selenow
M18 Sst, Npy, Gad1, Gad2, Slc32a1, Zwint, Pcsk1n, Cox8a, Snrpn, Cox6c
M19 Gng4, Synpr, Gpsm1, Pcbp3, Meis2, Cpne4, Ptpro, Tshz1, Pbx3, Pcp4l1
M20 Gm42418, Lars2, Nefh, Vamp1, Spp1, Malat1, Nefl, Nat8l

Supplementary Table S1. Genes mostly associated with each factor in mouse sagittal section
data |

Factor Gene symbol
M1 COX1, COX2, COX3, ND4, ATP6, ND2, ND3, CYTB, ND1, ND5
M2 KRT8, KRT18, S100A11, MOG, MOBP, HSPA2, BCAS1, IGFBP5, MBP, PAQR6
M3 FABP4, SAA1, AQP4, SNORC, CXCL14, VIM, SPARC, GJA1, GFAP, MT2A
M4 PPP3CA, DIRAS2, AK5, APP, THY1, PRKCB, CHN1, YWHAG, RTN4, PRNP
M5 PLP1, TF, CNP, CARNS1, HBA2, HBB, CLDND1, CLDN11, ENPP2, PPP1R14A
M6 HPCAL1
M7 NEFM, NEFL, SNCG, LGALS1, GAP43
M8 PCP4, SNCA, TUBB2A, TMSB10, SYT1, STMN2, STMN1, UCHL1, FABP3, TTC9B
M9 COX6C, SST, NPY
M10 SCGB2A2, SCGB1D2, TFF1, IGKC, IGHG3, AZGP1, IGHG4, TFF3, MUC1, IGLC2

Supplementary Table S2. Genes associated with each factor in the DLPFC data |
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2 Supplemental Figures

Supplementary Figure S1. mNSF factors of mouse sagittal data show associations with the
anatomical structure | The dataset is composed of four samples – two pairs of replicates, each for
the anterior and the posterior region. Four-sample NSF is applied in this data, with twelve factors
used. Each pair of replicates is in the same column in each subplot. Comparing the spatial pattern
of each factor to a reference diagram of the mouse brain, it is easy to establish that factor 16 and 19
are enriched in olfactory bulb, and factor 9 is enriched in cerebellum.
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Supplementary Figure S2. The value of each mNSF factor M1 for each of the 12 samples in
DLPFC data
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Supplementary Figure S3. The value of each mNSF factor M2 for each of the 12 samples in
DLPFC data
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Supplementary Figure S4. The value of each mNSF factor M3 for each of the 12 samples in
DLPFC data
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Supplementary Figure S5. The value of each mNSF factor M4 for each of the 12 samples in
DLPFC data
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Supplementary Figure S6. The value of each mNSF factor M5 for each of the 12 samples in
DLPFC data
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Supplementary Figure S7. The value of each mNSF factor M6 for each of the 12 samples in
DLPFC data
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Supplementary Figure S8. The value of each mNSF factor M7 for each of the 12 samples in
DLPFC data
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Supplementary Figure S9. The value of each mNSF factor M8 for each of the 12 samples in
DLPFC data
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Supplementary Figure S10. The value of each mNSF factor M9 for each of the 12 samples in
DLPFC data
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Supplementary Figure S11. The value of each mNSF factor M10 for each of the 12 samples in
DLPFC data
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