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Abstract: The formations of long-period superstructures strongly influence the properties of Al-rich
L10-TiAl intermetallic alloys. To soundly understand the role of the superstructures in the alloys,
fundamentals about them have to be known. In the present work, the structural, elastic, electronic and
thermodynamic properties of h- and r-Al2Ti long-period superstructures under pressure up to 30 GPa
were systematically investigated using first-principles calculations based on density functional theory.
The pressure dependence of structural parameters, single-crystal elastic constants, polycrystalline
elastic modulus, Cauchy pressures and elastic anisotropy were successfully calculated and discussed.
The total and partial densities of states at different pressures were also successfully calculated and
discussed. Furthermore, combining with quasi-harmonic approximation, the effects of the pressure
on the temperature dependent volume, isothermal bulk modulus, thermal expansion coefficient, heat
capacity and Gibbs free energy difference were successfully obtained and discussed. Our results were
consistent with the available experimental and theoretical values.

Keywords: first-principles calculations; high pressure; structural properties; elastic properties;
electronic structures; thermodynamic properties; long-period superstructures

1. Introduction

Intermetallic alloys based on the L10-TiAl compound are one of the few classes of
emerging materials that have the potential to be used in demanding high-temperature
structural applications whenever specific strength and stiffness are of major concern be-
cause they offer an attractive combination of low density and good oxidation and ignition
resistance with unique mechanical properties [1]. In the Ti-Al phase diagram, the L10-
TiAl phase can exist in a wide composition range from the stoichiometry to the Al-rich
side [2]. However, the formations of long-period superstructures (LPSs) in the L10-TiAl
matrix were often observed experimentally in Al-rich intermetallic alloys [3–20]. The occur-
rence of such superstructures can produce a strong impact on the operative deformation
mode [12], dislocation configuration [13], anomalous strengthening [14], and mechanical
properties [10–20].

In Al-rich L10-TiAl intermetallic alloys, the crystal structures and microstructures of the
LPSs are very sensitive to the alloy composition and heat treatment
conditions [3–9,11,13]. The LPSs with constant composition were distinguished as Al5Ti3,
Al2Ti, Al11Ti5, Al5Ti2, and Al3Ti [4]. They have a similar unit cell with different periodicity
based on the L10 lattice. In one of these stoichiometric LPSs, there are two types of crystal
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lattice in the Al2Ti superstructure. One is an orthorhombic lattice, called h-Al2Ti, and the
other is a tetragonal lattice, called r-Al2Ti [21,22]. The h-Al2Ti LPS was observed experimen-
tally to transform into the r-Al2Ti one [4,11]. However, the phase transition temperature and
the thermal stability of h-Al2Ti still remains unclear and somewhat controversial to date.

Although quite a few experiments were reported with the aim of understanding the
thermal stabilities and phase transformation of h- and r-Al2Ti LPSs in Al-rich L10-TiAl
alloys, theoretical calculations on the Al2Ti ones are still absent. The r-Al2Ti LPS was
first calculated by Watson and Weinert employing full-potential linearized augmented
Slater-type orbital [23]. Subsequently, the structural energetics of h- and r-Al2Ti LPSs are
calculated by Ghosh and Asta using the first-principles method based on density-functional
theory (DFT) [24]. Recently, first-principles calculations based on DFT was taken by Tang
et al. to study the structural, electronic and elastic properties of both Al2Ti LPSs at ground-
state [25]. Most recently, the DFT-based first-principles calculations were also taken by
Ghosh et al. to investigate the structural stability of both Al2Ti LPSs at ground-state [26].

It is known that the electronic, elastic and thermodynamic properties of intermetallic
compounds under pressure are vital to the design and development of novel materials for
structural applications. These properties are determined by the crystal structures. To the
best of our knowledge, there is a real lack of knowledge on the structural, electronic, elastic
and thermodynamic properties of h- and r-Al2Ti LPSs under high pressure up to now.
This lack has prompted us to investigate them. This work aims to present a systematical
study of the structural, electronic, elastic and thermodynamic properties of both Al2Ti LPSs
under high pressure, using the DFT-based first-principles method in combination with
quasi-harmonic approximation (QHA). The modelling and theoretical methods used in
this work are described in Section 2. The results are discussed in Section 3. Finally, the
conclusions of the work are drawn in Section 4.

2. Modelling and Methods
2.1. Theoretical Models

The crystallographic data of the LPSs h- and r-Al2Ti have been determined experimen-
tally by X-ray diffraction [21,22]. The h LPS belongs to an orthorhombic structure with the
space group of Cmmm, while the r LPS has a tetragonal structure with the space group of
I41/amd. In the h LPS, three crystallographically inequivalent Al atoms are located on the
2a, 2c and 4h Wyckoff sites with a Ti atom on the 4g site, while in the r LPS, two Al and one
Ti atoms sit in the 8e site. The inital theoretical models of both LPSs are built according to
the crystallographic information from Refs. [21,22], as shown in Figure 1.

Figure 1. The unit cells of (a) h-Al2Ti and (b) r-Al2Ti.
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2.2. Computational Details

The DFT-based first-principles calculations were performed using the projector aug-
mented wave (PAW) method and a plane wave basis set [27,28], as implemented in Vienna Ab
initio Simulation Package (VASP) [29–31]. The exchange-correlation functional were treated
by the generalized gradient approximation (GGA) formulated by Perdew–Burke–Ernzerhof
(PBE) [32]. The configurations Ti 3s23p63d24s2 and Al 3s23p1 were treated as valence electrons.
A cutoff energy of 600 eV was specified for the plane wave set. A global break condition
of 10−6 eV/atom was specified for the electronic self-consistency loop. The 4× 13× 12 and
13× 13× 2 Monkhorst–Pack methods [33] were used as the Brillouin-zone sampling for the h
and r LPSs, respectively. At a given pressure, the unit cells of both LPSs were fully relaxed
with respect to the volume, shape and internal atomic positions until the atomic forces of less
than 0.01 eV/Å. The calculations of total energy and density of states (DOS) were performed
using the tetrahedron method with the Blöchl corrections [34].

2.3. Elastic Properties

The elastic properties of crystals are essential for a sound understanding of their
fundamental physical properties and give important information concerning the nature
of the forces operating in crystals. In particular, they provide valuable information on
the mechanical stability, stiffness, ductility/brittleness behavior, strength, hardness, and
bonding characteristic between adjacent atomic planes and anisotropic character of the
bonding. For an orthorhombic crystal, there are nine independent single-crystal elastic
constants, i.e., C11, C12, C13, C22,C23, C33, C44, C55, C66. As a special case of the orthorhombic
system, these constants of the tetragonal system are reduced to six independent components
C11(= C22), C12, C13(= C23), C33, C44(= C55), C66. The strain-stress relationship [35] was
employed to calculate the elastic constants of both LPSs, as implemented in the VASP. The
elastic tensor is determined by performing six finite distortions of the lattice and deriving
the elastic constants from the strain-stress relationship. The final elastic constants include
both the contributions for distortions with rigid ions and the contributions from the ionic
relaxations [36]. At a given pressure, the calculations of elastic constants were conducted
on the basis of the optimized structural parameters at the pressure.

The polycrystalline elastic moduli of isotropic materials can be determined from the
single crystal elastic constants by the Voigt–Reuss–Hill (VRH) approximation [37]. For an
orthorhombic crystal, the bulk and shear moduli in VRH approximation are as follows:

BV = (C11 + C22 + C33 + 2C12 + 2C13 + 2C23)/9,

GV = (C11 + C22 + C33 + 3C44 + 3C55 + 3C66 − C12 − C13 − C23)/15,

BR = ∆/[C11(C22 + C33 − 2C23) + C22(C33 − 2C13)− 2C33C12

+C12(2C23 − C12) + C13(2C12 − C13) + C23(2C13 − C23)],

GR = 15/{4[C11(C22 + C33 + C23) + C22(C33 + C13) + C33C12

−C12(C23 + C12)− C13(C12 + C13)− C23(C13 + C23)]/∆

+3/C44 + 3/C55 + 3/C66},
BH = (BV + BR)/2, GH = (GV + GR)/2,

∆ = C13(C12C23 − C13C22) + C23(C12C13 − C23C11) + C33(C11C22 − C2
12).

(1)

where, BV , BR and BH as well as GV ,GR and GH represent the Voigt, Reuss and Hill bulk as
well as shear moduli, respectively. Then the Young’s modulus EH and Poisson’s ratio νH
are given in terms of BH and GH by [37]

EH = 9BHGH/(3BH + GH),

νH = (3BH − 2GH)/(6BH + 2GH).
(2)

Elastic anisotropy plays an important role in diverse applications of crystalline mate-
rials such as the mechanical properties of nickel-based superalloys, microscale cracking
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in ceramics, phase transformations, dislocation dynamics, development of plastic de-
formation, enhanced positively charged defect mobility, alignment or misalignment of
quantum dots, texture in nanoscale shape-memory alloys, and plastic relaxation in thin-film
metallics [38,39]. In terms of elastic compliances Sij(= C−1

ij ), the variation of bulk modulus
with direction for an orthorhombic crystal can be calculated by [40]

B−1 = (S11 + S12 + S13)α
2 + (S12 + S22 + S23)β2 + (S13 + S23 + S33)γ

2, (3)

where, α, β and γ are direction cosines. Meanwhile, the linear bulk moduli along the
orthogonal axes (Ba, Bb, Bc) can be calculated by [41]

Ba = a
dP
da

=
Λ

1 + ξ + χ
,

Bb = b
dP
db

=
Ba

ξ
,

Bc = a
dP
dc

=
Ba

χ
,

Λ = C11 + 2C12ξ + C + 22ξ2 + 2C13χ + C33χ2 + 2C23ξχ,

ξ =
(C11 − C12)(C33 − C13)− (C23 − C13)(C11 − C13)

(C33 − C13)(C22 − C12)− (C13 − C23)(C12 − C23)
,

χ =
(C22 − C12)(C11 − C13)− (C11 − C12)(C23 − C12)

(C22 − C12)(C33 − C13)− (C12 − C23)(C13 − C23)
.

(4)

In addition to bulk modulus, the directional dependence of shear modulus G is impor-
tant for understanding the elastic anisotropy for crystalline materials. For an orthorhombic
crystal, the shear modulus in any orientation can be calculated by [40]

G−1 = 4S11α2
1α2

2 + 4S22β2
1β2

2 + 4S33γ2
1γ2

2 + 8S12α1α2β1β2 + 8S23β1β2γ1γ2 + 8S13α1α2γ1γ2

+S44(β1γ2 + β2γ1)
2 + S55(α1γ2 + α2γ1)

2 + S66(γ1β2 + α2β1)
2.

(5)

where, α1, β1 and γ1 are direction cosines of the shear stress direction [uvw], α2, β2 and γ2
are direction cosines of the shear plane normal [HKL]. Meanwhile, the shear anisotropic
factors for the {100} planes between the <011> and <010> directions, the {010} planes
between the <101> and <001> directions, and the {001} planes between the <110> and <010>
directions can be calculated correspondingly by [42]

A{100} =
4C44

C11 + C33 − 2C13
,

A{010} =
4C55

C22 + C33 − 2C23
,

A{001} =
4C66

C11 + C22 − 2C12
.

(6)

Besides, the directional dependence of Young’s modulus E is also important for
understanding the elastic anisotropy for crystalline materials. The Young’s modulus in any
orientation for an orthorhombic crystal can be calculated by [40]

E−1 = S11α4 + S22β4 + S33γ4 + (2S12 + S66)α
2β2 + (2S23 + S44)β2γ2 + (2S13 + S55)α

2γ2. (7)

Furthermore, the universal (AU) and log-Euclidean (AL) anisotropy indexes can be
calculated by [38,39]

AU =
BV
BR

+ 5
GV
GR
− 6,

AL =

√
[ln(

BV
BR

)]2 + 5[ln(
GV
GR

)]2.
(8)
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2.4. Thermodynamic Properties

Thermodynamic properties were calculated using the VASP coupled with the phonopy
package under the QHA [43]. After the supercells with atomic displacements were created
from a unit cell via the phonopy package, the VASP calculations for the finite displacement
method were undertaken based on them to obtain force constants. The supercell contains
1× 3× 3 and 3× 3× 1 unit cells for the h and r LPSs, respectively. The Brillouin zone was
sampled using 3× 3× 3 and 3× 3× 2 Gamma centered Monkhorst–Pack grids for the h
and r LPS, respectively. A part of the dynamical matrix was built from the force constants.
Phonon frequencies and eigenvectors were computed from the dynamical matrices. Then,
the phonon related properties were calculated from phonon frequencies and eigenvectors
via the phonopy package.

3. Results and Discussion
3.1. Ground-State Bulk Properties

Our calculated ground-state bulk properties of the LPSs h- and r-Al2Ti are listed in
Table 1. These bulk properties include structural parameters a0, b0, c0 and V0, single-crystal
elastic constants Cijs, and polycrystalline elastic moduli BH , GH , EH and νH . Meanwhile,
the experimental and other theoretical results are also listed in the table for comparison.
For the structural parameters, the relative error between our theoretical value and the
experimental data for the h(r) LPS is 0.53 (0.05)% for the lattice constant a0, 0.68 (0.05)% for
the b0, 0.77 (0.01)% for the c0 and 0.77 (0.09)% for the unit cell volume V0 [21,22]. For both
LPSs, the present values of these structural parameters are in excellent accordance with the
previous theoretical results [24–26,44]. For the elastic constants and moduli, the present
values are also in good agreement with the previous theoretical results [25,44].

Table 1. Calculated bulk properties of the LPSs h- and r-Al2Ti at 0 GPa and 0 K, togerther with
available experimental and theoretical data.

LPS
h r

Present [21] [25] [26] [24] [44] Present [22] [25] [26] [24] [44]

a0 12.158 12.094 12.141 12.144 12.161 12.157 3.969 3.971 3.966 3.971 3.966 3.969
b0 3.932 3.959 3.931 3.923 3.932 3.932 3.969 3.971 3.966 3.971 3.966 3.969
c0 4.001 4.032 4.002 4.008 4.002 4.004 24.316 24.313 24.307 24.310 24.321 24.284
V0 191.60 193.04 191.01 190.90 191.36 191.38 383.03 383.39 382.33 383.35 382.50 382.52
C11 210.57 208.70 209 198.81 198.20 201
C12 56.17 39.87 56 68.17 71.67 67
C13 59.48 46.76 62 57.81 61.41 58
C22 201.41 193.82 201 198.81 198.20 201
C23 67.74 74.38 70 57.81 61.41 58
C33 192.50 187.25 189 210.52 208.76 209
C44 97.75 97.05 98 87.05 83.58 87
C55 94.87 92.35 96 87.05 83.58 87
C66 82.70 76.76 80 96.16 95.44 97
BH 107.91 101.275 108 108.42 110.460 109
GH 82.17 80.449 81 81.61 79.137 82
EH 196.61 190.820 195.72 191.644
νH 0.1963 0.186 0.20 0.1991 0.211 0.20

3.2. Structural Properties

The optimized lattice constants and unit cell volumes of the LPSs h- and r-Al2Ti under
pressure up to 30 GPa at 0 K are listed in Table 2. Various structural parameters of both
LPSs at 0 K decrease monotonically with increasing pressure. The relative changes of these
parameters and the ratios of lattice parameters for both LPSs at 0 K as a function of pressure
are plotted in Figure 2. One can see from Figure 2a,b that these relative changes gradually
reduce as the pressues increases, and the relative change of the volume decreases more
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rapidly than those of the lattice constants. Meanwhile, the decrease of the b/b0 for the h
LPS is slightly faster than that of its a/a0 and slightly slower than that of its c/c0, whereas
the decrease of the a/a0 for the r LPS is slightly faster than that of the counterpart c/c0.
These show that the incompressibility of the b axis is slightly weaker than that of the a axis
and slightly stronger than that of the c axis for the h LPS, while the incompressibility of the
a axis is slightly weaker than that of the c one for the r LPS. One can also see from Figure 2c
that the ratios of a/b and c/b for the h LPS and c/a for the r one are all almost unchanged
with increasing the pressure, meaning that both LPSs have a pressure isotropic structure.

Table 2. Optimized lattice parameters a, b and c (in Å) and volumes of unit cell V (in Å3) for the LPSs
h- and r-Al2Ti under pressure up to 30 GPa at 0 K.

LPS P a b c V

h

0 12.158 3.932 4.001 191.60
5 11.991 3.878 3.950 183.67
10 11.850 3.832 3.900 177.11
15 11.728 3.792 3.857 171.52
20 11.619 3.756 3.819 166.66
25 11.522 3.725 3.783 162.36
30 11.433 3.695 3.752 158.50

r

0 3.969 3.969 24.316 383.03
5 3.913 3.913 23.979 367.11
10 3.866 3.866 23.694 354.11
15 3.824 3.824 23.446 342.93
20 3.788 3.788 23.228 333.23
25 3.754 3.754 23.030 324.62
30 3.724 3.724 22.851 316.92

Figure 2. Relative changes of structural parameters a/a0, b/b0, c/c0 and V/V0 for the LPSs (a) h-Al2Ti
and (b) r-Al2Ti at 0 K, and (c) the a/b and c/b of the h LPS and the c/a of the r one as a function of pressure.

3.3. Elastic Properties

The present elastic constants of both LPSs under pressure up to 30 GPa at 0 K are
listed in Table 3. The elastic constants C11, C22, C33 represent the elasticity in length, and
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C12, C13, C23, C44, C55, C66 are related to the elasticity in shape. At zero temperature, all
of the constants increase monotonically with increasing the pressure. The values of C11,
C22 and C33 for both LPSs are always greater than those of the corresponding C12, C13, C23,
C44, C55 and C66 in the pressure range from 0 to 30 GPa, indicating the higher possibility of
occurrence for the changes in shape than those in length for both LPSs at a given pressure.
The values of C11, C22 and C33 for the h LPS are always in the order of C11 > C22 > C33 in
the pressure range from 0 to 30 GPa, implying that the incompressibility along a axis is
the strongest and that along c axis is the weakest. However, the value of C11 for the r LPS
is always smaller than that of C33 in the pressure range from 0 to 30 GPa, indicating the
weaker incompressibility along the a axis than along the c axis. These results are consistent
with the analysis on the compressions of lattice constants for both LPSs. Additionally, the
values of C44, C55 and C66 for the h LPS are always in the order of C44 ≈ C55 > C66 in the
pressure range from 0 to 30 GPa, indicating that its resistance to shear deformation is the
weakest on {001} planes. However, the value of C44 for the r LPS is always smaller than
that of C66 in the pressure range from 0 to 30 GPa, implying that its resistance to shear
deformation is the strongest on {001} planes.

Table 3. Calculated elastic constants (in GPa) for the LPSs h- and r-Al2Ti under pressure up to 30 GPa
at 0 K.

LPS P C11 C12 C13 C22 C23 C33 C44 C55 C66

h

0 210.57 56.17 59.48 201.41 67.74 192.50 97.75 94.87 82.70
5 236.08 66.71 69.42 224.63 79.55 214.71 111.67 109.11 94.65

10 260.21 76.80 78.95 245.62 90.66 235.02 124.53 122.46 105.73
15 281.86 85.74 87.60 265.17 100.72 253.59 136.78 135.13 116.06
20 302.50 95.28 96.26 284.88 111.51 271.65 148.32 147.29 125.87
25 323.03 103.94 104.95 302.72 121.01 288.56 159.42 159.27 135.24
30 342.50 112.49 113.53 320.08 130.57 305.22 170.06 170.51 144.22

r

0 198.81 68.17 57.81 198.81 57.81 210.52 87.05 87.05 96.16
5 222.59 80.63 68.27 222.59 68.27 236.01 100.01 100.01 110.26

10 242.32 90.63 77.30 242.32 77.30 258.31 111.95 111.95 123.34
15 261.75 100.99 86.56 261.75 86.56 280.20 123.37 123.37 135.93
20 279.63 110.72 95.57 279.63 95.57 301.32 134.04 134.04 148.01
25 297.10 120.54 106.13 297.10 106.13 325.17 144.42 144.42 159.73
30 313.45 129.72 113.67 313.45 113.67 341.80 154.36 154.36 171.03

Various elastic constants of both LPSs at 0 K as a function of pressure are plotted in
Figure 3. Clearly, each elastic constant increases rapidly with increasing the pressure, and
the constants C11, C22, C33 are relatively more sensitive to pressure than the other constants.
All of the elastic constants exhibit a linear growth trend with increasing the pressure. For
the h LPS, the linear relationships between the elastic constants Cij and the pressure P are
as follows:

C11 = 213.96434 + 4.37139P (R2 = 0.99719),

C12 = 57.24268 + 1.87076P (R2 = 0.99842),

C13 = 60.33057 + 1.78942P (R2 = 0.99907),

C22 = 204.41655 + 3.93892P (R2 = 0.9973),

C23 = 68.93576 + 2.08766P (R2 = 0.99839),

C33 = 195.62559 + 3.73204P (R2 = 0.99683),

C44 = 99.48011 + 2.40161P (R2 = 0.99748),

C55 = 96.37195 + 2.51475P (R2 = 0.99829),

C66 = 84.29467 + 2.04193P (R2 = 0.99704),

(9)
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and for the r LPS they are as follows:

C11 = 202.56406 + 3.78756P (R2 = 0.99598),

C12 = 68.71253 + 2.03245P (R2 = 0.99794),

C13 = 58.44692 + 1.86842P (R2 = 0.99885),

C33 = 213.13705 + 4.39402P (R2 = 0.99776),

C44 = 88.6517 + 2.23467P (R2 = 0.99754),

C66 = 97.614 + 2.48732P (R2 = 0.9984).

(10)

where, R2 is the coefficient of determination, and a value of 1.0 for R2 indicates a perfect
positive linear relationship.

Figure 3. Elastic constants of the LPSs (a) h-Al2Ti and (b) r-Al2Ti as a function of pressure at 0 K.

For an orthorhombic system under hydrostatic pressure, the necessary and sufficient
Born criteria are as follows [45,46]:

C̃11 > 0, C̃11C̃22 > C̃2
12,

C̃11C̃22C̃33 + 2C̃12C̃13C̃23 − C̃11C̃2
23 − C̃22C̃2

13 − C̃33C̃2
12 > 0,

C̃44 > 0, C̃55 > 0, C̃66 > 0,

C̃ii = Cii − P(i = 1 ∼ 6), C̃12 = C12 + P, C̃13 = C13 + P, C̃23 = C23 + P.

(11)

In terms of the values of Cij given in Table 3, it is concluded that both h- and r-Al2Ti
can satisfy the above criteria completely in the pressure range from 0 to 30 GPa. The
calculated phonon dispersions of both LPSs at 0 GPa and 30 GPa are shown in Figure 4 to
further verify their stabilities. No imaginary frequency is observed in the phonon spectra
of both LPSs, indicating their dynamical stabilities at 0 GPa and 30 GPa.

The present elastic moduli of both LPSs under pressure up to 30 GPa at 0 K are listed
in Table 4. At zero temperature, the moduli BH , GH , EH , and the ratios BH/GH , νH increase
monotonically with increasing the pressure. As suggested by Pugh [47], the BH/GH ratio
can be used to distinguish the ductility or brittleness of polycrystalline materials. A higher
(lower) BH/GH value is related to ductility (brittleness) of a material. The critical value
which separates ductility and brittleness is about 1.75. From Table 4, one can see that
the obtained BH/GH ratios of both LPSs at 0 K are significantly smaller than 1.75 in the
pressure range from 0 to 30 GPa. Thus, at zero temperature both LPSs have brittle features
in the pressure range from 0 to 30 GPa. At identical pressures, the BH/GH value of the h
LPS is always lower than that of the r LPS. So, it can be concluded that the h LPS is always
more brittle than the r one in the pressure range from 0 to 30 GPa.

As suggested by Frantsevich [48], Poisson’s ratio can also be used to distinguish be-
tween ductility and brittleness. The smaller the Poisson’s ratio, the stronger the brittleness.
The critical νH value of a material is 0.26. From Table 4, one can also see that the obtained
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Poisson’s ratios of both LPSs at 0 K are significantly smaller than 0.26 in the pressure range
from 0 to 30 GPa. Meanwhile, the νH value of the h LPS at a given pressure is smaller
than the corresponding one of the r LPS. Therefore, in the pressure range from 0 to 30 GPa,
both LPSs at 0 K exhibit brittle behaviors, and the h LPs possesses a stronger brittleness as
compared with the r one. These are consistent with the results of the BH/GH ratios.

Figure 4. Phonon spectra of the LPSs (a,b) h-Al2Ti and (c,d) r-Al2Ti under 0 and 30 GPa at 0 K.

As suggested by Pettifor [49], Cauchy pressure for metals and intermetallics can
describe the angular character of atomic bonding that relates to their brittle or ductile
characteristics. For metallic bonding the Cauchy pressure is typically positive, while for
directional bonding with angular character it is negative, with larger negative pressure
representing a more directional character. In orthorhombic crystals, the Cauchy pressures
are defined by CP1 = C12 − C66, CP2 = C13 − C55 and CP3 = C23 − C44. The presently
obtained Cauchy pressures of both LPSs under pressure up to 30 GPa at 0 K are also listed
in Table 4. It can be seen from the table that all Cauchy pressures of both LPSs at 0 K are
negative in the pressure range from 0 to 30 GPa, and they become larger negative with
increasing the pressure. It is shown that at zero temperature both LPSs with more angular
bonding become more brittle as the pressure increases, which agrees excellently with the
results of the ratios BH/GH and νH .

The elastic moduli BH, GH, EH of both LPSs at 0 K as a function of pressure are plotted in
Figure 5. Similar to the elastic constants, the values of BH, GH and EH increase rapidly with
increasing the pressure, and the modulus EH is relatively more sensitive to pressure than the
other two. They exhibit a linear growth trend as the pressure increases. For the h LPS, the
linear relationships between the moduli BH, GH, EH and the pressure P are as follows:

BH = 109.66027 + 2.6138P (R2 = 0.99796),

GH = 83.61274 + 1.70928P (R2 = 0.99661),

EH = 200.03068 + 4.21929P (R2 = 0.9969),

(12)
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and for the r LPS they are as follows:

BH = 110.1696 + 2.61094P (R2 = 0.99804),

GH = 83.10901 + 1.70764P (R2 = 0.9964),

EH = 199.25306 + 4.21371P (R2 = 0.99682).

(13)

Table 4. Calculated elastic moduli and Cauchy pressures (in GPa) for the LPSs h- and r-Al2Ti under
pressure up to 30 GPa at 0 K.

LPS P BH GH EH BH /GH νH CP1 CP2 CP3

h

0 107.91 82.17 196.61 1.3132 0.1963 −26.53 −35.39 −30.02
5 122.96 92.32 221.51 1.3319 0.1997 −27.94 −39.69 −32.12
10 137.05 101.60 244.41 1.3489 0.2028 −28.93 −43.51 −33.87
15 149.83 110.29 265.67 1.3585 0.2045 −30.32 −47.52 −36.06
20 162.75 118.42 285.92 1.3744 0.2072 −30.60 −51.03 −36.80
25 174.85 126.27 305.31 1.3848 0.2090 −31.30 −54.32 −38.42
30 186.72 133.70 323.81 1.3966 0.2110 −31.73 −56.99 −39.49

r

0 108.42 81.61 195.72 1.3284 0.1991 −27.99 −29.24 −29.24
5 123.95 91.86 220.99 1.3492 0.2028 −29.63 −31.74 −31.74
10 137.04 101.05 243.35 1.3561 0.2041 −32.71 −34.65 −34.65
15 150.21 109.79 264.84 1.3682 0.2061 −34.95 −36.81 −36.81
20 162.69 117.91 284.91 1.3798 0.2081 −37.29 −38.47 −38.47
25 176.08 125.74 304.69 1.4003 0.2116 −39.20 −38.29 −38.29
30 186.96 133.10 322.71 1.4047 0.2123 −41.31 −40.69 −40.69

Figure 5. Elastic moduli of the LPSs (a) h-Al2Ti and (b) r-Al2Ti as a function of pressure at 0 K.

The present orientation dependence of bulk modulus for the LPSs h- and r-Al2Ti under
pressure up to 30 GPa at 0 K are shown in Figure 6 and Figure 7, respectively. For these
three-dimensional (3D) representation surfaces, the size of the bulk modulus is denoted
by the length of the radius vector in arbitrary crystallographic directions and different
colors. The 3D surface of an isotropic system must be a spherical shape with a color, and
the nonsperical shape with different colors indicates the degree of anisotropy. Clearly, the
directional dependences of B for both LPSs under any pressure at 0 K illustrate nonspherical
3D shapes with various colors, indicating their intrinsic anisotropies. The obtained maximal
(Bmax) and minimal (Bmin) values and the Bmax/Bmin ratio of bulk modulus for both LPSs
under pressure up to 30 GPa at 0 K are listed in Table 5. One can find that the Bmax and Bmin
values of both LPSs at 0 K increase gradually with increasing the pressure. The Bmax/Bmin
ratios of both LPSs, which are slightly greater than one in the studied entire pressure range,
are also found to increase on the whole with increasing the pressure, indicating that their
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anisotropies are weak and increase with increasing the pressure. At identical pressures the
Bmax/Bmin value of the h LPS is always larger than that of the r LPS, showing a stronger
elastic anisotropy of the h LPS than the r one in the pressure range from 0 to 30 GPa.

The present Ba, Bb, Bc of both LPSs under different pressures at 0 K are also listed
in Table 5. Comparing the linear bulk moduli with the corresponding extremum, the
relations of Ba = Bmax and Bc = Bmin are found for the h LPS, while those of Ba = Bmin
and Bc = Bmax are found for the r one. Meanwhile, the moduli along the orthogonal
axes of both LPSs at 0 K increase monotonically with increasing the pressure. The change
of the modulus along the a axis of the h LPS is the largest, followed by that along the b
axis, and that along the c axis is the smallest. On the contrary, the change of the modulus
along the a or b axis of the r LPS is smaller than that along the c axis. This means that at
applied pressure the a axis of the h LPS is the most incompressible and its c axis is the least
incompressible, while the a axis of the r LPS is more easily compressed than its c axis. To
study the linear compressibility anisotropies of both LPSs, the anisotropic factors of linear
bulk modulus along the a (BBa = Ba/Bb) and c (BBc = Bc/Bb) axes with respect to the b
axis are further obtained and also listed in Table 5. If the factors have a value of one, the
LPSs are isotropic. Otherwise, the factors have a larger departure from one, the LPSs have
a stronger anisotropy. Similar to the Bmax/Bmin ratios, the change trends of the BBa and BBc
close to one for both LPSs at 0 K show the positive pressure effects on their weak linear
compressibility anisotropies in the pressure region between 0 and 30 GPa.

Table 5. Calculated external (Bmax, Bmin) and linear (Ba, Bb, Bc) bulk moduli (in GPa) and relative
ratios (Bmax/Bmin, BBa, BBc) for the LPSs h- and r-Al2Ti under pressure up to 30 GPa at 0 K.

LPS P Bmax Bmin
Bmax/
Bmin

Ba Bb Bc BBa BBc

h

0 329.30 314.05 1.0486 329.30 328.16 314.05 1.0035 0.9570
5 376.56 355.83 1.0582 376.56 374.84 355.83 1.0046 0.9493
10 422.54 394.33 1.0715 422.54 417.49 394.33 1.0121 0.9445
15 463.33 429.47 1.0788 463.33 456.84 429.47 1.0142 0.9401
20 502.57 464.14 1.0828 502.57 499.64 464.14 1.0058 0.9289
25 543.19 496.73 1.0935 543.19 535.74 496.73 1.0139 0.9272
30 581.70 529.55 1.0984 581.70 571.53 529.55 1.0178 0.9266

r

0 327.19 324.28 1.0089 324.28 324.28 327.19 1.0000 1.0089
5 373.41 371.05 1.0064 371.05 371.05 373.41 1.0000 1.0064
10 415.22 409.11 1.0149 409.11 409.11 415.22 1.0000 1.0149
15 456.99 447.49 1.0212 447.49 447.49 456.99 1.0000 1.0212
20 498.73 482.89 1.0328 482.89 482.89 498.73 1.0000 1.0328
25 551.55 517.15 1.0665 517.15 517.15 551.55 1.0000 1.0665
30 582.12 550.71 1.0570 550.71 550.71 582.12 1.0000 1.0570

The present orientation dependences of shear modulus for the LPSs h- and r-Al2Ti
under pressure up to 30 GPa at 0 K are shown in Figure 8 and Figure 9, respectively. Clearly,
all 3D shapes of the shear modulus for both LPSs at 0 K have a very strong nonsphericity,
showing their very significant anisotropies. The obtained external values Gmax, Gmin and
the Gmax/Gmin ratio of both LPSs under pressure up to 30 GPa at 0 K are listed in Table 6.
It can be observed that the external values of both LPSs at 0 K increase gradually with
increasing the pressure. The Gmax/Gmin ratios significantly greater than one of both LPSs
increase gradually with increasing the pressure in the pressure range from 0 to 30 GPa,
showing the increase of their strong anisotropies with pressure. At identical pressures, the
h LPS always has a larger Gmax/Gmin value as compared with the r one, meaning that the
anisotropy of the h LPS is always stronger than that of the r one over the entire studied
pressure range.
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Figure 6. Directional dependence of bulk modulus for the LPS h-Al2Ti under pressure (a) 0 GPa,
(b) 5 GPa, (c) 10 GPa, (d) 15 GPa (e) 20 GPa, (f) 25 GPa and (g) 30 GPa at 0 K.
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The present shear anisotropic factors of both LPSs under pressure up to 30 GPa at
0 K are listed in Table 6. For these factors, a value of unity corresponds to isotropy, while
any deviation from unity corresponds to an extent of anisotropy. Clearly, the values of
the three factors for both LPSs are significantly greater than one in the pressure region
between 0 and 30 GPa, and increase gradually with increasing the pressure. It is shown
that in {100}, {010} and {001} planes, both LPSs possess strong shear anisotropies and the
degrees of the anisotropies are increased with increasing the pressure. At a given pressure,
the value of A{010} for the h LPS at 0 K is the largest, followed by A{100} and that of A{001}
is the smallest. It is indicated that the anisotropy of the {010} shear planes between the <101>
and <001> directions for the h LPS is always the strongest and that of its {001} shear planes
between the <110> and <010> directions is always the weakest in the entire studied pressure
range. However, the A{100} or A{010} value is smaller than the A{001} one for the r LPS at a
given pressure and 0 K, showing the stronger anisotropy of its {001} shear planes between
the <110> and <010> directions than its {100}({010}) shear planes between the <011>(<101>)
and <010>(<001>) directions in the pressure range from 0 to 30 GPa. Comparing each shear
anisotropic factor of both LPSs, it can be found that at identical pressures the h LPS has a
larger A{100} or A{010} value, but a smaller A{001} value than the r one. Hence, over the
entire studied pressure range, the h LPS has a stronger anisotropy of the {100}({010}) shear
planes between the <011>(<101>) and <010>(<001>) directions, but a weaker anisotropy of
the {001} shear planes between the <110> and <010> directions than the r one.

Figure 7. Cont.
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Figure 7. Directional dependence of bulk modulus for the LPS r-Al2Ti under pressure (a) 0 GPa,
(b) 5 GPa, (c) 10 GPa, (d) 15 GPa (e) 20 GPa, (f) 25 GPa and (g) 30 GPa at 0 K.

Table 6. Calculated maximal (Gmax) and minimal (Gmin) values of shear modulus, the ratio of the
two extremes (Gmax/Gmin), and shear anisotropic factors (A{100}, A{010}, A{001}) for the LPSs h- and
r-Al2Ti under pressure up to 30 GPa at 0 K.

LPS P Gmax Gmin Gmax/Gmin A{100} A{010} A{001}

h

0 94.87 64.54 1.4700 1.3763 1.4684 1.1040
5 109.11 70.00 1.5588 1.4319 1.5574 1.1567
10 122.46 74.77 1.6378 1.4767 1.6366 1.2007
15 135.13 79.27 1.7046 1.5187 1.7033 1.2362
20 147.29 83.31 1.7679 1.5546 1.7666 1.2688
25 159.27 87.25 1.8255 1.5875 1.8241 1.2946
30 170.06 90.97 1.8694 1.6171 1.8730 1.3182

r

0 87.05 65.33 1.3326 1.1856 1.1856 1.4722
5 100.01 70.99 1.4088 1.2421 1.2421 1.5535
10 111.95 75.86 1.4757 1.2941 1.2941 1.6261
15 123.37 80.39 1.5345 1.3379 1.3379 1.6912
20 134.04 84.47 1.5868 1.3755 1.3755 1.7525
25 144.42 88.30 1.6355 1.4090 1.4090 1.8093
30 154.36 91.88 1.6800 1.4430 1.4430 1.8618

The present orientation dependences of Young’s modulus for the LPSs h- and r-Al2Ti
under pressure up to 30 GPa at 0 K are shown in Figure 10 and Figure 11, respectively.
Similar to the shear modulus above, all 3D shapes of Young’s modulus for both LPSs at
0 K also have a very strong nonsphericity, showing their very significant anisotropies. The
obtained external values Emax, Emin and the Emax/Emin ratio of both LPSs under pressure
up to 30 GPa at 0 K are listed in Table 7. The two extremes of the h and r LPSs at 0 K are
increased gradually with increasing the pressure. Their Emax/Emin ratios are significantly
greater than one and increase gradually with increasing the pressure in the studied entire
pressure range, showing the increase of their strong anisotropies with pressure. At identical
pressures the Emax/Emin value of the h LPS is always larger than that of the r one, showing
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the stronger anisotropy of the h LPS than the r one in the pressure range between 0 and 30
GPa.

Figure 8. Directional dependence of shear modulus for the LPS h-Al2Ti under pressure (a) 0 GPa,
(b) 5 GPa, (c) 10 GPa, (d) 15 GPa (e) 20 GPa, (f) 25 GPa and (g) 30 GPa at 0 K.
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Figure 9. Directional dependence of shear modulus for the LPS r-Al2Ti under pressure (a) 0 GPa,
(b) 5 GPa, (c) 10 GPa, (d) 15 GPa (e) 20 GPa, (f) 25 GPa and (g) 30 GPa at 0 K.
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Figure 10. Directional dependence of Young’s modulus for the LPS h-Al2Ti under pressure (a) 0 GPa,
(b) 5 GPa, (c) 10 GPa, (d) 15 GPa (e) 20 GPa, (f) 25 GPa and (g) 30 GPa at 0 K.
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Figure 11. Directional dependence of Young’s modulus for the LPS r-Al2Ti under pressure (a) 0 GPa,
(b) 5 GPa, (c) 10 GPa, (d) 15 GPa (e) 20 GPa, (f) 25 GPa and (g) 30 GPa at 0 K.

The present AU and AL of both LPSs under pressure up to 30 GPa at 0 K are also listed
in Table 7. For these two indexes, a value of zero corresponds to elastic isotropy, while
any departure from zero corresponds to an extent of anisotropy. Similar to the ratio of the
two extremes for Young’s modulus, the positive values of AU and AL for both LPSs at 0 K
increase monotonically with increasing the pressure over the studied entire pressure range,
showing the increase of their elastic anisotropies with pressure. At identical pressures the
AU(AL) value of the h LPS is always larger than that of the r one, indicating the stronger
elastic anisotropy of the h LPS than the r one in the pressure range from 0 to 30 GPa.
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Table 7. Calculated maximal (Emax) and minimal (Emin) values of Young’s modulus, the ratio of
the two extremes (Emax/Emin), and anisotropic factors (AU , AL) for the LPSs h- and r-Al2Ti under
pressure up to 30 GPa at 0 K.

LPS P Emax Emin Emax/Emin AU AL

h

0 214.60 161.27 1.3307 0.1192 0.0526
5 245.20 176.84 1.3865 0.1562 0.0687

10 273.71 190.71 1.4352 0.1915 0.0839
15 300.53 203.41 1.4774 0.2238 0.0977
20 326.40 215.15 1.5171 0.2550 0.1110
25 351.22 226.20 1.5527 0.2838 0.1232
30 375.02 236.86 1.5833 0.3097 0.1341

r

0 212.65 168.00 1.2658 0.0904 0.0401
5 243.40 184.59 1.3186 0.1242 0.0549

10 271.31 198.44 1.3672 0.1583 0.0697
15 298.41 211.59 1.4104 0.1905 0.0836
20 324.04 223.43 1.4503 0.2215 0.0969
25 349.30 234.40 1.4902 0.2516 0.1096
30 373.00 245.04 1.5222 0.2805 0.1220

3.4. Electronic Structures

The total and partial electronic densities of states (DOSs) of the LPSs h- and r-Al2Ti
under different pressures at 0 K are calculated to fully understand the pressure effect on
their structural and elastic properties. The obtained DOSs of both LPSs at zero pressure are
plotted in Figure 12, in which except for Ti d DOS, the values of the other partial DOSs are
enlarged by 10 times. The distribution curves of these total and partial DOSs are in good
agreement with the results of the literature [25]. As can be clearly seen from Figure 12a, in
the lower energy region between −10.0 and −4.0 eV, the total DOSs of the h LPS dominantly
originate from the s states of Al, in the energy region between −4.0 and 0.0 eV, its total DOSs
are determined by both Al p and Ti d states, and in the higher energy region between 0.0
and 3.0 eV, its total DOSs are mainly due to the contributions of Ti d electrons. Meanwhile,
the DOS profiles for both Al p and Ti d are very similar in the energy range from −4.0 to
3.0 eV, reflecting the strong hybridization between these two orbits. Moreover, there is
the observation of a pseudogap near the Femi level in the total DOS of the h LPS. The
pseudogap also shows the appearance of the hybridization in the h one. These facts suggest
that covalent bonds exist in the h LPS.

Figure 12. Calculated total and partial densities of states (DOSs) for the LPS (a) h- and (b) r-Al2Ti at
0 GPa and 0 K. The Fermi level is shift to 0 eV.

Comparing Figure 12b with Figure 12a in detail, one can see that the total and partial
DOSs of the r LPS exhibit a similar feature with those of the h one. For the r LPS,the
three energy ranges are from −10.0 to −4.1 eV, from −4.1 to 0.0 eV and from 0.0 to 1.8 eV,
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respectively. In each energy region, the contributions of various valence electrons to the
total DOS of the r LPS are very similar to those of the h one. Thus, it can be concluded
that there are the occurrences of the strong hybridization between Al p and Ti d in the
r LPS, and the pseudogap near the Femi level in its total DOS, showing the existence of
the covalent bonds in the r one. As described in Ref. [25], the Fermi energy falls in the
descending part of the DOS for the h LPS, while it is situated directly in the pseudogap for
the r one. It is generally accepted that a lower DOS value at the Fermi level corresponds to
a higher stability of a crystalline structure [50]. The present DOS values at the Fermi level
for the h (0.356 states/eV per atom) and r (0.338 states/eV per atom) LPSs at 0 GPa are in
excellent agreement with those (0.357 and 0.335 states/eV per atom) of the literature [25]. It
is suggested that at zero pressure the h LPS has a lower structural stability than the r one.

The obtained total DOSs of the LPS h- and r-Al2Ti at 0, 15 and 30 GPa are plotted in
Figure 13, together with the partial DOSs of Al s, p and Ti d electrons. Clearly, the profiles of
the total and partial DOSs for both LPSs are changed slightly with increasing the pressure.
It is indicated that both LPSs are still structurally stable under pressure up to 30 GPa, and
the types of their orbital hybridization are unchanged with increasing pressure. Owing to
the presence of the pseudogap, the total DOSs of both LPSs at different pressures can be
divided into one low energy bonding and the other high energy antibonding regions. It
can be clearly seen from Figure 13a,d that as the pressure increases, the DOS peaks in the
bonding region shift to the lower energy region and those in the antibonding region shift
to the higher energy region. This situation results in the wider pseudogaps of both LPSs
with pressure, meaning that they have more covalent bonding with pressure. Comparing
Figure 13b with Figure 13c carefully, it can be found that the DOS profiles in the energy
region between −4.0 and 3.0 eV for both Ti d and Al p orbits become more similar with
increasing the pressure. A similar phenomenon can also be observed by carefully comparing
Figure 13e with Figure 13f. These also show the stronger hybridization between Ti d and Al
p for both LPSs with pressure. Consequently, both LPSs become more brittle with pressure.
These are consistent with the above analysis of structural and elastic properties.

Figure 13. Calculated total and partial densities of states (DOSs) for the LPS h- and r-Al2Ti at the
pressures of 0, 15 and 30 GPa and the temperature of 0 K: (a,d) for total DOS, (b,e) for the DOS of Ti d
orbital, (c,f) for the DOSs of Al s and p orbitals. The Fermi level is shift to 0 eV.
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3.5. Thermodynamic Properties

Thermodynamic properties are of fundamental interest in condensed matter physics
and material science. They can be derived from equilibrium achieved under high temper-
ature and high pressure. Herein, the thermodynamic properties of h- and r-Al2Ti LPSs
under pressure up to 30 GPa are investigated over a temperature range from 0 to 1700 K.
The present variations of the equilibrium volumes with temperature for both LPSs under
pressure up to 30 GPa are plotted in Figure 14. It can be clearly seen that the volumes of
both LPSs at a given pressure can expand with rising the temperature, while their volumes
at a given temperature can shrink with increasing the pressure. Meanwhile, the volumes of
both LPSs under various pressures show a slight expansion up to around 100 K, and then
a linear trend of sharp expansion at higher temperatures. The curves of the temperature
dependent volumes under various pressures for either LPS are almost parallel to each other,
and thus the volume difference of either LPS at two pressures is almost unchanged with
rising the temperature. Comparing Figure 14a with Figure 14b carefully, it can be found
that at identical pressure, the volume expansion ratio of the h LPS is same with that of the
r one at low temperature (<500 K), and is slightly smaller than that of the r one at high
temperature (>500 K). At zero temperature and pressure, the volumes of the h and r LPSs
correspond to 191.60 and 385.80 Å3, which are well self-consistent with those (192.90 and
383.03 Å3) of the above structural properties.

Figure 14. Temperature dependence of volume V for the LPSs (a) h- and (b) r-Al2Ti under pressure
up to 30 GPa.

The present variations of the isothermal bulk moduli with temperature for both LPSs
under pressure up to 30 GPa are plotted in Figure 15. One can clearly see that the bulk
moduli of both LPSs at a given pressure can decrease with rising the temperature, while
their bulk moduli at a given temperature can increase with increasing the pressure. Similar
to the changes of the volumes with temperature and pressure, the bulk moduli of both
LPSs under various pressures show a slight decrease up to about 100 K and then a linear
trend of sharp decrease at higher temperatures. The curves of the temperature dependent
moduli under various pressures for either LPS are almost parallel to each other, and thus
the modulus difference of either LPS at two pressures is almost unchanged with rising
the temperature. These indicate the mechanical stabilities of both LPSs over the studied
temperature and pressure ranges. At zero temperature and pressure, the bulk moduli of
the h and r LPSs correspond to 106.78 and 106.56 GPa, which are also well self-consistent
with those (107.91 and 108.42 GPa) of the above elastic properties.
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Figure 15. Temperature dependence of bulk modulus B for the LPSs (a) h- and (b) r-Al2Ti under
pressure up to 30 GPa.

From the temperature dependent equilibrium volumes of both LPSs at a given pressure,
the volumetric thermal expansion coefficient βV as a function of temperature T can be
determined by

βV(T) =
1
V
(

∂V
∂T

)P |V=V0(T) . (14)

where, V0(T) is the equilibrium volume at T. The present variations of the volumetric
thermal expansion coefficient with temperature for both LPSs under pressure up to 30 GPa
are plotted in Figure 16. It is clear that as the temperature rises, the thermal expansion
coefficients of either LPS at a given pressure dramatically increase at low temperature
(<300 K) and then gradually tend to a linear growth at high temperature (>300 K), while
the thermal expansion coefficients of either LPS at a given temperature decrease with
increasing the pressure, and the higher the temperature, the faster the coefficients decrease.
The effects of the pressure on the coefficients for either LPS are small at low temperature,
and then increase with the rising temperature.

Figure 16. Temperature dependence of thermal expansion coefficient βV for the LPSs (a) h- and
(b) r-Al2Ti under pressure up to 30 GPa.

Heat capacity is one of the most essential thermodynamic properties of solids. The
present variations of the heat capacity with temperature for the LPSs h- and r-Al2Ti at 0 and
30 GPa are plotted in Figure 17. In the figure , Cp and Cv denote the heat capacity at constant
pressure and constant volume, respectively. At a given pressure, the difference between Cp
and Cv for both LPSs can be calculated as β2

V BTV. Clearly, the difference between Cp and
Cv for either LPS at any pressure is very small in the temperature range from 0 to 1700 K.
Meanwhile, the heat capacities Cp and Cv of either LPS increase with rising the temperature
at identical pressure and decrease with increasing the pressure at identical temperature.
The effects of the temperature on their heat capacities are much more significant than
those of the pressure. At low temperature (300 K), the temperature dependent curves of
Cp and Cv for both LPSs are similar to each other, which are proportional to T3. At high
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temperature (>300 K), the Cp curve of either LPS tend to be linear with temperature, while
the Cv curve gradually deviates from the Cp one with temperature and approaches the
Dulong–Petit limit.

Figure 17. Temperature dependence of heat capacity at constant pressure Cp and volume Cv for the
LPSs (a) h- and (b) r-Al2Ti at 0 GPa and 30 GPa.

To predict the temperature at which the h-Al2Ti LPS transforms to the r-Al2Ti one,
the Gibbs free energy difference between both h- and r-Al2Ti LPSs were calculated in the
temperature range from 0 to 1700 K and the pressure range from 0 to 30 GPa. The present
variations of the Gibbs free energy difference between both LPSs at different pressures
with temperature are plotted in Figure 18. The positive value denotes that the Gibbs free
energy of the h LPS is higher and the superstructure is more unstable than the r one.
Clearly, the Gibbs free energy difference between LPSs decreases gradually with rising
the temperature at same pressure, while it decreases with increasing the pressure at same
temperature, and the higher the temperature, the faster the Gibbs free energy difference
decreases. The effects of the pressure on the Gibbs free energy difference for either LPS
are small at low temperature, and then increase with the rising temperature. Specifically,
the Gibbs free energy difference is equal to zero at 0 GPa when the temperature reaches
1399 K. When the pressure increases to 5 GPa, the transformation temperature decreases
to 1335 K accordingly. Further increasing the pressure to 10, 15, 20, 25 and 30 GPa, the
phase transitions between both h and r LPSs take place at 1289, 1252, 1222, 1195 and
1170 K, respectively. Comprehensively, the present results indicate that the h-Al2Ti LPS at
various pressures can exist as a metastable phase in the temperature range from 0 to 1700 K
and the phase transition temperature between both the h- and r-Al2Ti ones is 1399 K at
zero pressure. This elucidates the long unclear and controversial thermal stability of the
h-Al2Ti LPS.

Figure 18. Temperature dependence of the Gibbs free energy difference (∆G) between the h- and the
r-Al2Ti LPSs under pressure up to 30 GPa. The positive value shows that the h LPS is more stable
than the r one.
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4. Conclusions

The structural parameters, elastic properties, electronic structures and thermodynamic
properties of h- and r-Al2Ti long-period superstructures under high pressure were studied
by first-principles calculations in combination with quasi-harmonic approximation. The
optimized structural parameters were in excellent agreement with the experimental and
other theoretical values. These structural parameters showed the monotonic decrease with
pressure. The hardest compression axis was the a for the h LPS and the c for the r LPS, while
the easiest compression axis was the c for the h LPS and the a one for the r LPS. The volumes
compressions of both LPSs were almost identical to each other. The single-crystal elastic
constants Cij under various pressures were calculated by the strain-stress relationship. The
elastic constants at zero pressure were highly consistent with the other theoretical results.
According to these constants and phonon calculations, both LPSs were mechanically and
dynamically stable in the pressure range from 0 to 30 GPa. All the elastic constants showed
a linear increase with pressure. The polycrystalline bulk, shear and Young’s moduli, ratio of
bulk to shear modulus, Poisson’s ratio and Cauchy pressures under various pressures were
obtained in terms of the elastic constants which indicated that both LPSs had more covalent
bonding and became more brittle with pressure. The directional dependence of bulk, shear
and Young’s moduli at various pressures was also obtained in terms of the elastic constants,
together with several anisotropy parameters. These showed that the strong anisotropy of
both LPSs became more significant with pressure, and the anisotropy of the h LPS was
stronger than that of the r one. Electronic structures of both LPSs at different pressures
were determined to get some insight into the bonding characteristics and mechanical
properties. Both LPSs had the wider pseudogaps and stronger hybridization between
Ti d and Al p with pressure, which showed that they had more angular bonding with
pressure. The obtained dependence of the volume, isothermal bulk modulus, thermal
expansion coefficient, heat capacity and Gibbs free energy difference on temperature and
pressure indicated that at identical pressure, the volume, thermal expansion coefficient and
heat capacity increased with the rising temperature, while the isothermal bulk modulus
and Gibbs free energy difference decreased with the rising temperature. Meanwhile, at
identical temperature, the volume, thermal expansion coefficient, heat capacity and Gibbs
free energy difference decreased with the increase of the pressure, while the isothermal
bulk modulus increased with the increase of the pressure. These results can provide useful
information for the further optimization design of high performance TiAl alloys, which
shall promote the alloys for applications in aerospace, automotive and other industries.
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