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The growing occurrence of bone disorders and the increase in aging population have 
resulted in the need for more effective therapies to meet this request. Bone tissue engi-
neering strategies, by combining biomaterials, cells, and signaling factors, are seen as 
alternatives to conventional bone grafts for repairing or rebuilding bone defects. Indeed, 
skeletal tissue engineering has not yet achieved full translation into clinical practice 
because of several challenges. Bone biofabrication by additive manufacturing techniques 
may represent a possible solution, with its intrinsic capability for accuracy, reproducibil-
ity, and customization of scaffolds as well as cell and signaling molecule delivery. This 
review examines the existing research in bone biofabrication and the appropriate cells 
and factors selection for successful bone regeneration as well as limitations affecting 
these approaches. Challenges that need to be tackled with the highest priority are the 
obtainment of appropriate vascularized scaffolds with an accurate spatiotemporal bio-
chemical and mechanical stimuli release, in order to improve osseointegration as well as 
osteogenesis.

Keywords: bone regeneration, cell source, biofabrication, biocompatibility, stem cells and regenerative medicine

iNTRODUCTiON

Bone is composed of bone tissue and bone marrow encased within the periosteum, a thin strip of soft 
tissue that envelops the midshafts of long bones, extending to their proximal and distal metaphyses 
and adjacent epiphyses (Malizos and Papatheodorou, 2005). Bone has the ability to self-repair and 
regrowth: postnatal bone maintains an intrinsic ability for well-ordered growth, remodeling to 
satisfy mechanical needs, and renewal after damages.

Abbreviations: ALP, alkaline phosphatase; AMTs, additive manufacturing technologies; ASCs, adipose tissue-derived stem 
cells; BM-MSCs, bone marrow stromal cells; BMP, bone morphogenetic protein; CAD, computer-assisted design; CNTs, carbon 
nanotubes; CT, X-ray computed tomography; ECM, extracellular matrix; EPC, endothelial progenitor cells; FGF, fibroblast 
growth factor; HUVEC, human umbilical vein cells; IGF, insulin-like growth factor; MAPK, mitogen-activated protein 
kinase; MRI, magnetic resonance imaging; MSCs, mesenchymal stromal cells; PAM, pressure-activated microsyringe; PCL, 
polycaprolactone; PDGF, platelet-derived growth factor; PANI, polyaniline; PEGDMA, poly(ethylene glycol) dimethylacrylate; 
PEG-PLGA, poly (ethylglycol)-poly (lactic-co-glycolic acid); PHAs, polyhydroxyalkanoates; PLGA, poly (lactic-co-glycolic 
acid); μCT, microcomputed tomography; PPy, polypyrrole; PTH, parathyroid hormone; PTHrH, parathyroid hormone-related 
protein; SEM, scanning electron microscopy; S-MSCs, skin-derived multipotent stromal cells; SPECT, single-photon gamma 
rays; STL, Standard Tessellation Language; 3D, three dimensional; TEM, transmission electron microscopy; TGF, transforming 
growth factor; VEGF, vascular endothelial growth factor.
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TABle 1 | Advantages and disadvantages of different bone grafts.a

Advantages Disadvantages

Autograft Osteogenic
Osteoconductive
Osteoinductive

High patient morbidity: pain and infection at donor site, possible visceral injury 
during harvesting

Lack of vascularization
Limited availability and quantity

Allograft or xenograft Osteoconductive
Osteoinductive
High availability
No donor site morbidity

Lack of osteogenicity and vascularization
Relatively higher rejection risk
Risk of disease transmission
High cost

Engineered grafts Capability to integrate growth factors and 
stem cells for osteogenicity and graft 
incorporation improvement

Shaped to fit site defects
No donor site morbidity

Osteogenicity limited by material porosity (due to manufacturing process)
Variable biodegradability of different materials
Poor neovascularization
Unknown immune response
Limited mechanical properties

aModified from Gibbs et al. (2014) and Tang et al. (2016).
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In large bone defects (caused by significant trauma or systemic 
disease, pathological fractures, non-union, infections or compro-
mised blood supply) this capability can however fail, resulting 
in permanent defects that can lead to a loss of function. Bone 
regenerative ability declines with age; therefore, there is a need for 
ad hoc treatments in patients with skeletal diseases determined by 
the rise in population aging. It must be also stressed that the next 
most transplanted tissue after blood is bone (Leach and Mooney, 
2004; Oryan et al., 2014).

In bone defect treatments, the “gold standard” remains bone 
grafting (Brydone et al., 2010): bone graft could be used alone or 
in combination with other materials in order to promote bone 
healing through osteoinduction, osteoconduction, and osteogen-
esis. An ideal bone graft can be in the form of autograft (harvested 
from the patient), allograft, or xenograft (obtained from a donor 
or animal), or represented by the use of an engineered synthetic 
biomaterial (Gibbs et al., 2014). Table 1 summarized the advan-
tages and disadvantages of possible different bone grafts (Tang 
et al., 2016).

The intrinsic reparative capacity of bone grafts represent 
the natural model to reproduce when using new therapeutic 
options in tissue engineering strategies: appropriate scaffolds, 
growth factors, and/or cells, has, in some cases, improved grafts 
incorporation, osteoconductivity, osteoinductivity, and osse-
ointegration (Kundu et  al., 2014). Scaffolds must support cell 
colonization, proliferation, differentiation, and migration. They 
usually entail a solid load carrying structure with an intersected 
pore network, whereas hydrogels containing encapsulated cells 
often form the “matrix” (Bose et  al., 2012). Scaffolds should 
possess appropriate physicochemical properties (i.e., stiffness, 
biodegradability, surface chemistry, etc.) that are essential for 
tissue formation and be capable to face mechanical stresses 
(Table 2).

Cell SOURCe

Cells are commonly used to repair injured tissue, as they are 
physiologically involved in tissue development and homeostasis. 
Osteoblast and osteocyte are the key regulators of bone deposi-
tion, modeling, and remodeling. Therefore, osteoblasts and/or 

their precursors represent an excellent cell source for a successful 
cell-based skeletal treatment.

The incorporation of mesenchymal stromal cells (MSCs) into 
bone tissue engineering strategies has been a crucial progress. The 
most frequently used are bone marrow stromal cells (BM-MSCs) 
(Oreffo et al., 2005; Robey, 2011; Dawson et al., 2014), given to 
the fact that they have been broadly studied, but several different 
sources have also been exploited (Table 3).

Viable alternatives to BM-MSCs are represented by adipose 
tissue-derived stem cells (ASCs) and oral cavity MSCs. ASCs have 
a documented in vitro osteogenic aptitude (El Tamer and Reis, 
2009), ease of access, and abundance (Szpalski et al., 2012) and, 
moreover, survive in low oxygen and/or glucose environments. 
The latter aspects are an intriguing advantage when the blood 
and nutrient supply are limited, like with biofabricated bone 
constructs. Oral cavity MSCs have been exploited for bone tissue 
engineering strategies (Orciani et  al., 2012; Liu et  al., 2015a,b) 
and also proposed for biofabrication of bone (El Tamer and Reis, 
2009; Wang et al., 2011; Zhu and Liang, 2015).

Another attractive stem cell reservoir that could meet bone 
tissue engineering criteria is the skin basal layer (Takeda et al., 
1992; Orciani and Di Primio, 2013). The so-called skin-derived 
multipotent stromal cells, isolated from this site, show multipo-
tent differentiation ability, and are capable to become adipocytes, 
osteoblasts, chondrocytes, neurons, and pancreatic cells (Orciani 
et al., 2010). These features in combination with their immuno-
suppressive effect make them an ideal challenger for various cell 
transplantation therapies (Vishnubalaji et al., 2012).

The growth, development, and regeneration of bone as well 
as cartilage rest on periosteum presence. This tissue is pluripo-
tent (Arnsdorf et  al., 2009) and may be used for engineering 
in  vivo new bone formation (Castro-Silva et  al., 2012; Ferretti 
and Mattioli-Belmonte, 2014). Osteoblasts and chondroblasts 
of periosteum are well characterized in terms of function, gene 
expression, cell and extracellular protein synthesis, and secretion 
as well as structural organization for the elaboration of bone and 
cartilage, respectively (Colnot, 2011; Mafi et  al., 2011). Fewer 
investigations are relative to the nature and role of periosteum 
in the bone and cartilage formative and repair processes, or to 
possible differences and effects of various periosteum sources on 
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TABle 3 | Mesenchymal stromal cells (MSCs) in bone tissue engineering.a

Potential for bone tissue 
engineering

Advantages Disadvantages

Bone marrow Osteogenic
Potential for neovascularization

Relatively easy acquisition
In situ recruitment
Well-characterized

Donor morbidity
Limited proliferative potential
Fewer cells compared to other sources
Cell number
Related to age and health of donor

Adipose tissue Osteogenic
Potential for neovascularization

Easy acquisition
Well-characterized

Donor morbidity (due to anesthesia)

Oral cavity MSCs (dental pulp, 
periodontal ligament)

Osteogenic Abundant
Easy acquisition

Not well-characterized

Skin Potential for neovascularization
Support to osteogenic differentiation

Abundant
Minimal donor morbidity

Not well-characterized

Periosteum Osteogenic Well-characterized
In situ recruitment
Can be co-seeded with bone marrow-

derived stem cells

Cell number and activity related to donor age

aModified from Tang et al. (2016).

TABle 2 | Scaffold features for bone tissue engineering strategies.a

Biocompatibility Capability to support normal cell activity with no toxic effect in host tissues particularly during degradation
Osteoconductive, osteoinductive, and osteogenic properties
Ability to promote angiogenesis for new blood vessels formation around the implant are advisable

Biodegradability (bioresorbability) Controlled degradation of a scaffold with time is mandatory to generate space for the growth of new bone tissue 
and, eventually, the replacement of the synthetic scaffold
Degradation rate of can be tailored to the application required (e.g., controlled release of biomolecules)

Pore size and porosity Critical feature for the diffusion of oxygen and nutrients for cell survival and proliferation
Minimum pore size of 100 μm
Pore sizes of 200–350 μm are optimal for bone tissue ingrowth
Meso-porous structures (micro- and macro-porosities mixture) are better than macro-porous ones in supporting 
cell adhesion
Porosity influences scaffold’s mechanical strength

Mechanical properties Should be in line with host bone properties in facing mechanical stress and reacting to load transfers
Differences in the topography and mechanical characteristics between cortical and trabecular bone affect 
scaffold design

aModified from Tang et al. (2016) and Bose et al. (2012).
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osteogenesis and chondrogenesis. As far as animal is concerned, 
periosteum from only certain bones and at different ages was 
examined (O’Driscoll and Fitzsimmons, 2001; O’Driscoll et al., 
2001; Fan et al., 2008), and results of these and related studies 
(Kwon et al., 2002; Szulc et al., 2006) could not be easily corre-
lated. Moreover, the analysis of tissues from different anatomical 
regions of single calves showed that each periosteum retained 
its own gene expression, protein and proteoglycan secretion, 
growth, and development (Kusuhara et  al., 2009). In 2011, 
Matsushima and co-workers compared the osteogenic and 
chondrogenic potential of periosteal tissue harvested from indi-
vidual young calve sites undergoing intramembranous (cranium 
and mandible) or endochondral ossification (radius and ilium) 
by implantation as tissue-engineered constructs in nude mice. 
They demonstrated that the osteogenic and chondrogenic ability 
of the different constructs depended on the periosteal source, 
regardless of intramembranous or endochondral ossification, as 
cranial and mandibular periosteal tissues were able to enhance 
bone formation most and least conspicuously, respectively 
(Matsushima et al., 2011).

In humans, recent researches have been devoted to the 
evaluation of periosteal cells differentiation ability in response to 
mechanical, chemical (e.g., growth factors) stimuli as well as in 
cocultures (Ferretti et al., 2014; Mattei et al., 2015; Dicarlo et al., 
2016). Moreover, researches related to possible changes associ-
ated with donor age showed that this parameter affects periosteal-
derived stem cell behavior mainly in term of bone remodeling 
(Ferretti et al., 2014).

The influence of stem cells has been tested in animal models; 
however, it is still unclear whether these cells do retain the in vivo 
capacity to form bone (Marolt et al., 2010). At last, in order to 
meet the good manufacturing practice standards, a well-defined, 
standardized protocol for the isolation and in vitro manipulation 
of these cells is still necessary (Seong et al., 2010; Tare et al., 2012).

Angiogenesis is critical in creating a viable biofabricated bone 
construct, for this reason, the use of two, rather than one, cell 
types has gathered much interest in bone tissue engineering strat-
egies (Kyriakidou et al., 2008) (Figure 1). For instance, BM-MSCs 
were used to generate blood vessels also seeded onto a scaffold 
with endothelial cells (Fedorovich et al., 2010; Gao et al., 2014). 
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FigURe 1 | (A) Lateral view of three-dimensional (3D) fiber deposited polycaprolactone (PCL) scaffold reconstruction; (B) inners structure of the same scaffold;  
(C) colonization of the 3D PCL scaffold in dynamic condition; scale bar 1 mm; (D) high magnification showing the external cell monolayer, scale bar 1 mm; (e) cells 
bridging the grooves, scale bar 100 μm; (F) cell arrangement suggestive of a new vascular structure, scale bar 100 μm; (g) spheroid of MC63 and human umbilical 
vein cells generated in dynamic condition scale bar 50 μm [from Kyriakidou et al. (2008)].
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Indeed, the inefficient stimulus for a rapid development of new 
blood vessels that invade the coculture grafts may explain the fail 
in proving bone formation using this method (Liu et al., 2015a,b; 
Unger et al., 2015), making this approach still limited.

BiOCHeMiCAl SigNAliNg FOR BONe 
BiOFABRiCATiON

Bone tissue engineering has tried to exploit the regenerative 
properties of bone physiological processes (Table 4). In vivo, bio-
chemical signals (i.e., growth factors, hormones, and cytokines), 
secreted locally in the areas undergoing bone remodeling or at 
the injury sites, cause the migration of inflammatory and pre-
cursor cells and/or the activation of osteoblasts and osteoclasts 
(Kanczler and Oreffo, 2008). Activation of bone-forming and 
resorbing cells determine to new bone generation during the 
healing or the remodeling process, respectively. Clinical studies 
usually utilize growth factors at the range of milligrams per mil-
liliter instead of nanograms per milliliter: this results in adverse 
effects such as ectopic bone formation, antibody development, 
and, as latter event, carcinogenesis. Indeed, conflicting data on 
the appropriate doses of growth factors for bone tissue engineer-
ing strategies are available, with a broad range of concentrations 
in use (Gothard et  al., 2014). Moreover, it is still unclear (i) 
which dose of growth factors is actually delivered in vivo by the 
constructs within a bone defect (Santo et al., 2013) and (ii) the 
effects of the co-use of multiple growth factors (Young et  al., 
2009; Kuhn et al., 2013).

Delivery of biochemical cues can be obtained in different 
ways: unbound, bound within the implant for a controlled 
delivery, coated on the implant surface, or coded within the cells 
via gene delivery mechanisms (Zhang et al., 2010; Catros et al., 
2012). In the first case, we observe a burst release of growth fac-
tors, resulting in a rapid clearance from the microenvironment: 

this technique may be appropriate for an immediate stimulus 
and it is strictly dependent on the biomaterial degradation rate. 
Physical entrapment or covalent binding is a more appropriate 
approach when a prolonged, more controlled, or on-demand 
release of the growth factor or drug is required (Zhang 
et  al., 2010; Mourino et  al., 2013). With these techniques, a 
sustained release over a 15-day period was demonstrated for 
active lysozyme enclosed within thermoresponsive PLGA 
microspheres incorporated into extrusion printed PEG-PLGA 
constructs (Sawkins et al., 2015).

Three-dimensional (3D) printing methods can create bioac-
tive or bioinstructive scaffolds, incorporating growth factors or 
drugs with a spatiotemporal distribution. For instance, the spatial 
patterns of bone morphogenetic protein (BMP)-2, generated on 
a fibrin surface using an inkjet bioprinter, was able to differently 
affect murine muscle-derived stem cells: cells seeded onto the 
BMP-2 pattern undergo osteogenic differentiation as evidenced 
by alkaline phosphatase activity, while those seeded outside the 
BMP-2 pattern remain undifferentiated (Phillippi et  al., 2008). 
A reduction in biological activity of bioprinted recombinant 
human BMP-2 was also observed (Vorndran et al., 2010). Since 
the majority of growth factors have an in vivo short half-life, it 
is important to take into consideration both the biochemical 
molecule properties and scaffold features.

Currently, in tissue engineering, hydrogels are the most investi-
gated polymers for cell encapsulation and biochemical cues in situ 
delivery. Molecules such as BMP-2 and transforming growth 
factor-β3 were incorporated into alginate hydrogels designed to 
degrade at different rates by gamma-irradiation, and the effect 
of single and dual growth factors delivery on encapsulated rat 
BM-MSCs was investigated. The appropriate controls of scaffold 
degradation rate made possible the modulation of osteogenesis 
(Simmons et al., 2004). In order to mimic the function performed 
by the extracellular matrix (ECM), bioactive hydrogels contain-
ing protease sensitive sites, cell adhesion molecules such as 

www.frontiersin.org/Bioengineering_and_Biotechnology
http://www.frontiersin.org
http://www.frontiersin.org/Bioengineering_and_Biotechnology/archive


TABle 4 | growth factors and bone tissue engineering.a

growth factor Tissues effects

Bone morphogenetic 
protein (BMP) 2 and 7

Bone, 
cartilage

Osteoblast differentiation and migration
Accelerated bone healing

Fibroblast growth 
factors 1, 2, and 18

Bone, 
muscle, 
blood vessel

Endothelial cell migration, proliferation, 
and survival
Increased osteogenic differentiation of 
mesenchymal stromal cells

Insulin-like growth 
factor-1

Bone, 
cartilage, 
muscle

Osteoprogenitor cell proliferation and 
differentiation

Platelet-derived 
growth factor (PDGF)-
AA and PDGF-BB

Bone, 
cartilage, 
blood vessel, 
muscle

Endothelial cell proliferation, migration, 
and growth
Osteoblast replication in vitro
Type 1 collagen synthesis

Parathyroid hormone 
and parathyroid 
hormone-related 
protein

Bone Intermittent dosage → stimulation of 
osteoblasts → increased bone formation
Continuous administration → bone 
resorption

Transforming growth 
factor-β3

Bone, 
cartilage

Bone-forming cell proliferation and 
differentiation
Enhancement of in vivo hyaline cartilage 
formation
Antiproliferative effect on epithelial cells

Vascular endothelial 
growth factor

Bone, blood 
vessel

Enhancement of vasculogenesis and 
angiogenesis (functionality of vasculature 
is concentration dependent)
Reduction or increase in bone formation 
dependent on concentration when used 
in combinational with BMP-2 delivery

aAdapted from Tang et al. (2016) and Gothard et al. (2014).
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RGD-containing peptides, and/or biological cues in the form of 
growth factors, inorganic minerals, or drugs, were also developed 
(He et al., 2008; Fedorovich et al., 2011).

Vascular endothelial growth factor (VEGF) plays a key role in 
angiogenesis during bone development. Several studies investi-
gated the consequence of VEGF, or of a combination of growth 
factors, on angiogenesis in engineered bone constructs. The 
co-immobilization of VEGF and angiopoietin-1 on 3D porous 
collagen scaffolds increased endothelial cell proliferation in vitro 
and in organotypic cultures (Chiu and Radisic, 2010). Studies 
on synergistic or cumulative effect of VEGF and of insulin-like 
growth factor underlined as these molecules elicit different cell 
response in term of bone formation and angiogenesis in rela-
tion to the stem cell origin (Ferretti et  al., 2014; Dicarlo et  al., 
2016). Moreover, this different commitment is linked to a diverse 
mitogen-activated protein kinase or PI3K/AKT signaling path-
way activation (Figure 2) [see Ferretti et al. (2014) and Dicarlo 
et al. (2016) for details].

ADDiTive MANUFACTURiNg 
TeCHNOlOgieS (AMTs), 
BiOFABRiCATiON, AND BONe TiSSUe 
eNgiNeeRiNg STRATegieS

Rapid prototyping or solid freeform fabrication (i.e., AMT) was 
developed in the mid-1980s, providing a high level of control of 

the construct architecture, flexibility to scale-up fabrication, and 
assuring reproducibility and standardization of the manufactur-
ing process. Scaffolds developed using conventional fabrication 
techniques lacks in precision and reproducibility; on the contrary, 
AMT provides customized scaffolds with precise geometries for 
replacing damaged or diseased tissues and organs. AMT enables 
the production of 3D artificial implants using many biomateri-
als able to meet rigorous performance criteria for clinical use 
(Hutmacher and Cool, 2007) as indicated in the growing use 
of 3D printed artificial implants instead of traditional metallic 
ones in hip replacement surgery. In recent years, the increasing 
attention in generating a high personalized and cost-effective 
medical therapy not only resulted in the growing use of AMT 
in the manufacture of 3D tissue-engineered structures (Melchels 
et al., 2012) but has also determined improvement within AMT 
techniques.

Usually, AMT allows the setup of 3D objects by means of 
data generated by computer-assisted design (CAD) software or 
imported from clinical 3D scanners such as X-ray computed 
tomography, magnetic resonance imaging, and single-photon 
gamma rays (SPECT). The CAD model is then transformed to 
a Standard Tessellation Language (STL) file that guides the 3D 
printer computer system to generate layer-by-layer the object. 
The manufacturing of a variety of biomaterials fitting the different 
AMTs allowed the development of scaffolds with tunable proper-
ties (Melchels et al., 2012). The American Society for Testing and 
Materials International Committee F42 on AMT has divided 
these technologies into seven different processes, which are in 
line with the layer deposition and bonding techniques [see Gibbs 
et al. (2014) and Tang et al. (2016) for details].

At present, cell-based treatments are not yet available for 
clinical use despite the advances in biofabrication and they rely 
on manual cell seeding and culturing of pre-fabricated scaffolds 
(Ferris et  al., 2013). The current cell-based therapies are only 
applicable on a limited scale, since they are operator dependent, 
time consuming, and often inefficient. Moreover, cell seeding on 
pre-fabricated scaffolds does not recreate the cell organization of 
native tissues also in term of vascularization. To address these 
issues and improve cell spatial distribution within the scaffold, 
cells could be incorporated by an AMT termed as biofabrication, 
in order to create living cell/biomaterial/biomolecule constructs.

In bone tissue engineering, biofabrication techniques could 
provide a means to control uniformity of cell distribution 
or localization on the scaffold surface (Guillotin et  al., 2010; 
Fedorovich et al., 2012). Moreover, the integration of growth fac-
tors within the cellular matrix and/or their incorporation inside 
the scaffold itself during the printing process provides a method 
for a controlled drug delivery and release (Khatiwala et al., 2012; 
O’Brien et al., 2014; Tang et al., 2016).

In bone, cells are at different stages of proliferation, differen-
tiation, and maturation inside multi-layered organized ECM. 
By biofabrication, it is possible to bioprint cells onto a suitable 
scaffold to create bone with the ability to maintain cell functional 
capability as well as allowing bone remodeling (Fedorovich et al., 
2011).

Biofabrication could provide a more cost-effective manner 
for the treatment of patients with musculoskeletal defects or 
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FigURe 2 | (A) Possible interplay between insulin-like growth factor (IGF)-1 and vascular endothelial growth factor (VEGF) receptor signaling pathways. They equally 
converge on ERK kinase, which fine-tune the activity of the main osteogenic transcription factor Runx2. IGF1 and VEGF also trigger PI3/AKT signaling pathway that 
can induce vasculogenesis or beta-catenin phosphorylation. On the contrary, non-phosphorylated beta-catenin acts as a pro-osteogenic factor regulating Runx2 
and other genes. (B) consequences of IGF1 or IGF1/VEGF treatment on skin-derived multipotent stromal cells (S-MSCs) gene expression suggesting their 
commitment toward the endothelial phenotype. (C) Consequences of IGF1 or IGF1/VEGF treatment on PDPCs showing their main commitment toward the 
osteoblastic phenotype. Continuous lines indicate a marked effect, while dotted lines suggest a weaker regulation. Modified from Ferretti et al. (2014).
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disease in addition to offer a new therapeutic option for patients 
who cannot be cured with traditional therapy. The possibility to 
seed cells and biomolecules in a 3D space, with an improving 
better degree of detail and in a user-controlled, predefined way 
is a key biofabrication breakthrough over traditional approaches 
(Table 5). Indeed, accurate printing supports the manufacturing 
of a customized 3D structure that closely fit the defect, thereby 
decreasing engraftment chances or injury misrepair. Finally, 
biofabricated bone will remove the donor bone graft requirement, 
thereby permitting to the patients to undergo surgery earlier (thus 
reducing waiting list times while recovering mobility earlier), 
and with a reduced risk of physical and psychological morbidity. 
The chance of rejection of a biofabricated bone tissue is further 
reduced by the use of autologous cells.

Several AMTs have been experienced to manufacture 3D scaf-
folds, and more recently, in the printing of tunable hydrogels for 
bone tissue engineering. Table 6 summarized some of the AMTs 
used in bone tissue engineering.

In microextrusion deposition method, thin thermoplastic 
grains or filaments are wormed up until melting and then piloted 
by a controlled robotic device, to generate the 3D construct. The 
fused material is extruded and then it hardens immediately. A 
temperature just below the solidification point of the material 
must be maintained in order to guarantee the good interlayer 
adhesion (Melchels et al., 2012). Fedorovich et al. (2008) dem-
onstrated the possibility to generate with this procedure bone 
grafts by depositing 3D fibers composed of various hydrogels and 
goat BM-MSCs with no damage to cells in term of osteogenic 
differentiation during the printing process. In another study, they 
developed heterogeneous hydrogel constructs with endothelial 
progenitor cells and goat multipotent stromal cells to promote 
neovascularization during bone regeneration (Fedorovich et al., 
2010).

Pressure-activated microsyringe (PAM) fabrication is a pecu-
liar microextrusion technique in which the polymer is distributed 
through a tool-head installed on an arm or on the z-axis of a 
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TABle 6 | Classification and applications of additive manufacturing technology (AMT).a

AMT Advantages Disadvantages Applications

Stereolithography
Two-photon polymerization

High-dimensional accuracy
Transparent materials

Single composition
Cytotoxic photo-initiator
Photopolymer materials only
Post-processing mandatory
Limited cell printing ability
Heterogeneous cell distribution

Clinical implants
Surgical guides
Tissue engineering scaffolds
Cell-incorporated three-dimensional (3D) 

constructs
3D microvasculature networks

Drop on-demand inkjet printing
Poly-jet technology

Fast
Wide range of biomaterials
Inexpensive existing technology
Fabrication of composite structures
Multi-cell printing

Nozzle blockage common
Low bioink viscosity limits improvement 

of 3D constructs
Poor mechanical strength of 3D 

constructs

Clinical implants
Surgical guides
Tissue engineering scaffolds
Cell-incorporated 3D constructs
Biofabrication

Non-melting extrusion

3D bio plotting
Solvent-based extrusion free-forming
Robocasting
Direct-write assembly
Electrospinning
Pressure-activated microsyringe

Melting extrusion
Fused deposition modeling
3D fiber deposition
Multiphase jet solidification

Cheap mechanism with relatively 
good throughput

No post-processing needed
Low material waste
Cytocompatible
Rapid
Non-toxic materials with good 

properties

Low accuracy
Poor mechanical strength
Precise control of ink rheology necessary
Use of solvents
Low accuracy
Weak bonding between dissimilar 

polymer layers

Tissue engineering scaffolds
Cell-incorporated 3D constructs
Biofabrication
Clinical implants
Tissue engineering scaffolds

Selective laser sintering
Selective laser melting
Electron beam melting
Selective mask sintering

Wide range of biomaterials
High material strength
Good material properties

Thermal stress and degradation
Accuracy limited by particle size
Atmosphere control needed for metal 

printing

Surgical implants with complex structure
Tissue-engineered scaffold
Medical devices

Laser engineering net shape
Laser cladding
Directed metal deposition

Wide range of biomaterials
Good material properties

Low accuracy
Thermal stress
Atmosphere control needed for 

machining process

Orthopedic implants

Laminated object manufacturing
Ultrasonic consolidation

Low temperature process Shrinkage
Significant waste
Delamination

Orthopedic implants

3D printing Low temperature process
Fast
Fabrication of composite structures

Powders are necessary
Powder entrapment
High porosity
Low surface quality
Accuracy restricted by particle size
Cell-changing environment

Clinical implants
Tissue engineering scaffolds

aModified from Tang et al. (2016).

TABle 5 | Applications, advantages, and limitations of printing stem cells and biomolecules.a

Cells Biomolecules

Applications Stem cell genomics
Patches for wound healing
Ex vivo generation of tissue replacement

Protein and DNA arrays
Tissue engineering uses

Advantagesb Programmable
Low cost
Three-dimensional complexity
High throughput

Programmable
Low cost
Non-contact, reducing risk of cross-contamination from surface
No modification required for proteins or substrates

Disadvantages Cytocompatibility in both solid and liquid forms
Viscosity has to be lower than a threshold as defined by 

the printing method

Lower resolution compared to state-of-the-art protein array
Number of available binding sites on the receiving substrate
Cytocompatibility
Viscosity

aModified from Tang et al. (2016).
bCompared to conventional methods.
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computer-controlled 3D micropositioner. The achieved scaffold 
resolution is normally a function of the polymeric system viscos-
ity, the motor speed, the physical principle that permits polymer 
distribution, and the nozzle geometry (Vozzi et al., 2002; Tirella 
et  al., 2012). This technique has been used to modulate differ-
ent cell cytotype behavior in response of topological features 
(Mattioli-Belmonte et al., 2008) and, more recently, to generate 
bioactive glass–poly(lactic-co-glycolic acid) (PLGA) scaffolds 
mirroring the topological characteristics of cancellous bone 
(Mattioli-Belmonte et al., 2015).

Laser-assisted bioprinting involve a pulsed laser source, a 
receiver substrate for patterning and collecting cells and bioma-
terials, and a target. An essential element is a laser-absorbing 
interlayer with a high heat transfer coefficient. Individual cells 
in suspension are “driven” by directed laser beams and deposited 
onto a solid surface. This cell-by-cell deposition enables a precise 
cell micropatterning and improves cell interactions (Melchels 
et  al., 2012; Guillotin et  al., 2014). This technique was used to 
bioprint human osteosarcoma cells (MG63) onto a bio-polymeric 
matrix (Barron et al., 2005) and to create an on-demand pattern 
of nano-hydroxyapatite and human osteoprogenitor cells (Catros 
et al., 2011). The majority of cells survived throughout the print-
ing process (Catros et al., 2012) and the layer-by-layer assembly 
method exceeded the seeding a single locus of the scaffold during 
the creation of a 3D construct (Tang et al., 2016).

At last, the inkjet-based cell printing is a useful, simple, 
and low-cost method providing microenvironmental cues 
to cells in order to increase cell survival or manipulate 
their morphofunctional behavior. This technique is able to 
generate microscale organization of deposited cells (Cui and 
Boland, 2009) without compromising their viability or induc-
ing damage to cell phenotype or genotype (Gao et al., 2014). 
Inkjet-based cell printing could be used to fabricate complex 
multicellular constructs, since it allows the simultaneous 
printing of multiple cell types together with biomolecules 
alongside biomaterials. Inkjet-based printing is one of the 
methods used to make cell-laden hydrogels (Ferris et  al., 
2013). With this technology, Gao et al. (2014) demonstrated 
that encasing human MSCs in poly(ethylene glycol) dimethy-
lacrylate (PEGDMA), containing either bioactive glass or 
hydroxyapatite nanoparticles, cells were viable post-printing 
and a greater osteogenesis was present in the construct con-
taining hydroxyapatite.

SeleCTiNg A BiOMATeRiAl

Scaffolds generated with AMT are generally made of ceramic, 
metal, self-assembly peptides, and synthetic or natural polymers 
(Stevens et  al., 2008; Leijten et  al., 2015). Due to the specific 
advantages and disadvantages of each type of biomaterial, the 
use of composite scaffolds is becoming more common. Several 
reviews have comprehensively addressed the most common 
combinations biomaterials as well as their in  vitro or in  vivo 
investigation for their potential use for bone tissue engineering 
strategies (Leach and Mooney, 2004; Stevens et al., 2008). Indeed, 
there is no agreement on which biomaterial (or possible mixture) 
is optimal for bone biofabrication, and the selection is constrained 

to the AMT employed. Moreover, some AMTs (e.g., stereolithog-
raphy) require cytotoxic post-processing procedures, while laser 
sintering can cause biomaterial thermos degradation, with a loss 
of minute microstructure that, as a consequence, affects material 
porosity and cell viability (Stevens et al., 2008; Ferris et al., 2013; 
Gibbs et al., 2014; Tang et al., 2016).

The increasing advances in materials science and engineering 
has improved the development of the so-called smart materials, 
in particular polymeric smart materials, for a wide number of 
applications including bone tissue engineering ones (Stuart et al., 
2010; Kumari et al., 2011; Ribeiro et al., 2015). The smart materials 
display reproducible, significant, and stable variations of at least 
one of their property when subjected to external stimuli and are 
usually classified based on the output response (e.g., piezoelectric 
materials, shape memory materials, temperature responsive poly-
mers, conductive polymers, etc.) (Jeong and Gutowska, 2002).

The interest in the application of active materials is related to 
the fact that electrical signals control many of the major function 
in human cells and organs (Moore, 1975; Foulds and Barker, 
1983; Ribeiro et al., 2015). For instance, bone tissue adaptation 
and remodeling are determined by a feedback mechanism that 
involves electromechanical processes due to its piezoelectric 
nature. It has been shown that small applied electric fields can 
guide the movement and migration of a variety of different cell 
types, thus improving in vivo tissue healing (Moroni et al., 2015; 
Ribeiro et al., 2015). Thus, conductive polymers such as polypyr-
role (PPy), polyaniline (PANI), and carbon nanotubes (CNTs) 
incorporated into non-conductive polymers, both to provide 
structural support and to direct cell growth, have been tested 
for tissue and biomedical engineering applications (Mattioli-
Belmonte et al., 2003, 2005, 2012; Harrison and Atala, 2007).

Several natural and synthetic materials could be used to 
generate active scaffold for tissue regeneration mainly in the 
form of microspheres, fibers, porous membranes, hydrogels, and 
sponges (Dhandayuthapani et  al., 2011). Porous scaffolds have 
been generally obtained by traditional techniques (i.e., solvent 
casting/salt leaching, phase separation, gas foaming, gel casting, 
etc.) (Fallahiarezoudar et  al., 2015) but, in order to overcome 
the inaccurate and limited interconnectivity pore morphology, 
electrospinning was also used (O’Brien, 2011). Indeed, few 
studies used AMT for the production of piezoelectric scaffolds 
(Moroni et  al., 2015; Rana et  al., 2015; Di Luca et  al., 2016), 
and among these, PAM was used to realize bone-like structure 
scaffolds composed of CNT and polycaprolactone able to sustain 
osteoblast-like cell proliferation and modulate cell morphology 
(Mattioli-Belmonte et al., 2012).

A last generation of materials for the building up of scaffolds 
are polyhydroxyalkanoates (PHAs), a family of biopolyesters 
produced by microorganisms as intracellular carbon and energy 
storage compounds under unstable growth conditions (Williams 
and Martin, 2002; Chen, 2009). They can exist as homopolymers 
or copolymers of two or more hydroxyalkanoic acids, and several 
polymers of this family have been provided (Goonoo et  al., 
2016). Due to their variable composition, PHAs display diverse 
physicochemical properties and different rates of degradation in 
biological media, thereby maintaining their mechanical strength 
from short to prolonged amount of time (Yoshie and Inoue, 
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2005). Even if PHA-based scaffolds demonstrated biocompat-
ibility with different cell types (Goonoo et  al., 2016), the use 
of PHAs is threatened by their poor mechanical properties, as 
most polymers derived from natural sources. To improve phys-
icochemical properties, thus matching biological requirements 
of the different human tissues, PHAs have been blended with 
ceramics and polymers (e.g., gelatin, silk, and collagen). These 
copolymers have been used mainly with traditional techniques or 
with electrospinning, and no data are available on the generation 
of composite scaffolds with other AMT (Goonoo et  al., 2016). 
Indeed, PHA/ceramic composites showed good in  vitro and 
in  vivo bioactivity and bone regenerating potential. Moreover, 
the addition of angiogenic growth factors and the possible moni-
toring of surface/topographical properties will enable to avoid 
problems such as poor vascularization and cell penetration [see 
Goonoo et al. (2016) for details].

Cell–BiOMATeRiAl iNTeRACTiON

In vivo, cells are subjected to a combination of biochemical 
and physical factors that regulate their functional behavior 
(Fernandez-Yague et al., 2015).

Mechanical stimulus has been identified for a long time as 
a key player in the adaptation of the musculoskeletal tissues to 
their function, and cells are known to perceive and respond to the 
environmental physical cues as well as to those of tissue scaffolds. 
Therefore, the optimization of cell–material interactions is criti-
cal in tissue engineering, and there is increasing agreement that 
material physical properties (i.e., topography, geometry, poros-
ity, and stiffness) can be used to direct guide biological results 
similar to the traditional approaches that involves chemistry or 
biomolecules (Engler et al., 2006; Mitragotri and Lahann, 2009).

Osteogenic cells respond to mechanical stimuli (Mattei et al., 
2015), and several microfabricated devices have been created to 
induce and/or monitor cell responses to biomechanical forces 
and/or biochemical gradients in vitro (Kim and Ma, 2012). These 
devices can be used to analyze the effect of perfusion on human 
MSCs in a controlled way (Malizos and Papatheodorou, 2005; 
Bose et  al., 2012), firmly evaluating the effect of cell seeding 
density and biomolecules on osteogenesis and angiogenesis (Das 
and Botchwey, 2011).

Different surface modification methods, such as oxidiza-
tion, electrochemical deposition, or anodization via cathodic 
pre-treatment, have been used to further increase biomaterial 
biocompatibility and/or osteoinductivity (Hutmacher and Cool, 
2007; Huang et al., 2014; Kundu et al., 2014). AMT can be used to 
precisely produce monotonic or graded topographical features on 
a biomaterial (Mattioli-Belmonte et al., 2015) and micropattern-
ing that improves cell adhesion through focal adhesion formation 
(Dalby et al., 2014). The latter topological modifications can take 
the form of micro- and nanoscale protrusions, pits or grooves, 
able to direct or influence stem cell differentiation (Biggs et al., 
2009; Oh et al., 2009). On the other side, since osteoclasts sense 
surface roughness at the resorption-sealing zone through forces 
applied at different heights and surface angles, biomaterials with 
0.1–1  μm surface cracks can enhance osseointegration of the 
implant (Leijten et al., 2015).

It is clear that several factors contribute to mediating 
cell–material interaction, which is an intensely studied and 
complicated process. An ordered and regular microstructure 
with a smooth surface can improve material biocompatibility 
(Mattioli-Belmonte et al., 2008). Changing in biomaterial surface 
chemistry or scaffold geometry also affects cell adhesion, migra-
tion, and differentiation (Brydone et al., 2010; Bose et al., 2012).

Therefore, expressly planned micropatterning are not only 
capable to generate a unique topographical surface to monitor 
cell shape, alignment, and cell–cell and cell–matrix contact in 
basic stem cell biology study but could also be integrated with 3D 
bioprinting to develop micropattered 3D structure, thus inducing 
stem cell-based tissue regeneration. ECM coating on a definite 
topographical structure is able to induce even more precise and 
powerful stem cell differentiation along with soluble factors and 
mechanical forces (Lin et al., 2016).

liMiTS iN BONe BiOFABRiCATiON

One of the key factors for the success of any form of transplant 
(either with or without the presence of scaffolds) is cell viability: 
transplanted cells must survive for a sufficient period in order to 
perform their biological function. In biofabrication approaches, 
the printed cells need first to survive during all processing and 
printing steps. Extreme environmental and culture conditions, 
changes before, during, and/or following printing can adversely 
affect cell homeostasis or result in cell damage and death (Leach 
and Mooney, 2004; Bose et al., 2012). Depending on the approach 
adopted, bioprinting can result in decreased cell viability (Leach 
and Mooney, 2004; Nair et al., 2009; Brydone et al., 2010; Gruene 
et  al., 2011), with no effect documented for laser-assisted bio-
printing (Schiele et al., 2010; Ali et al., 2014).

Cell viability can be also affected by the biomaterial compat-
ibility. Many hydrogels, which are attractive given their high 
cytocompatibility, have been applied in tissue engineering 
strategies (Bryant et al., 2007; Fedorovich et al., 2011). Indeed, 
even if hydrogels have been planned to furnish cells with a 
completely hydrated 3D environment similar to the natural 
ECM, their poor inherent mechanical strength limits their use 
in 3D biofabricated bone tissue-engineered constructs (Malda 
et al., 2013). The increase in polymer concentration and cross-
linking improves hydrogel mechanical properties, but it can 
affect the biofabrication process itself, both interfering with the 
process and/or extending the fabrication time. These aspects 
in turn lead to a reduction in cell viability and functionality 
(Hutmacher and Cool, 2007; Rouillard et al., 2011; Tang et al., 
2016). In order to exceed the lack of mechanical strength of 
the hydrogel, hybrid 3D constructs consisting of thermoplastic 
biomaterials and cell-laden hydrogels have been suggested. 
These systems include non-woven scaffolds manufactured via 
solution electrospinning techniques and scaffolds fabricated via 
3D printing (Visser et al., 2015).

Bone is a metabolically active tissue with an internal vas-
culature and osteocytes located no more than 100 μm from an 
intact capillary (Muschler et  al., 2004). Angiogenesis, which 
arises spontaneously after bone grafting, is triggered by inflam-
mation. This capillary network is transient and reverts within 
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few weeks. The host-derived neovascularization of the implant 
is slow and, consequently, insufficient in the case of constructs 
of a relevant size. To date, vascularization remains a challeng-
ing technical obstacle in biofabrication and has prevented the 
development of clinically successful engineered constructs 
(Santo and Reis, 2010; Nguyen and Burg, 2015). In order to 
solve this issue, strategies involving the use of coculture sys-
tems, perfusion bioreactors, biomaterials, and growth factors to 
direct cell behavior are under investigation (Allori et al., 2008; 
Kyriakidou et  al., 2008; Nguyen et  al., 2012; Mercado-Pagan 
et al., 2015; Nguyen and Burg, 2015). Microscale technologies 
provide plasticity in generating accurate 3D architectures 
with embedded vascularized and capillary networks. Present 
methods include the formation of a ditch precasted into one 
layer before a second layer is aligned and deposited, forming 
laminated channel(s) or grooves in a repetitive way (Miller 
et al., 2012; Costa et al., 2014). Using this method, Moroni et al. 
(2006) formed microscale 3D scaffolds with organized hollow 
fibers with governable diameter and thickness that could be 
used as a vascularized network.

Scaffold pores are essential for the formation of bone tis-
sue, since they enable cell migration and ingrowth as well as 
nutrient diffusion for cell survival (Karageorgiou and Kaplan, 
2005). In general, scaffolds with pore sizes greater than 50 μm 
allow nutrient diffusion but show lower cell adhesion and 
intracellular signaling. For an effective cell growth, pore size 
must be “tailored” based on different cell types needs. For 
instance, larger pores are useful for osteoblasts growth, while 
fibroblasts preferred smaller pores (Oh et  al., 2007). Narayan 
and Venkatraman (2008) reported that the in  vitro growth of 
endothelial cell on PLGA scaffolds was enhanced on 5–20 μm 
pore sizes, with lower interpore distance. However, this was in 
contrast to some in vivo studies that showed as a higher porosity 
permits for faster bone ingrowth and vascularization. Improved 
bone formation was observed in hydroxyapatite scaffolds with 
300–400 μm pore sizes implanted in rats, suggesting that a fast 
scaffold vascularization determines an osteogenic microenvi-
ronment (Klenke et al., 2008; Bai et al., 2010). Conflicting results 
in these studies stress the limitations of in vitro researches in 
predicting in  vivo results as well as the requirement to assess 
the best pore sizes for each cell type used for bone tissue engi-
neering. Moreover, porous or rough materials integrate in a less 
fibrotic, better-vascularized way in comparison with smooth, 
compact forms.

An important reason in implant failure is associated with 
a foreign body reaction: biocompatible biomaterials become 
encapsulated and are phagocytized by macrophages. Indeed, 
it has also been shown that porous biomaterials with pore of 
30–40 μm in size displayed excellent healing with a pro-healing 
functionality of macrophages, regardless of polymer composition 
or implant site (Osathanon et al., 2008).

CliNiCAl TRANSlATiON

A basic problem for a positive translation of any cell therapy for 
regenerative medicine purposes is still their large-scale produc-
tion. In this respect, the bioprocessing phases of the producing 

process must be reproducible and scalable, in accordance with 
good clinical and manufacturing practice standards, safe for 
patients, and economically sustainable (Martin et  al., 2014). 
Regardless of high resolution and reproducibility, laser-assisted 
bioprinting techniques offer low number and small-scale 
manufacture of constructs (Guillotin et  al., 2014), and inkjet 
bioprinting has similar limitations (Guillotin and Guillemot, 
2011), while extrusion methods shows a higher resolution than 
inkjet-based printing in producing structures suitable for clinical 
use (Khatiwala et al., 2012).

The standard file format used to control AMT bioprinters is 
STL. While it works for solid objects with small complexity, STL 
is an unfeasible format if internal pore architecture is an integral 
part of the computer-aided design (Melchels et al., 2012). New 
methods to create porous models from medical imaging-derived 
data are therefore under evaluation in order to enable the study 
of the effects of biomechanical forces on bone remodeling (Wang 
and Mondry, 2005).

In vivo animal models can produce several relevant data on 
bone repair processes and testing the effectiveness of bioprinted 
or biofabricated bone constructs. These researches generally 
encompass big numbers of animals that raise ethical concerns and 
are expensive. The development of ex vivo organ cultures (Smith 
et al., 2014) as well as the use of chick chorioallantoic membranes 
for the study of vascularization, biomaterial compatibility, and 
growth factors (Nowak-Sliwinska et al., 2014) have facilitated the 
reduction of animals used for the study of bone repair process. 
Despite these advances, there are still few comparable data in the 
literature on long-term in  vitro and in  vivo characterization of 
bioprinted and biofabricated bone constructs. The improve accu-
racy of in silico predictive models would also reduce the numbers 
of animals used in in vivo studies (Fedorovich et al., 2011; Ferretti 
et al., 2015; Vozzi et al., 2016).

Modern microscopy techniques have helped in the evolution 
of biomaterials, from their composition to their interactions 
(Vielreicher et al., 2013). A major advantage of these techniques 
in the analysis of tissue constructs is that most of them are 
non-destructive. Table 7 summarized some of the microscopic 
techniques used to study bone tissue engineering.

When it is necessary for imaging cells within scaffolds, the 
limited penetration depths for most microscopy techniques is 
a major limitation. The introduction of multi-photon micros-
copy as well as advances in microcomputed tomography has 
allowed for slice-wise optical sectioning and 3D reconstruction 
of these constructs. These improvements overcome some of 
the limitations associated with traditional light microscopy. 
However, the computing power and storage space necessary 
to perform, analyze, and collect the data obtained with these 
methods is massive, even by today’s standards in information 
technology.

Finally, biofabrication is a quickly developing field with the 
capacity to change drastically the actual medical treatments. 
However, this idea requires integrated bioprinting platforms able 
to manage multiple materials to tissue constructs with structural 
integrity and of clinically relevant scales. Recently, Kang et  al. 
(2016) developed such a platform and effectively produced dif-
ferent tissue types in vivo, opening a breakthrough for the clinical 
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TABle 7 | imaging methods used in bone tissue engineering.a

Method Physical principles imaging depth 3D imaging Acquisition 
speed

invasiveness Specificity

μCT X-ray diffraction Whole body Excellent Average Low for hard 
tissue

Average

Confocal light 
microscopy

1-photon fluorescence: 200 <100 μm Excellent Good Low Excellent

Light microscopy Light diffraction and interference N.A. Poor Excellent Low Low without 
staining

SEM/TEM Electron diffraction N.A./<200 nm Very poor Very poor Very high Excellent
Non-linear optical 
microscopy

2-photon fluorescence/second harmonic generation/
coherent anti-Stokes Raman scattering

<1,000 μm Excellent Good High Excellent

μCT, microcomputed tomography; SEM, scanning electron microscopy; TEM, transmission electron microscopy; N.A., not applicable; 3D, three dimensional.
Invasiveness indicates the degree of tissue damage.
aModified from Tang et al. (2016) and Vielreicher et al. (2013).
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translation of this technology, even if to achieve this final goal, 
further steps and challenges remain (Malda and Groll, 2016).

CONClUSiON

Biofabrication using AMT offers a defined and organized 
approach for bone tissue generation in comparison with 
traditional techniques. Nevertheless, there are still significant 
challenges with biofabrication for the development of clinically 
relevant bone constructs. These problems are not only relative to 
the existing limitations in AMT but are also due to the possibility 
to obtain an appropriate vascularization of the structures as well 
as correct spatiotemporal biochemical and mechanical stimuli, to 
maximize osteogenesis and osseointegration. Advances in AMT, 
computational modeling, medical imaging and microscopy tech-
nology, bioreactor design, and biomaterial and drug development 
are therefore mandatory in order to face difficulties and improve 
the cost-effectiveness of biofabricated bone for clinical therapy, 
which at present is poor. Moreover, the correct cell selection for 
an effective clinical result must be taken into consideration.

It must also be underlined that all improvement in bone 
biofabrication will surely aid the knowledge and understanding 
of skeletal stem cell biology, cell interactions, and responses to 
external stimuli for bone development, formation, and remod-
eling related to the aging of population.
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