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Purpose: To gain an understanding of data labeling requirements to train deep learning models for mea-
surement of geographic atrophy (GA) with fundus autofluorescence (FAF) images.

Design: Evaluation of artificial intelligence (AI) algorithms.
Subjects: The Age-Related Eye Disease Study 2 (AREDS2) images were used for training and cross-

validation, and GA clinical trial images were used for testing.
Methods: Training data consisted of 2 sets of FAF images; 1 with area measurements only and no indication

of GA location (Weakly labeled) and the second with GA segmentation masks (Strongly labeled).
Main Outcome Measures: BlandeAltman plots and scatter plots were used to compare GA area mea-

surement between ground truth and AI measurements. The Dice coefficient was used to compare accuracy of
segmentation of the Strong model.

Results: In the cross-validation AREDS2 data set (n ¼ 601), the mean (standard deviation [SD]) area of GA
measured by human grader, Weakly labeled AI model, and Strongly labeled AI model was 6.65 (6.3) mm2, 6.83
(6.29) mm2, and 6.58 (6.24) mm2, respectively. The mean difference between ground truth and AI was 0.18 mm2

(95% confidence interval, [CI], �7.57 to 7.92) for the Weakly labeled model and �0.07 mm2 (95% CI, �1.61 to
1.47) for the Strongly labeled model. With GlaxoSmithKline testing data (n ¼ 156), the mean (SD) GA area was
9.79 (5.6) mm2, 8.82 (4.61) mm2, and 9.55 (5.66) mm2 for human grader, Strongly labeled AI model, and Weakly
labeled AI model, respectively. The mean difference between ground truth and AI for the 2 models was �0.97
mm2 (95% CI, �4.36 to 2.41) and �0.24 mm2 (95% CI, �4.98 to 4.49), respectively. The Dice coefficient was 0.99
for intergrader agreement, 0.89 for the cross-validation data, and 0.92 for the testing data.

Conclusions: Deep learning models can achieve reasonable accuracy even with Weakly labeled data.
Training methods that integrate large volumes of Weakly labeled images with small number of Strongly labeled
images offer a promising solution to overcome the burden of cost and time for data labeling.
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mology. This is an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-
nd/4.0/).
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The development of artificial intelligence (AI) models for
medical imaging typically involves a well-defined pathway
involving identification of an application, image curation,
development of AI architecture, training, validation, and
deployment.1,2 Although there is an abundance of literature
with detailed information on model architecture and
performance metrics, the crucial steps of image curation
and the development of training data sets are often
overlooked and underreported. It is well known that the
parameters of the training data can significantly impact the
accuracy and generalizability of the resulting model.3,4

Preparing imaging data for training AI models is a
complex process that involves several steps.5,6 Although
ª 2024 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/). Published by Elsevier Inc.
there is significant emphasis on the quality and diversity
of the training data, less attention is often paid to the
critical role of data labeling and ground truth.7 Ground
truth refers to the data label that is linked to each image
and serves as the reference standard for training the
model. Choosing an appropriate label is crucial and
depends on the specific task at hand. For example, binary
classifiers require a presence/absence label, whereas
segmentation models require annotations, where the
pathology is outlined. Segmentation essentially assigns a
label to each pixel of the image where the annotation can
be classified as presence and lack of annotation as
absence. In Figure 1, the image is segmented to identify
1https://doi.org/10.1016/j.xops.2024.100477
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Figure 1. Autofluorescence images of eyes with geographic atrophy (GA), grader annotation, and artificial intelligence (AI) prediction shown for a unifocal
(top row) and multifocal (bottom row) GA.
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regions of geographic atrophy (GA). Every red pixel is
linked to GA and lack of red pixels to non-GA area.

Semantic segmentation is a type of image annotation that
involves outlining a region of interest or generating a mask
that can be used for training. Semantic segmentation pro-
vides a precise means of identification and localization of
pathology within an image. Because semantic segmentation
is time consuming, researchers in other fields have used
weaker forms of annotations known as instance segmenta-
tions such as bounding boxes, scribbles, or point annotations
on the image to successfully train AI models.8

Enlargement of GA area with fundus autofluorescence
(FAF) images is an important outcome for clinical trials and
there is a need for rapid and reliable measurement tools.9,10

Artificial intelligence models have been successfully
developed using FAF imaging for automated assessment
of GA area using deep learning.11e14 Training these
models requires a large number of FAF images with seg-
mentation of GA by reading centers. There are no publicly
available data sets that fulfill these criteria, restricting model
development to those with access to large pharmaceutical
trial data sets with reading-center segmentation of GA.14,15

The main objective of this project was to investigate the
2

labeling requirements for training AI models in
measurement of GA area. To achieve this, a comparison
was made between AI models trained using Weakly
labeled data (FAF images without segmentation of GA
area) and Strongly labeled data (FAF images with
segmentation).

Methods

Training and Cross-Validation Data Set

Age-Related Eye Disease Study 2 (AREDS2) was a multicenter
randomized clinical trial designed to study the effects of oral
supplements on progression to advanced age-related macular
degeneration (AMD).16 The study was conducted under
institutional review board approval at each site, and written
informed consent was obtained from all study participants. The
research was conducted according to the tenets of the
Declaration of Helsinki and complied with the Health Insurance
Portability and Accountability Act. Participants at high risk of
developing late AMD due to either bilateral large drusen or late
AMD in 1 eye and large drusen in the fellow eye were enrolled.
Development of either central GA or neovascular AMD was the
primary AREDS2 study outcome.
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An autofluorescence ancillary study was initiated to obtain FAF
images from a subset of participating clinics (36 of 90 sites) based
on availability of imaging equipment.17 Sites were permitted to
join the ancillary study at any time after imaging equipment
became available during the study period between the first
AREDS2 visit and 5-year follow-up visit (2007e2013). Fundus
autofluorescence images were obtained using the Heidelberg
Retinal Angiograph (HRA) by certified photographers. A single
image was acquired at 30 degrees centered on the macula, captured
in high-speed mode (768 � 768 pixels) using the automated real-
time mean function set at 14. Images were exported as tiff format to
the Wisconsin Reading Center (formerly Fundus Photograph
Reading Center) for evaluation by certified graders.
Image Evaluation

For this project, FAF images with GA were included from
AREDS2 study visits at year 4, 5, and 6, because that was the time
frame where most sites with FAF capabilities joined the ancillary
study. There were 1501 FAF images corresponding to these visits.
Eyes were chosen randomly from the visit years 4, 5, and 6 for
segmentation. Hypoautofluorescence or GA was classified as well-
defined, homogenously black areas with a minimum size of 250
microns in its widest diameter. Areas of hypoautofluorescence
within the entire macula-centered FAF image were demarcated
using Photoshop (Adobe Inc. v 24.4.1) with a red outline and filled
in with the paint bucket tool. Images were deemed ungradable and
excluded from this study if the border of GA merged with peri-
papillary atrophy and could not be distinguished, if the GA
extended outside the field of the image, or if poor image quality
prevented clear delineation of GA borders. In Heidelberg FAF
images, the macula was assumed to be involved if the hypoauto-
fluorescent patch merged with the darkness of the macula and there
was no clear region demarcating the 2 OCT images, which provide
a more accurate assessment of foveal involvement were not
available.

Images were calibrated using the burnt in calibration scale. The
pixels in red were converted to area measurements in mm2. Areas
were summed for eyes with multifocal GA to yield a single value.
For visualization, Grader and Predicted areas were put into the red
channel of a red-green-blue image, whereas the black and white
FAF image was converted to red-green-blue. The 2 images were
then superimposed together to produce visualized annotations.
Graders used Photoshop to implement the mask, the predictions
were added manually using the Python Pillow package.
External Validation (Testing)

Validation was performed using screening visit FAF images from a
phase 2 study conducted by GlaxoSmithKline (GSK) between
2011 and 2016 (NCT NCT01342926).18 This was a multicenter
study conducted across 40 centers in United States and Canada,
and the study concluded that the experimental drug did not slow
the enlargement rate of GA compared with placebo. Inclusion
criteria required well-demarcated GA with an area of 1.9 to 17
mm2 measured on color fundus photographs of the study eye. For
multifocal GA, at least 1 of the foci had to be � 1.9 mm2, and the
total area of GA had to measure � 17 mm2. Fundus auto-
fluorescence images were obtained as supplementary images using
the same procedures as AREDS2 but were exported to the reading
center in the Heidelberg proprietary e2e format. Geographic atro-
phy segmentation was performed using the same procedures as
mentioned previously in Heidelberg software. Images with anno-
tations were exported in tiff format for AI validation.
AI Model Development

The EfficientNet Architecture was selected to be able to rapidly try
and then scale architectures to create models.19 The terms “Weakly
Labeled” or Weak and “Strongly Labeled” or Strong are used for
each model.

Weakly Labeled Model

The Weak model was trained on an EffcientNet-B5 with an input
size of 512 � 512 and a single output, using Imagenet pre-trained
weights. The area of GA was used as a target, and a fivefold cross-
validation, split on subject ID, was used to estimate the perfor-
mance of the model. The model was trained using Mean Squared
Error and the Adam optimizer, using an early stopping of 3 epochs
on the validation set. Early stopping criteria of 3, 5, and 10 showed
no difference in final performance. This resulted in an average
number of training epochs being 15.

Strongly Labeled Model

The Strong model was a Feature Pyramid Network with an
EffcientNet-B5 encoder and 2 class outputs for image segmenta-
tion.20 Again, the input size was 512 � 512 pixels, but the target
was now a segmented image of GA with dimension 512 � 512.
The same method of fivefold cross-validation using subject ID to
split images was used to estimate performance. Once a prediction
was received, the Dice score was calculated with the target, and the
area was calculated by counting the number of pixels identified as
GA and multiplying that count by the known pixel area in mm2.
Dice score was defined as 2 � Common Elements / (# of Elements
in Set A þ # Elements in set B), with set A being the target pixels
and set B being the predicted pixels. Thus, a Dice coefficient close
to 1 indicated close agreement or overlap between predicted and
target areas. The grader measured area was calculated in the same
manner, by counting the pixels of the target segmentation. The
Dice loss (1 � Dice coefficient) was optimized, and early stopping
was implemented by monitoring the average Dice coefficient on
the validation subset over 3 rounds. Strong models averaged 20
epochs of training.

Data Preparation

Some input data from Heidelberg had an “information” bar that
contained nonessential image data. This was cropped out by
making the image perfectly square. Image sizes varied between
868 � 768 and 1636 � 1536 pixels. Cropping off the last 100-pixel
rows removed the label bar and made the pictures square to prevent
distortion when resizing to 512 � 512.

Training was conducted on a single nVidia Quardro RTX 5000.
Batch size was set to 4 for both models, which was the maximum
size for the Strong model, which could be trained on the single
GPU at a 512 � 512 resolution. Annotated images were used to
generate segmentation mask targets by selecting the grader anno-
tation color as the segmented class and all others as background.
Data augmentation (including rotations, flips, and contrast limited
adaptive histogram equalization) was tried but had minimal effect
on the performance metrics for both models.12,21,22

Artificial Intelligence Model Performance
Metrics

Geographic atrophy characteristics were outlined using summary
statistics. The Weakly labeled model provided an area output in
mm2, whereas the Strongly labeled model provided both area in
mm2 and segmentation of GA. Area in the Strong model was
calculated using a sum of the GA labeled pixels and then
3



Table 1. Characteristics of GA in Internal Cross-Validation and External-Validation Images

Training/Tuning (Cross-Validation) Testing (External Validation)

Clinical trial AREDS2 GSK BAM114341
Number of images (participants) 601 (271) 156 (100)
Camera Heidelberg Spectralis Heidelberg Spectralis
GA inclusion criteria Not applicable GA area from color photographs 1.9e17 mm2

Mean (SD) area of GA mm2 6.65 (6.30) 9.79 (5.60)
Subfoveal GA (%) 48% 63%
Multifocal GA (%) 18% 21%

AREDS2 ¼ Age-Related Eye Disease Study 2; GA ¼ geographic atrophy; GSK ¼ GlaxoSmithKline; SD ¼ standard deviation.
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multiplying by the known pixel size. Model performance was
measured using mean difference between AI vs. human grader
measurement. Metrics were generated for each cross-validation
data set, and summaries are presented. Similar metrics were also
generated for the external validation (testing) data set. Intergrader
agreement was also measured as mean difference and 95% confi-
dence interval (CI). Scatter plots and BlandeAltman plots were
used to compare the Weak and Strong models. Geographic atrophy
segmentation between the Strong model and human grader was
compared using Dice coefficient. A Dice coefficient closer to 1
indicates excellent agreement in spatial overlap of segmented
pixels between AI and grader.
Results

The AREDS2 training data set included 601 FAF images
from 362 eyes (271 participants) distributed into 5 cross-
validation data sets (120 each). Of the 271 participants,
both eyes were included in 94 (35%) and 1 eye in 177
(65%). Of the 362 eyes (601 images) included 9% with 3
visits, 31% with 2 visits, and 55% with 1 visit only. Of the
eyes that met inclusion criteria, 0.9% (13/1501 images) were
excluded due to ungradable image quality.

The mean area of GA was 6.65 (standard deviation [SD],
6.30; range, 0.1e36.3) mm2. The testing (external valida-
tion) data set consisted of 156 images (156 eyes, 100 par-
ticipants) with a mean area of 9.79 (SD, 5.60; range,
0.4e24.3) mm2. Additional characteristics of the data sets
are presented in Table 1.
Table 3. Comparison of Performance Metrics between Weakly Labele
Set (ARE

Weakly Labeled Model (Train
Area of GA Only: Images w
Area of GA Outlined) n [

Area with human graders (mm2), mean (SD) 6.65 (6.30)
Area with AI (mm2), mean (SD) 6.83 (6.29)
Difference in area between AI and human
measurement (mm2), mean (95% CI)

0.18 (�7.57 to 7.92)

R (correlation coefficient) 0.803
Dice coefficient — output is numeric area o

AI ¼ artificial intelligence; AREDS2 ¼ Age-Related Eye Disease Study 2; CI ¼
Intergrader agreement is also shown for comparison.
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Most published AI models for GA area measurement
have been trained and tested on clinical trial data. These data
sets are curated with inclusion/exclusion criteria and usually
have an area range of 2.5 to 17.5 mm2. The AREDS2 data
set has a wide range of GA areas because no such criteria
were applied specifically for GA. As seen in Table 1, the
range of GA was 0.1 to 36.3 mm2. A subset of AREDS2
data (n ¼ 383) fitting clinical trial inclusion criteria (GA
area 2.5e17.5 mm2) was analyzed to compare
performance against published models (Table S2, available
at www.ophthalmologyscience.org).
Weakly Labeled Model Results

The Weakly labeled model provided an area output only,
whereas the Strongly labeled model provided a segmenta-
tion mask from which area was derived. Comparison of the
area measurements generated by the Weak and Strong
models with the ground truth (grader measurements) for the
cross-validation data set is shown in Table 3 and for the
external validation data in Table 4. The mean difference
between ground truth and AI in AREDS2 cross-validation
data set is larger in Weak compared with Strong, for both
the AREDS2 cross-validation (0.18 vs. �0.07 mm2) and
GSK testing data (�0.97 vs. �0.24 mm2).

Figure 2 shows scatter plots, and Figure 3 shows
BlandeAltman Plots for comparison of area measurements
in both the AREDS2 cross-validation and GSK validation
data sets. As seen in the pattern on the BlandeAltman plots
d and Strongly Labeled AI Models in the Cross-Validation Data
DS2)

ed on
ithout
601

Strongly Labeled Model
(Trained on Images with

Area of GA Outlined) n [ 601
Intergrader Agreement
n [ 47 (April 4, 2023)

6.65 (6.30) 4.91 (4.95)
6.58 (6.24) NA

�0.07 (�1.61 to 1.47) 0.36 (�1.03 to 1.75)

0.992 0.990
nly 0.885

confidence interval; GA ¼ geographic atrophy; SD ¼ standard deviation.

http://www.ophthalmologyscience.org


Table 4. Comparison of Performance Metrics between Weakly Labeled and Strongly Labeled AI Models in the External Validation Data
Set (GSK).

Weakly Labeled Model (Trained on
Area of GA Only) n [ 156

Strongly Labeled Model (Trained on
Segmentation of GA) n [ 156

Area with human graders (mm2), mean (SD) 9.79 (5.60) 9.79 (5.60)
Area with AI (mm2), mean (SD) 8.82 (4.61) 9.55 (5.66)
Difference in area between human and AI
measurement (mm2), mean (95% CI)

�0.97 (�4.36 to 2.41) �0.24 (�4.98 to 4.49)

R (correlation coefficient) 0.926 0.908
Dice coefficient — Output is numeric area only 0.918

AI ¼ artificial intelligence; CI ¼ confidence interval; GA ¼ geographic atrophy; GSK ¼ GlaxoSmithKline; SD ¼ standard deviation.
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for the Weak models, there is a tendency to overcall smaller
areas and undercall larger areas in both data sets.

The mean difference between grader and AI was similar
to the full AREDS2 data set, with a mean difference of 0.27
(95% CI, �8.3 to 8.84) with the Weak model.

Strongly Labeled Model Results

In image segmentation tasks, the Dice coefficient is
commonly used to evaluate how well the segmented regions
match the ground truth regions. As such, the Dice coefficient
can only be assessed with segmentations in the Strong model
Figure 2. Scatter plots comparing measurement of area of geographic atrophy
Disease Study 2 (AREDS2) weak model (top left), AREDS2 strong model (top r
model (bottom right).
and is not available for the Weak model. The Dice coefficient
for the Strong model was 0.88 with the AREDS2 data and
improved to 0.92 for the GSK data.

The mean difference between grader and AI was �0.11
(95% CI, �1.63 to 1.41) with the Strong model. Although
the Dice coefficient was 0.89 for the entire AREDS2 data, it
changed to 0.92 when restricted to the clinical trial inclusion
cohort. The distribution of the Dice coefficient with the area
of GA for the AREDS2 data is shown in Figure 4. The Dice
coefficient shows significant decrease for lesions < 2.5
mm2.
using artificial intelligence and human graders with the Age-Related Eye
ight), GlaxoSmithKline (GSK) weak model (bottom left), and GSK strong
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Figure 3. Bland Altman plots comparing measurement of area for geographic atrophy using artificial intelligence and human graders with the Age-Related
Eye Disease Study 2 (AREDS2) weak model (top left), AREDS2 strong model (top right), GlaxoSmithKline (GSK) weak model (bottom left), and GSK
right model (bottom right).
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Discussion

TwoAI algorithms were trained for measurement of GA area,
a Weakly labeled model using images with measurement of
Figure 4. Distribution of Dice coefficient with area of geographic atrophy
(GA). The Dice coefficient is lower when GA area is < 2.5 mm2. Clinical
trial enrollment is usually limited to the range of GA 2.5e17.5 mm2.

6

GA and no indication of GA location and a Strongly labeled
model using images with GA outlined on the image (seg-
mentation masks). Both models demonstrated promising
performance during cross-validation, showing good results
based on the mean difference between AI and human mea-
surements and on the Pearson correlation coefficient. In the
AREDS2 cross-validation set (n¼ 601), the mean difference
of the Weak model was 0.18 mm2 (95% CI, �7.57 to 7.92;
r ¼ 0.80) compared with �0.07 mm2 (95% CI, �1.61 to
1.47; r ¼ 0.99) with the Strong model. However, the Strong
model outperformed the Weak model, displaying higher and
more consistent performance metrics. Although the mean
difference is comparable, the scattering of the prediction
points and wide confidence limits of the Weak model, as seen
in Figures 2 and 3, show the instability of model prediction.
The superior performance of the Strong model persisted even
when tested on an external data set (�0.24 mm2; 95%
CI, �4.98 to 4.49, r ¼ 0.91), whereas the Weak model had
a larger mean difference (�0.97 mm2;�4.36 to 2.41; r ¼
0.92). This is not unexpected, considering that the Strong
model was trained on images with GA segmentations
available, giving it an advantage. On the other hand, the
Weak model had no such information and relied solely on
numeric labels with area measurements. The Weak model
faced the challenge of not only identifying areas of atrophy
but also distinguishing normal anatomic structures like the



Figure 5. Saliency maps of the weak model predictions showing the pixels measured as geographic atrophy (GA) in hot colors. Shown in the top row, the
optic nerve (white arrow), which is also hypoautofluorescent like GA, was not identified. In the bottom row, vitreous floaters (blue arrow) were also not
identified as GA.
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optic nerve and vessels, which also present as
hypoautofluorescent regions, similar to GA.

We generated saliencymaps to understand theWeakmodel
predictions and identify the pixels used for measuring GA area
as shown in Figure 5. These saliency maps were made by
looking at the max of the input gradients during
backpropagation and produce a single channel image. Apart
from identifying normal anatomy, the Weak model
accurately excluded shadows caused by vitreous floaters and
did not include these in area measurements. This insight into
the prediction of the Weak model demonstrates its capacity
to autonomously learn and train on the appearance of GA,
showcasing its ability to discern imaging features without
the need for explicit annotations.

Although this project used 2 extremes of data labeling
providing minimal labels to train 1 model and all information
available to train the other, a hybrid of the 2 can be helpful to
reduce the burden of data labeling and sample size. Unlike
classification labels, which require presence/absence of dis-
ease, segmentation models require lesion area to be annotated
in calibrated images. Generating such segmentations on
many images is both time intensive and expensive. There-
fore, it is encouraging that an AI model can be trained using
images without segmentation and requires exploration of
other segmentation efficient methods of training such as
semisupervised learning or hybrid architectures.

Unlike classification models that use sensitivity/specificity
to assess performancemetrics, segmentationmodels rely on the
Dice coefficient. TheDice coefficient ranges from 0 to 1,with 1
indicating excellent correlation of segmented pixels between
the human grader and AI. The Dice coefficient in the AREDS2
data was 0.88 and for the GSK data, was 0.92. In comparison,
the Dice coefficient with previously published AI models
ranged from 0.89 to 0.98.12,23 The Dice coefficient relies on the
intersection of pixels between the 2 segmentations being
compared and the total number of pixels in the ground truth
and predictions. When the segmentation area is small, false
positives and false negatives have a more substantial effect
on the Dice coefficient compared with larger areas. Smaller
areas have a smaller number of pixels to match on, and even
if a few mismatches lower the Dice coefficient. This is
clearly seen in the plot in Figure 4 where the Dice coefficient
is lower for lesions < 2.5 mm2. When the AREDS2 data,
which ranges from 0.1 to 36.3 mm2, were restricted to
clinical trial cohort (2.5e17.5 mm2), the Dice coefficient
increased from 0.88 to 0.92. Figure 6 shows examples where
7



Figure 6. Dice coefficient is a commonly used metric to identify the degree of overlap between grader and artificial intelligence (AI) segmentation masks.
The index ranges from 0-1 with 0 being no overlap and 1 being exact match. While all graders and AI segmentation appear similar visually with minimal
differences across all 3 examples, the Dice coefficient is 0.98 for the top row, 0.77 for the middle row, and 0.47 for the bottom row. The Dice coefficient tends
to penalize small areas more so than larger areas.
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the GA area looks similar visually for the ground truth and AI
prediction, but the Dice coefficient varies significantly
depending on size of GA.

Artificial intelligence models for segmenting and
measuring GA have been published using multiple modalities
such as color fundus photography, OCT, and FAF.12,15,23e27
8

These studies use GA interventional trial data for training
purposes, as the images are readily segmented for training
purposes. However, GA trials have specific area re-
quirements, with most trials using an inclusion range of
2.5e17.5 mm2.28 In addition, trial-specific requirements
exclude eyes with peripapillary atrophy or foveal
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involvement, which are challenging images to annotate for
graders. The AREDS2 study included eyes with intermediate
AMD in 1 or both eyes and as such did not have an area cutoff,
including both prevalent and incident GA. This is seen from
the mean (SD) area of GA in the training cohort at 6.65 (6.30)
mm2, which is smaller than that seen in GA trials at 7.3e9.0
mm2.29,30 In addition, about 30% of training data were < 2.5
mm2, and 7%were> 17.5mm2, indicating the diversity of the
data set. One of the challenges with real-world implementa-
tion of AI models is degradation of model performance, pri-
marily due to selective nature of the training data. Models
trained on selected clinical trial data may not perform well in
the real world. In contrast, the model in this project was
trained on nearly real-world representative images with
diverse presentations of GA fromAREDS2 data set and tested
on a clinical trial selective data. Despite this, a reduction on
performance metrics was seen with the mean difference be-
tween AI and ground truth increasing from �0.07 (95%
CI,�1.61 to 1.47) with AREDS2 to�0.24 (95%CI,�4.98 to
4.49) with GSK, indicating both an increase in mean differ-
ence and widening of CIs. These changes highlight the
inherent challenges of generalization to external data sets and
suggest that some level of accuracy loss should be expected
with AI model testing. The findings underscore the impor-
tance of conducting repeated external validation to assess
model performance on different data sets. By doing so, we can
better understand the model’s robustness and limitations in
real-world scenarios, thereby enhancing its reliability and
applicability in clinical settings.

Some of the common issues with measurement of GA
using FAF images includes presence of peripapillary atro-
phy, identification of foveal involvement, variability in
hypoautofluorescence, and image quality. The model per-
formance varied in each of these situations with accurate
segmentation in some and errors in others. Figures S7 to S9
(available at www.ophthalmologyscience.org) depict cases
with segmentations in these scenarios. The minimum
diameter of GA was 250 microns (0.05 mm2). It is
interesting that the AI model learns the minimum size
from the segmentations despite no specific filters and does
not annotate those lesions that fail to meet the threshold,
as shown in Figure 1 (bottom image).

This project is an exploration of the ability of AI to get a
better understanding of the labeling needs for training al-
gorithms, using GA areas as the use case. The strength of
the paper is in a large training data set with a diverse range
of GA phenotypes from multiple clinics, meticulous reading
center measurements, and use of external data set for testing
to ensure model performance. Limitations of the study
include lack of proprietary imaging formats to use semi-
automated quantification such as Region Finder.31

Multimodal imaging, including OCT or infrared imaging,
was also not available in the training data.

This is the era of therapy for GA, with many clinical trials
underway. There is an urgent need for clinical monitoring of
GA lesion size, and automated measurement of GA using
deep learning is the pathway forward. The findings of this
study shed light on the labeling requirements of images,
which is an essential step toward training robust AI models.
To strike a balance between model performance and labeling
resources, a hybrid approach seems promising, which can
capitalize on the availability of weak labels to guide the
training process while benefiting from strong labels for fine-
tuning and refinement. As the field of deep learning con-
tinues to advance, further research into innovative labeling
techniques and data augmentation approaches may open new
avenues for more efficient and reliable AI models. Ulti-
mately, this study serves as a stepping stone toward har-
nessing the full potential of AI technologies in advancing the
management and treatment of GA.
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