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1. Introduction
Imidacloprid [1-(6-chloro-3-pyridylmethyl)-N- nitroimidazolodin-2-ylideneamine] is a systemic neonicotinoid 
insecticide, which acts as an insect neurotoxin on the central nervous system of insects [1]. Environmental samples may 
be contaminated due to their permanence in tissues and even very small concentrations of neonicotinoids may cause 
carcinogenic and mutagenic effects [2]. Imidacloprid has been widely used in various types of fruits and vegetables in 
agriculture and also in forestry. Upon its high persistence, imidacloprid is absorbed by plant roots and can be transported 
through all plant organelles [3,4]. As a result of its widespread usage in agricultural applications, the residue of imidacloprid 
in ground and/or surface waters, soil and food products become an important hazard to human health [5–8]. Thus, the 
effect of imidacloprid on food and aquatic environment is more important today than ever before. 

Determination of trace levels of imidacloprid is quite important since the European Union (EU) set the maximum 
residue limit (MRL) value for imidacloprid as 0.5 mg/kg for apple [9]. Chromatographic techniques are the most commonly 
used techniques in pesticide analysis [10–12]. Sample preparation and preconcentration are of great importance for 
analysis of trace levels of pesticides, since the sensitivity and selectivity of the methods depend on sample preparation and 
cleaning prior to analysis [13].

Solid phase extraction (SPE) [14–16], solid phase microextraction (SPME) [17–19], liquid-liquid extraction (LLE) 

[20,21], dispersive micro-solid phase extraction (d-SPME) [22,23] magnetic solid-phase extraction [24,25], dispersive 
liquid-liquid microextraction (d - LLE) [26,27] and ultrasonic extraction (UE) [28] techniques have been widely used in 
sample preparation step prior to chromatographic pesticide detection. However, methods based on more selective sorbents 
with the suitable recovery and enrichment abilities need to be developed especially in complex sample matrices [29,30].

Beside these techniques, molecularly imprinted polymers (MIPs) are also used in the analysis of the pesticides. MIPs 
can be defined as commonly artificial molecular recognition materials, obtained by the polymerization reaction of a 
functional monomer with a template. Upon the removal of the template (analyte) after polymerization, specific binding 
sites are produced in the polymer structure, and MIPs can be used for the selective sorption of the analyte via the specific 
binding sites, geometry and functionality [31].
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MIPs have many important properties, such as having simple and low-cost synthesis, high chemical stability and 
mechanical strength, strong recognition ability, high selectivity, reusability and reproducibility [32–34]. Therefore, MIPs 
play an active role in the separation, determination, preconcentration of pesticides and elimination of interferences 
in environmental and food samples [35]. MIPs also possess some drawbacks such as slow reaction rates and effortful 
separation of polymer from the solution [36,37].

As a fast and effective technology, magnetic separation technology has been combined with traditional MIP magnetic 
technology in recent years to prepare magnetic-molecularly imprinted polymers (MMIPs). In MMIPs, the advantages 
of MIP are preserved, and at the same time, they possess high specific surface area and excellent magnetic properties, 
which can increase the efficiency and eliminate the time consuming step of separating the polymer from the complex 
sample using an external magnet [38,39]. Determination of imidacloprid based on different types of MIPs with various 
techniques and different components were presented in the literature [40–42]. In this study, MMIPs have been used for 
the preconcentration of trace levels of imidacloprid prior to the chromatographic separation and highly sensitive mass 
spectrometric detection. MMIPs not only preconcentrate the analyte but also eliminate the matrix effects and minimize 
the ion source contamination. Thus, the MMIP based chromatographic method is expected to set a different perspective 
for the analysis of trace levels of imidacloprid in a complex sample matrices.

The aim of the study is to unite the selectiveness of the magnetic polymer with the sensitivity and the high resolution of 
the chromatographic system for determining imidacloprid. The method was applied to tap water and apple samples, and 
the results demonstrated that the developed method for recovery of imidacloprid was a promising tool and will shed light 
on methodological evaluations for the detection of imidacloprid in real samples. 

2. Experimental
2.1. Reagents
Imidacloprid, thiabendazole (98 %), methacrylic acid, acetamiprid, chloroform, ethanol, carbofuran (98 %), acetonitrile, 
2,2¢-azobis(isobutyronitrile), pirimicarb, carbendazim (97 %), ethylene glycol dimethacrylate (97 %), FeCl2.4H2O, 
FeCl3.6H2O and methanol were purchased from Merck (St. Louis, MO, USA). Thifensulfuron-methyl (97 %), chlorothalonil 
(98 %), tebuconazole (98 %) and triclosan (> 98 %) were purchased from TCI (Portland, OR, USA). Thiram was obtained 
from Alfa Aesar (Haverhill, MA, USA). Ultrapure (type 1) water was used in the studies (Millipore, Bedford, MA, USA). 
1000 µg/mL stock imidacloprid solution was prepared in methanol.
2.1. Apparatus
The Agilent 1260 Infinity LC system coupled to 6550 iFunnel high resolution accurate-mass quadrupole-time of flight 
mass spectrometer was used for the separation, identification and quantification of imidacloprid. The high-resolution MS 
system was operated with an Agilent Dual Jet Stream electrospray in positive ionization mode (Agilent Technologies, Santa 
Clara, CA, USA).  

Fourier transform infrared analysis was executed by Spectrum Two FTIR spectrometer (Perkin-Elmer, Norwalk, 
CT, USA). The morphological and elemental analysis of the synthesized particles were identified by scanning electron 
microscope-energy dispersive X-ray spectroscopy (SEM-EDX) (Thermo Scientific, Waltham, MA, USA). Magnetic 
properties of magnetite particles and magnetic-molecularly imprinted polymer were determined with vibrating sample 
magnetometer (VSM) (Lakeshore, Westerville, OH, USA).
2.2. Preparation of magnetite (Fe3O4) particles
Co-precipitation method was used for the synthesis of magnetite particles [43]. FeCl2.4H2O (0.01 mol) and FeCl3.6H2O 
(0.02 mol) were dissolved in 100 mL ultrapure water, and the solution was heated up to 80 °C while purging with N2 gas. 
Upon the addition of 50.0 mL 2.0 M NaOH solution, magnetite particles were obtained as black precipitates. After one 
hour, magnetite particles were separated from the solution with a magnet and washed with ultrapure water.
2.3. Preparation of magnetic-molecularly imprinted polymer (MMIP)
Magnetic-molecularly imprinted polymers were prepared with the slightly modified protocol (absence of the ultrasound) 
as mentioned in the literature [44] : 0.5 mmol imidacloprid was added with 2.0 mmol functional monomer, methacrylic 
acid, in 5.0 mL acetonitrile. Methacrylic acid was chosen since it has the ability to form hydrogen bonds with template, and 
acetonitrile was chosen since it is a polar aprotic solvent. After stirring for 30 min, 10.0 mmol cross-linker, ethylene glycol 
dimethacrylate, was included into the system. Elsewhere, 5.0 mL oleic acid was stirred with 0.5 g magnetite particles for 10 
min. Then, these two solutions were mixed.

Saturated polyvinyl alcohol (PVA) solution, the dispersing agent, was added to the mixture, and the mixture was 
homogenized with a mechanical stirrer under N2 atmosphere. In the last step, 100 mg 2,2¢-azobis(isobutyronitrile), the 
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initiator, was added, and the reaction was allowed to be proceeded at 60 °C under N2 atmosphere for 4 h. Then, synthesized 
MMIP was separated from the mixture with a magnet.

Imidacloprid was extracted from the MMIP structure by washing with methanol : acetic acid (9 : 1) and methanol until 
imidacloprid peak could not be observed by the high resolution MS system. Same procedure was followed for the synthesis 
of magnetite non-imprinted polymer (MNIP) without using imidacloprid. 
2.4. Re-binding and recovery studies for imidacloprid detection
In order to re-bind imidacloprid, 100 mg polymer (MMIP/MNIP) was shaken with 5.0 mL, 0.5 µg/mL imidacloprid 
solution for 30 min at room temperature. After sorption, magnetic separation was established, and the solution was 
injected to LC/Q-TOF/MS. 

For recovery of imidacloprid, in the first step, re-binding procedure was followed, and upon sorption, MMIP was 
separated from the solution. 5.0 mL methanol was added onto MMIP, and the mixture was shaken for 30 min to recover 
the pesticide. Imidacloprid was determined by LC/Q-TOF/MS.

The instrumental conditions for chromatographic separation and determination of imidacloprid were given in 
Supplemental Material. LC/Q-TOF/MS extract ion chromatogram (EIC) and Pesticides Accurate Mass Personal Compound 
Database Library (Pesticides_AM_PCDL) identification of imidacloprid were illustrated in Figure S1. 

3. Results and discussion
3.1. Characterization studies
Characterization of MMIPs were performed with FTIR, SEM-EDX and VSM analysis.
FTIR spectra of magnetic particles and MMIP can be shown in Figure S2. The peaks at 2930 cm–1, 1720 cm–1 and 1140 
cm–1 were the proofs of a successful polymerization associating with C-H stretching, C=O stretching and C-O stretching, 
respectively.

As can be seen from the SEM image in Figure 1, particles consisted of a spherical and porous surface with the average 
diameter of 462.4 nm. According to EDX results, iron (Fe) and oxygen (O) and carbon (C) were detected in the surface of 
MMIP. Existence of carbon in MMIP verified the polymer structure on the surface of magnetite.

Figure S3 illustrates the VSM analysis of magnetic particles and MMIP. According to Figure S3, the saturation 
magnetization value (MS) of MMIP (12.0 emu/g) was smaller than the MS value of magnetic particles (52.7 emu/g).  
Therefore, it can be concluded that the saturation magnetization reduced after the formation of the polymer layer on the 
surface of the magnetic particles.
3.1. Solvent choice on re-binding and recovery of imidacloprid
Both the re-binding efficiency and recovery of imidacloprid were investigated using different solvents such as water, 
methanol : water (20 : 80, v/v), ethanol, acetonitrile, methanol : water (50 : 50, v/v), methanol : water (80 : 20, v/v), 
chloroform and methanol. The main reasons for investigating the effects of methanol, ethanol and water on re-binding 
efficiency and recovery are as follows: i) their ability to form hydrogen bonds, ii) they are the most widely used solvents in 
the MIP studies. The effects of acetonitrile and chloroform were also investigated, since they are the mostly used porogens 
in imprinting process.  Table 1 shows the effects of solvents on re-binding and recovery of imidacloprid.

In the re-binding studies, it was found that, in methanol : water (50 : 50, v/v, pH ~ 7), MMIP could re-bind imidacloprid 
quantitatively, 96.3 ± 1.5 % (n = 3), whereas imidacloprid re-binding efficiency onto MNIP was 42.7 ± 3.5 % (n = 3).

The pH effect of the solution was investigated for methanol : water (50 : 50, v/v) medium for pH values of 4, 7 and 9 by 
using buffer solutions. It was found that the re-binding efficiencies of imidacloprid onto MMIP were found to be 56.3 ± 
4.0 %, 96.3 ± 1.5 % and 90.7 ± 2.5 % (n = 3), for pH values of 4, 7 and 9, respectively. However, for MNIP, the re-binding 
efficiencies of imidacloprid were found to be 40.6 ± 3.1 %, 42.7 ± 3.5 % and 46.6 ± 3.9 % in methanol : water (50 : 50, v/v) 
(n = 3), for pH values of 4, 7 and 9, respectively. 

It was thought that, for MMIP, since the template has a basic nature (pKa 11.12), in acidic pH values, the sorption 
efficiency decreases due to a salt formation, and imidacloprid could not fit to the specific cavities on the surface of MMIP. 
In higher pH values, quantitative re-binding efficiency was observed, which is ascribed to the binding of imidacloprid 
to the specific sites and especially fitting the specific cavities on the surface of MMIP. For MNIP, as expected, at pH = 4, 
sorption efficiency decreases as explained above. Actually, no significant change was observed in the re-binding behavior 
of imidacloprid at higher pH values onto MNIPs, which can be attributed mainly to the non-specific binding sites on 
MNIP surface. Thus, it can be concluded that mainly the specific cavities are responsible for the binding of imidacloprid 
onto MMIP.

The addition of methanol into the aqueous phase improves the specific binding in water by reducing the non-specific 
interactions [45]. As stated in the literature, upon the addition of methanol, the non-specific binding sites were reduced, 
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but the selective binding sites were found to be affected much less [46]. The re-binding of imidacloprid in water and 
methanol : water (50 : 50, v/v)  were performed for MNIP, and the results confirmed the above information as the re-
binding efficiency of imidaloprid in methanol : water (50 : 50, v/v) is lower than the re-binding efficiency in water, since 
the non-specific binding sites were reduced. However, for MMIP, there is a slight increase in the re-binding efficiency 
of imidaloprid in neutral aqueous phase (90.5 ± 2.4 %) when compared with the  re-binding efficiency (96.3 ± 1.5 %) in 
methanol : water (50 : 50, v/v, pH~ 7). In this study, the appropriate percent of methanol in the aqueous phase might help 
the template for fitting the cavities possibly by decreasing the polarity of the solution. Thus, methanol : water (50 : 50, v/v) 
medium with a neutral pH (pH ~ 7) was chosen for the re-binding studies.

The imprinting factor (IF) can be defined as;
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where QMMIP (µmol/g) and QMNIP (µmol/g) can be expressed as the amount of imidacloprid adsorbed by MMIP and MNIP. 
QMMIP was calculated as 0.094 µmol/g, whereas QMNIP was calculated as 0.039 µmol/g. Thus, the imprinting factor was found 
to be 2.41.

Both the difference in the re-binding efficiencies of imidacloprid onto MMIP and MNIP and the imprinting factor 
reveal the existence of the imprinted cavities on the surface of MMIP.

In the recovery studies, quantitative recovery was obtained for methanol (97.0 ± 2.5 %, n = 3), while the recovery values 
were below 50 % for other solvents. Thus, methanol : water (50 : 50, v/v, pH ~ 7) was used to re-bind imidacloprid onto 
MMIP, and methanol was used to recover the pesticide.
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Figure 1. SEM-EDX analysis of MMIP.
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3.2. Scatchard analysis model of MNIP and MMIP
The evaluation of recognition properties of the molecularly imprinted polymers were determined by Scatchard analysis 
model [47]. The equation of Scatchard analysis can be expressed as
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where Qmax and Q are the apparent maximum adsorbed amount and the equilibrium adsorbed amount of imidacloprid  
(µmol/g), Kd is the dissociation constant (µmol/L) and C is the equilibrium concentration (µmol/L). Qmax also known as 
apparent maximum number of the binding sites. Scatchard analysis was applied by shaking 10 mg MNIP and MMIP with 
2.0 mL various concentrations of imidacloprid solutions (0.05–0.3 µg/mL)  in methanol : water (50 : 50, v/v, pH ~ 7) for 
one hour. 

As shown in Figure 2, Scatchard plots of MMIP involves two linear parts that two different binding sites were figured 
out for the rebinding of imidacloprid, whereas a single linear region for MNIP indicates one type of binding site on the 
polymeric structure [48]. Dissociation constants (Kd) and maximum number of the binding sites (Qmax) for the polymers 
were determined by using the linear regression equations.

Qmax values for two different binding sites of MMIP were found to be 0.063 and 0.151 µmol/g, whereas Kd values were 
calculated as 8.65 and 151.5 µmol/L. For MNIP, Qmax and Kd values were calculated as 0.083 µmol/g and 416.7 µmol/L, 
respectively. It was verified that importing the specific cavities of imidacloprid provided an increasement in the capacity 
of the imprinted polymer.
3.3. Optimization of re-binding and recovery times on imidacloprid detection
For investigating the optimum time for re-binding, 100 mg MMIP was shaken with 5.0 mL, 0.5 µg/mL imidacloprid 
solution for different contact times (0–45 min) at room temperature. Upon sorption, magnet was used for separation of 
polymer, and the solution was injected to LC/Q-TOF/MS.

Table 1. Effect of solvents on re-binding and recovery of imidacloprid.

Sample Solvent  Re-binding Efficiency (%) Recovery (%)*

acetonitrile Not significant 39.6 ± 2.1 %
chloroform 13.3 ± 6.1 % 32.9 ± 7.2 %
ethanol 35.4 ± 4.5 % 44.3 ± 4.1 %
methanol 17.4 ± 2.9 % 97.0 ± 2.5 %
water, pH ~ 4 51.3 ± 2.6 % Not significant
water, pH ~  7 90.5 ± 2.4 % Not significant

MMIP water, pH ~ 9 84.5 ± 3.9 % Not significant
methanol : water (20 : 80, v/v),  pH ~  7 88.5 ± 2.4 % Not significant
methanol : water (50 : 50, v/v),  pH ~  4 56.3 ± 4.0 % Not significant
methanol : water (50 : 50, v/v),  pH ~  7 96.3 ± 1.5 % Not significant
methanol : water (50 : 50, v/v),  pH ~ 9 90.7 ± 2.5 % Not significant
methanol : water (80 : 20, v/v),  pH ~ 7 81.1 ± 4.7 % Not significant
water, pH ~ 4 43.9 ± 3.5 %
water, pH ~  7 62.2 ± 5.4 %
water, pH ~ 9 55.5 ± 4.1 %
methanol : water (20 : 80, v/v),  pH ~  7 53.1 ± 3.5 %

MNIP methanol : water (50 : 50, v/v),  pH ~  4 40.6 ± 3.1 %
methanol : water (50 : 50, v/v),  pH ~  7 42.7 ± 3.5 %
methanol : water (50 : 50, v/v),  pH ~  9 46.6 ± 3.9 %
methanol : water (80 : 20, v/v),  pH ~  7 43.3 ± 3.5 %

* Recovery was applied for MMIP after the re-binding procedure was followed in methanol : water (50 : 50, v/v), pH ~ 7
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For determination of optimum time for recovery, first the re-binding procedure was applied, and, after sorption, MMIP 
was separated. A total of 5.0 mL methanol was mixed with MMIP. The mixture was stirred for different contact times (0–45 
min) at room temperature for recovering the pesticide.

According to Figure 3, optimum re-binding and recovery times were both determined as 30 min. 
3.4. Selectivity of MMIP
The selectivity of the MMIP was studied using tebuconazole, acetamiprid and carbendazim, which were the similar 
structures and mostly used pesticides in fruit samples. 1.0 mL of 0.1 μg/mL imidacloprid solution individually and as 
a binary mixture of the studied compounds were shaken with 10 mg MMIP or MNIP. The selectivity of MMIP was 
determined using the following equations:
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where Kd is the distribution coefficient (L/g), C0 is the initial concentration of the compound (μg/mL), Ce is the final 
concentration after sorption (μg/mL), V is the sample volume (mL), m is the amount of polymer (mg), k is the selectivity 
coefficient and k’ is the relative selectivity coefficient. Selectivity parameters were shown in Table 2. Relative selectivity 
coefficient indicated that the imprinted binding sites on MMIP led to higher binding affinity to imidacloprid.
3.5. Effect of adsorbent dose on determination of imidacloprid
The effect of adsorbent dose on the re-binding efficiency of trace levels of imidacloprid was investigated. Figure S4 shows 
that a minimum of 20.0 g/L MMIP is suitable for the quantitative re-binding of imidacloprid and further increase in dose 
did not affect the re-binding efficiency. 
3.6. Reusability of MMIP
Reusability is one of the most important properties of an imprinted polymer. Ten consecutive rebinding-recovery cycles 
were applied to same MMIP for investigating the reusability of the polymer. Re-binding efficiencies and recovery were 
obtained as 94.5 ± 2.0 % and 94.4 ± 3.0 % (n = 10), respectively. Thus, the same imprinted polymer can be used at least ten 
cycles for analysis of imidacloprid.
3.7. Interference effects
The interference effects of widely used pesticides, which are carbendazim, tebuconazole, pirimicarb, thiabendazole, 
carbofuran, thifensulfuron-methyl, chlorothalonil, triclosan and thiram on the determination of imidacloprid by MMIP-
LC/Q-TOF/MS were investigated by shaking 100 mg MMIP with 10.0 μg/L imidacloprid solution together with different 
concentrations of pesticides. The interference effects of these pesticides were investigated, since they are being used in fruit 
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Figure 2. Scatchard plots of a) MNIP and b) MMIP. 
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samples and they may be applied together with imidacloprid to the fruits. Supernatant was injected to high resolution MS 
system following the re-binding and recovery procedures. Quantitative recovery values, 94.0%–98.0%, were obtained for 
imidacloprid in the presence of 100 fold-ratio of the pesticides owing to the mass resolving power of the MS system and 
the selectivity of the MMIP.
3.8. Analytical performance of the method
The method validation was done according to ICH guidelines by investigating various parameters [49]. Sensitivity of the 
method was described by the limit of detection (LOD) and limit of quantification (LOQ). LOD and LOQ were defined 
and calculated as three and ten times the ratio of the signal to noise, respectively. LOD and LOQ were determined for both 
re-binding and recovery procedures. For the precision of the method, relative standard deviations (RSDs) of intra-day and 
inter-day precisions of recovery studies at three different concentration levels of imidacloprid with 25.0, 100.0 and 250.0 
μg/L were measured. The intra-day precision was evaluated by five repeated injections of samples on the same day, and the 
inter-day precision was evaluated by analyzing the sample once a day for five consecutive days.

The external calibration was carried out in order to obtain the linear range of the calibration graphs, since imidacloprid 
is an identified compound in the instrument library. Calculation of the peak areas were used for the quantitative analysis 
of imidacloprid. The calibration graphs obtained in re-binding and recovery studies are both linear between 10.0 – 500.0 
µg/L as shown in Figure S5. LOD and LOQ were calculated as 2.6 µg/L and 8.6 µg/L for tap water, and LOD and LOQ were 
calculated as 3.0 µg/L and 10.1 µg/L for apple samples, respectively. RSD values of intra-day and inter-day studies were 
found to be in the range of 0.8%–1.2 % and 1.2%–1.6 %, respectively.
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Figure 3. Effect of time on a) re-binding and b) recovery.

Table 2. The selectivity of MMIP.
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The analytical performance parameters of the developed method were compared with that of the published methods 
and briefly summarized in Table 3. The linear range, the LOD and RSDs of the developed method were comparable 
to other methods, and the method seemed to be suitable for the preconcentration and determination of trace levels of 
imidacloprid in real samples.
3.9. Analytical application
The developed method was applied to both tap water and apple samples. In order to apply the method to tap water samples, 
in the first step, tap water was filtered through polytetrafluoroethylene membrane. Then, 5.0 mL of methanol was mixed 
with 5.0 mL tap water after adjusting pH value to 7 in order to obtain the re-binding medium, which was determined as 
methanol : water (50 : 50, v/v). A total of 10 mL of the prepared solution was shaken with 200 mg MMIP for 30 min for re-
binding of imidacloprid. After sorption, MMIP was separated and stirred with 2.0 mL fresh methanol for 30 min in order 
to recover imidacloprid. Preconcentration factor of the analysis was determined as 2.5, since the original sample volume 
was 5.0 mL and final volume of the solvent was 2.0 mL.

For the sample preparation of apple samples, fruits were chopped and homogenized using blender. 15.0 mL of ultrapure 
water added onto 5.0 grams of sample, and the suspension was sonicated for 15 min. The suspension was filtered, and the 
solution was diluted to final volume of 25.0 mL with ultrapure water (final pH 7). Then, 25.0 mL methanol was added to 
solution in order to obtain the re-binding medium. Contact time was determined as 30 minfor shaking 25.0 mL of the 
solution with 500.0 mg MMIP for re-binding of imidacloprid. Upon the re-binding of pesticide, MMIP and supernatant 
was separated. A total of 5.0 mL fresh methanol was added onto polymer, and contact time was chosen as 30 min for 
recovery of imidacloprid. Preconcentration factor of the analysis was determined as 2.5, since the original sample volume 
was 12.5 mL and final volume of the solvent was 5.0 mL.

Table 3. Comparison of the proposed method with published methods.

Linear range LOD Method Sample Reference

5.0 – 200.0 µg/L 2.0 µg/kg QuEChERS- HPLC-MS/MS pistachio [12]
50.0 – 1000.0 µg/L 48.0 µg/L MMIP-UPLC-MS/MS apple [42]

5.0 x 10-7 – 1.0 x 10-4 M 12.0 µg/L MIP/FcHT/AuNP Apple, pear, grape,
peach and tangerine [50]

1.0 ×10−6 –1.0 × 10−4 M 208.1 µg/L AgNDs/GNs/GCE cucumber [51]
7.5 × 10−7– 7.0 × 10−5 M 102.3 µg/L imprinted PoPD-RGO sensor pear [52]
3.0 × 10−8 – 12.0 10−6 M 2.3 µg/L GCE-GQD-IL-MWCNT-PANI apple, cucumber and tomato [53]
10.0 – 500.0 µg/L 2.6 µg/L and  3.0 µg/L  MMIP-LC/Q-TOF/MS tap water and apple Proposed method

Table 4. Analytical application of the proposed method.

Sample Added 
(µg/L)*

Found                      
(µg/L)*

Total recovery of added 
imidacloprid to the original 
sample (%)

Tap water

-
25.0
50.0
100.0

<LOD**
23.9 ± 0.5
48.1 ± 0.8
99.2 ± 2.4

-
95.9 ± 2.0
96.1 ± 1.6
99.2 ± 2.4

Apple

-
25.0
50.0
100.0

<LOD**
23.1 ± 0.7
46.9 ± 1.1
97.2 ± 2.0

-
92.4 ± 2.6
93.7 ± 2.2
97.2 ± 2.0

*(n = 3)
**LOD : Limit of Detection
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Since imidacloprid was not detected both in the blank tap water and apple samples, spike addition method was 
employed to the original samples with three different concentrations for three parallel analyses. Table 4 shows the results 
of the analytical application of the method. The quantitative recovery values of the samples were acquired in 92.0%–99.0% 
range. The accuracy and precision of the proposed method ​​is quite good in terms of applicability.

4. Conclusions	
This paper involves a method based on the magnetite-molecularly imprinted polymer and liquid chromatography-
quadrupole-time of flight mass spectrometry for the determination of imidacloprid. Total preconcentration procedure 
can be completed within 1 h. The same MMIP can be used at least ten cycles for analysis (94.5 ± 2.0 % for re-binding and 
94.4 ± 3.0 % (n = 10) for recovery) of imidacloprid. The results show that capacity of MMIP is higher capacity than MNIP 
and selective to imidacloprid. Selective and reusable magnetic polymer was used for the preconcentration of trace levels 
of imidacloprid prior to the chromatographic separation and highly sensitive mass spectrometric detection. The method 
was applied to real samples for the determination of imidacloprid. The quantitative recovery values of the samples were 
acquired in 92%–99% range. The developed method based on MMIP will be expected to present a different perspective to 
other studies for the analysis of trace levels of imidacloprid in fruit samples. 

Acknowledgments
This work was supported by Research Fund of Ege University for financial support (Grant no: 18 - EGE-MATAL - 003).

Conflict of interest
The authors declare that there is no conflict of interest to declare.

References

1.	 Chen L, Li B. Determination of imidacloprid in rice by molecularly imprinted-matrix solid-phase dispersion with liquid chromatography 
tandem mass spectrometry. Journal of Chromatography B 2012; 897: 32-36. doi: 10.1016/j.jchromb.2012.04.004.

2.	 Simon-Delso N, Amaral-Rogers V, Belzunces LP, Bonmatin JM, Chagnon, M et al. Systemic insecticides (neonicotinoids and fipronil): 
trends, uses, mode of action and metabolites. Environmental Science and Pollution Research 2015; 22: 5-34.

3.	 Sétamou M, Rodriguez D, Saldana R, Schwarzlose G, Palrang D et al. Efficacy and uptake of soil-applied imidacloprid in the control of 
Asian citrus psyllid and a citrus leafminer, two foliar-feeding citrus pests. Journal of Economic Entomology 2010; 103: 1711-1719.

4.	 Benton E, Grant J, Webster R, Nichols R, Cowles R et al. Assessment of imidacloprid and its metabolites in foliage of eastern hemlock 
multiple years following treatment for hemlock woolly adelgid, Adelges tsugae (Hemiptera: Adelgidae), in forested conditions. Journal of 
Economic Entomology 2015; 108: 2672-2682.

5.	 Ribeiro AR, Pedrosa M, Moreira NFF, Pereira MFR, Silva AMT. Environmental friendly method for urban wastewater monitoring of 
micropollutants defined in the Directive 2013/39/EU and Decision 2015/495/EU. Journal of Chromatography A 2015; 1418: 140-149. doi: 
10.1016/j.chroma.2015.09.057.

6.	 Moschet C, Wittmer I, Simovic J, Junghans M, Piazzoli A et al. How a complete pesticide screening changes the assessment of surface water 
quality. Environmental Science & Technology 2014; 48: 5423-5432. doi: 10.1021/es500371t.

7.	 Proenca P, Teixeira H, Castanheira F, Pinheiro J, Monsanto PV et al. Two fatal intoxication cases with imidacloprid: LC/MS analysis. 
Forensic Science International 2005; 153: 75-80. doi: 10.1016/j.forsciint.2005.04.015.

8.	 Shadnia S, Moghaddam HH. Fatal intoxication with imidacloprid insecticide. American Journal of Emergency Medicine 2008; 26: 631-
634. doi: 10.1016/j.ajem.2007.09.024.

9.	 Eurepean Union Pesticide Database, Regulation (EC) No 396/2005, 2005 https://ec.europa.eu/food/plant/pesticides/eupesticidesdatabase/
public

10.	 Paya P, Anastassiades M, Mack D, Sigalova I, Tasdelen B et al. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged 
and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric 
detection. Analytical and Bioanalytical Chemistry 2007; 389: 1697-1714. doi: 10.1007/s00216-007-1610-7.

11.	 Pelit FO, Ertas H, Seyrani I, Ertas FN. Assessment of DFG-S19 method for the determination of common endocrine disruptor pesticides 
in wine samples with an estimation of the uncertainty of the analytical results. Food Chemistry 2013; 138: 54-61. doi: 10.1016/j.
foodchem.2012.10.053.



İLKTAÇ and GÜMÜŞ / Turk J Chem

1246

12.	 Faraji M, Noorbakhsh R, Shafieyan H, Ramezani M. Determination of acetamiprid, imidacloprid, and spirotetramat and their relevant 
metabolites in pistachio using modified QuEChERS combined with liquid chromatography-tandem mass spectrometry. Food Chemistry 
2018; 240: 634-641. doi: 10.1016/j.foodchem.2017.08.012.

13.	 Pelit FO, Pelit L, Alaca C, Ertaş H, Ertaş FN. Preconcentration and Determination of Endocrine Disruptor Pesticides in Well Water by 
Solidified Floating Organic Drop Microextraction. CLEAN - Soil, Air, Water 2014; 42: 1284-1291. doi: 10.1002/clen.201300731.

14.	 Seccia S, Fidente P, Montesano D, Morrica P. Determination of neonicotinoid insecticides residues in bovine milk samples by solid-phase 
extraction clean-up and liquid chromatography with diode-array detection. Journal of Chromatography A 2008; 1214: 115-120. doi: 
10.1016/j.chroma.2008.10.088.

15.	 Xiao Z, Li X, Wang X, Shen J, Ding S. Determination of neonicotinoid insecticides residues in bovine tissues by pressurized solvent 
extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography B 2011; 879: 117-122. doi: 10.1016/j.
jchromb.2010.11.008.

16.	 Lucci P, Moret S, Bettin S, Conte L. Selective solid-phase extraction using a molecularly imprinted polymer for the analysis of patulin in 
apple-based foods. Journal of Separation Science 2017; 40: 458-465.

17.	 Saraji M, Jafari MT, Mossaddegh M. Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of 
organophosphorus pesticides followed by gas chromatography-corona discharge ion mobility spectrometric detection. Journal of 
Chromatography A 2016; 1429: 30-39. doi: 10.1016/j.chroma.2015.12.008.

18.	 Salleh SH, Saito Y, Kiso Y, Jinno K. Solventless sample preparation procedure for organophosphorus pesticides analysis using solid phase 
microextraction and on-line supercritical fluid extraction/high performance liquid chromatography technique. Analytica Chimica Acta 
2001; 433: 207-215.

19.	 Rodrigues FDM, Mesquita PRR , de Oliveira LS, ; de Oliveira FS, , Menezes Filho A et al. Development of a headspace solid-phase 
microextraction/gas chromatography–mass spectrometry method for determination of organophosphorus pesticide residues in cow milk. 
Microchemical Journal 2011; 98: 56-61. doi: 10.1016/j.microc.2010.11.002.

20.	 Banerjee K, Oulkar DP, Dasgupta S, Patil SB, Patil SH et al. Validation and uncertainty analysis of a multi-residue method for pesticides in 
grapes using ethyl acetate extraction and liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 2007; 1173: 
98-109. doi: 10.1016/j.chroma.2007.10.013.

21.	 Watanabe E, Eun H, Baba K, Arao T, Ishii Y et al. Rapid and simple screening analysis for residual imidacloprid in agricultural products 
with commercially available ELISA. Analytica Chimica Acta 2004; 521: 45-51. doi: 10.1016/j.aca.2004.05.056.

22.	 Amiri A, Tayebee R, Abdar A, Narenji Sani F. Synthesis of a zinc-based metal-organic framework with histamine as an organic linker for 
the dispersive solid-phase extraction of organophosphorus pesticides in water and fruit juice samples. Journal of Chromatography A 2019; 
1597: 39-45. doi: 10.1016/j.chroma.2019.03.039.

23.	 Yu Y, You J, Sun Z, Li G, Ji Z et al. Determination of residual organophosphorus thioester pesticides in agricultural products by chemical 
isotope-labelling liquid chromatography-tandem mass spectrometry coupled with in-syringe dispersive solid phase clean-up and in situ 
cleavage. Analytica Chimica Acta 2019; 1055: 44-55. doi: 10.1016/j.aca.2018.12.039.

24.	 Targhoo A, Amiri A, Baghayeri M. Magnetic nanoparticles coated with poly(p-phenylenediamine-co-thiophene) as a sorbent for 
preconcentration of organophosphorus pesticides. Microchimica Acta 2017; 185: 15 doi: 10.1007/s00604-017-2560-1.

25.	 Chahkandi M, Amiri A, Arami , SRS. Extraction and preconcentration of organophosphorus pesticides from water samples and fruit 
juices utilizing hydroxyapatite/Fe3O4 nanocomposite. Microchemical Journal 2019; 144: 261-269. doi: 10.1016/j.microc.2018.09.018.

26.	 Cacho JI, Campillo N, Vinas P, Hernandez-Cordoba M. In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas 
chromatography-mass spectrometry for the determination of organophosphorus pesticides. Journal of Chromatography A 2018; 1559: 
95-101. doi: 10.1016/j.chroma.2017.12.059.

27.	 Hrouzkova S, Brisova M, Szarka A. Development of fast, efficient and ecological method employing vortex-assisted dispersive liquid-
liquid microextraction combined with fast gas chromatography-mass spectrometry for pesticide residues analysis in alcohol-content 
samples. Journal of Chromatography A 2017; 1506: 18-26. doi: 10.1016/j.chroma.2017.05.038.

28.	 Huang Q, Yu Y, Tang C, Peng X. Determination of commonly used azole antifungals in various waters and sewage sludge using ultra-high 
performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 2010; 1217: 3481-3488. doi: 10.1016/j.
chroma.2010.03.022.

29.	 Martins RO, Gomes IC, Mendonca Telles AD, Kato L, Souza PS et al. Molecularly imprinted polymer as solid phase extraction phase 
for condensed tannin determination from Brazilian natural sources. Journal of Chromatography A 2020; 1620: 460977. doi: 10.1016/j.
chroma.2020.460977.

30.	 Zhao M, Shao H, Ma J, Li H, He Y et al. Preparation of core-shell magnetic molecularly imprinted polymers for extraction of patulin from 
juice samples. Journal of Chromatography A 2020; 1615: 460751. doi: 10.1016/j.chroma.2019.460751.



İLKTAÇ and GÜMÜŞ / Turk J Chem

1247

31.	 Hijazi HY, Bottaro CS. Molecularly imprinted polymer thin-film as a micro-extraction adsorbent for selective determination of trace 
concentrations of polycyclic aromatic sulfur heterocycles in seawater. Journal of Chromatography A 2020; 1617: 460824. doi: 10.1016/j.
chroma.2019.460824.

32.	 Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chemical Society Reviews 2016; 45: 2137-2211.

33.	 Arabi M, Ghaedi M, Ostovan A. Development of a lower toxic approach based on green synthesis of water-compatible molecularly 
imprinted nanoparticles for the extraction of hydrochlorothiazide from human urine. ACS Sustainable Chemistry & Engineering 2017; 5: 
3775-3785. doi: 10.1021/acssuschemeng.6b02615.

34.	 Anantha-Iyengar G, Shanmugasundaram K, Nallal M, Lee KP, Whitcombe MJ et al. Functionalized conjugated polymers for sensing and 
molecular imprinting applications. Progress in Polymer Science 2019; 88: 1-129. doi: 10.1016/j.progpolymsci.2018.08.001.

35.	 Song X, Xu S, Chen L, Wei Y, Xiong H. Recent advances in molecularly imprinted polymers in food analysis. Journal of Applied Polymer 
Science 2014; 131:1-18. doi: 10.1002/app.40766.

36.	 Ansari S. Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental 
analysis: Recent developments and trends. TrAC Trends in Analytical Chemistry 2017; 90: 89-106 doi: 10.1016/j.trac.2017.03.001.

37.	 Zhang C, Shi X, Yu F, Quan Y. Preparation of dummy molecularly imprinted polymers based on dextran-modified magnetic nanoparticles 
Fe3O4 for the selective detection of acrylamide in potato chips. Food Chemistry 2020; 317: 126431. doi: 10.1016/j.foodchem.2020.126431.

38.	 Mehdipour M, Ansari M, Pournamdari M, Zeidabadinejad L, Kazemipour M. Selective extraction of organophosphorous pesticides in 
plasma by magnetic molecularly imprinted polymers with the aid of computational design. Analytical Methods 2018; 10: 4136-4142.

39.	 Fu H, Xu W, Wang H, Liao S, Chen G. Preparation of magnetic molecularly imprinted polymer for selective identification of patulin in 
juice. Journal of Chromatography B 2020; 1145: 122101. doi: 10.1016/j.jchromb.2020.122101.

40.	 Kumar N, Narayanan N, Gupta S. Application of magnetic molecularly imprinted polymers for extraction of imidacloprid from eggplant 
and honey. Food Chemistry 2018; 255: 81-88. doi: 10.1016/j.foodchem.2018.02.061.

41.	 Kumar S, Karfa P, Madhuri R, Sharma PK. Designing of fluorescent and magnetic imprinted polymer for rapid, selective and sensitive 
detection of imidacloprid via activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) 
technique. Journal of Physics and Chemistry of Solids 2018; 116: 222-233. doi: 10.1016/j.jpcs.2018.01.038.

42.	 Farooq S, Nie J, Cheng Y, Yan Z, Bacha SAS et al. Synthesis of core-shell magnetic molecularly imprinted polymer for the selective 
determination of imidacloprid in apple samples. Journal of Separation Science 2019; 42: 2455-2465.

43.	 Liu X, Yu D, Yu Y, Ji S. Preparation of a magnetic molecularly imprinted polymer for selective recognition of rhodamine B. Applied Surface 
Science 2014; 320: 138-145. doi: 10.1016/j.apsusc.2014.08.122.

44.	 He D, Zhang X, Gao B, Wang L, Zhao Q et al. Preparation of magnetic molecularly imprinted polymer for the extraction of melamine from 
milk followed by liquid chromatography-tandem mass spectrometry. Food Control 2014; 36: 36-41. doi: 10.1016/j.foodcont.2013.07.044.

45.	 Shen X, Xu G, Ye L. Molecularly imprinted polymers for clean water: analysis and purification. Industrial & Engineering Chemistry 
Research 2013; 52: 13890-13899 doi: 10.1021/ie302623s.

46.	 Andersson LI, Hardenborg E, Sandberg-Stall M, Möller K, Henriksson J et al. Development of a molecularly imprinted polymer based 
solid-phase extraction of local anaesthetics from human plasma. Analytica Chimica Acta 2004; 526: 147-154.

47.	 Ma X, Lin H, Zhang J, Zhou X, Han J et al. Preparation and characterization of dummy molecularly imprinted polymers for separation 
and determination of farrerol from Rhododendron aganniphum using HPLC. Green Chemistry Letters and Reviews 2018; 11: 513-522. 
doi: 10.1080/17518253.2018.1541481.

48.	 Zhang X, Sun X, Wang M, Wang Y, Wu Q et al. Dummy molecularly imprinted microspheres prepared by Pickering emulsion 
polymerization for matrix solid-phase dispersion extraction of three azole fungicides from fish samples. Journal of Chromatography A 
2020; 1620: 461013. doi: 10.1016/j.chroma.2020.461013.

49.	 Teasdale A, Elder D, Nims RW. ICH Quality Guidelines. Wiley Online Library 2017.

50.	 Zhang W, Liu C, Han K, Wei X, Xu Y et al. A signal on-off ratiometric electrochemical sensor coupled with a molecular imprinted polymer 
for selective and stable determination of imidacloprid. Biosensors and Bioelectronics 2020; 154: 112091. doi: 10.1016/j.bios.2020.112091.

51.	 Majidi MR, Ghaderi S. Facile fabrication and characterization of silver nanodendrimers supported by graphene nanosheets: A sensor 
for sensitive electrochemical determination of imidacloprid. Journal of Electroanalytical Chemistry 2017; 792: 46-53. doi: 10.1016/j.
jelechem.2017.03.028.

52.	 Kong L, Jiang X, Zeng Y, Zhou T, Shi G. Molecularly imprinted sensor based on electropolmerized poly(o-phenylenediamine) membranes 
at reduced graphene oxide modified electrode for imidacloprid determination. Sensors and Actuators B: Chemical 2013; 185: 424-431. 
doi: 10.1016/j.snb.2013.05.033.

53.	 Nasr-Esfahani P, Ensafi AA, Rezaei B. Fabrication of a highly sensitive and selective modified electrode for imidacloprid determination 
based on designed nanocomposite graphene quantum dots/ionic liquid/multiwall carbon nanotubes/polyaniline. Sensors and Actuators 
B: Chemical 2019; 296: 126682. doi: 10.1016/j.snb.2019.126682.



İLKTAÇ and GÜMÜŞ / Turk J Chem

1

SUPPLEMENTAL MATERIAL

Imidacloprid was determined by using LC/Q-TOF/MS. HPLC equipped with a binary pump, an online degasser, an auto sampler and 
a Poroshell 120 EC - C18 column (3.0 × 50 mm, particle size 2.7 µm) was used for analysis. Composition of the mobile phase was 0.1 
% formic acid in water (A) and acetonitrile (B). The gradient elution was: 0 – 0.5 min, 10 % B; 0.5 – 5 min, 70 % B; 5 – 7 min, 95 % B; 
7.0 – 10 min, 95 % B; 10 – 15 min, 10 % B for equilibration of the column. Injection volume of the sample was 3.0 µL, the flow rate was 
0.5 mL/min and the column was maintained at 35 °C.
MS and MS/MS analysis was performed using an Agilent 6550 iFunnel high resolution Accurate Mass Q-TOF / MS equipped with the 
Agilent Dual Jet Stream electrospray ionization (Dual AJS ESI) interface operating in positive ion in the following cases: drying gas 
flow, 14.0 L / min; nebulizer pressure, 35 psi; gas drying temperature, 290 °C; sheath gas temperature, 400 °C; sheath gas flow, nitrogen 
12 L / min. The scanning range m / z was selected from 50 to 1000. Pesticides Accurate Mass Personal Compound Database Library 
(Pesticides_AM_PCDL) library was used for the quantification of imidacloprid.

Figure S1. LC/Q-TOF/MS extract ion chromatogram (EIC) and Pesticides Accurate Mass Personal 
Compound Database Library (Pesticides_AM_PCDL) identification of imidacloprid.
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Figure S2. FTIR spectra of a) MMIP and b) magnetite particles.

Figure S3. VSM analysis of magnetic particles and MMIP.
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Figure S5. Calibration graph for a) re-binding and b) recovery.

Figure S4. Effect of adsorbent dose. 


