\times 0.15 mm

16146 measured reflections

 $R_{\rm int} = 0.028$

4458 independent reflections

3036 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(*E*)-1-[1-(2-Chlorophenyl)ethylidene]-2-(2,4-dinitrophenyl)hydrazine

Suchada Chantrapromma,^a* # Boonlerd Nilwanna,^a Patcharaporn Jansrisewangwong,^a Thawanrat Kobkeatthawin^a and Hoong-Kun Fun^b§

^aCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: suchada.c@psu.ac.th

Received 11 November 2011; accepted 22 November 2011

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (C–C) = 0.002 Å; R factor = 0.042; wR factor = 0.127; data-to-parameter ratio = 20.9.

The title molecule, $C_{14}H_{11}ClN_4O_4$, is in an *E* configuration and is twisted with the dihedral angle between the two benzene rings being $38.48 (8)^{\circ}$. The ethylidenehydrazine plane makes dihedral angles of 6.03 (10) and 44.04 $(11)^{\circ}$, respectively, with the dinitro- and chloro-substituted benzene rings. The two nitro groups are essentially coplanar with the bound benzene ring, making dihedral angles of 0.9 (2) and 1.65 (18)°. An intramolecular N-H···O hydrogen bond generates an S(6) ring motif. In the crystal, molecules are linked by a weak C- $H \cdots O$ interaction into a chain along the *c* axis. The chains are further stacked along the b axis by a π - π interaction with a centroid-centroid distance of 3.6088 (10) Å.

Related literature

For bond-length data, see: Allen et al. (1987). For hydrogenbond motifs, see: Bernstein et al. (1995). For related structures, see: Fun et al. (2010, 2011); Jansrisewangwong et al. (2010); Nilwanna et al. (2011). For background to and the biological activity of hydrozones, see: Angelusiu et al. (2010); Bendre et al. (1998); Gokce et al. (2009); Li et al. (2008); Loncle et al. (2004).

Experimental

Crystal data

$C_{14}H_{11}CIN_4O_4$	V = 2911.5 (5) Å ³
$M_r = 334.72$	Z = 8
Monoclinic, $C2/c$	Mo $K\alpha$ radiation
a = 32.660 (3) Å	$\mu = 0.29 \text{ mm}^{-1}$
b = 7.1435 (7) Å	$T = 297 { m K}$
c = 13.4798 (13) Å	$0.36 \times 0.26 \times 0.13$
$\beta = 112.215 \ (2)^{\circ}$	

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.904, \ T_{\max} = 0.957$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.042$ $m R(F^2) = 0.127$	H atoms treated by a mixture of
S = 1.04	refinement
4458 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
213 parameters	$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-{\rm H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H1N1\cdotsO1$ $C6-H6A\cdotsO3^{i}$	0.85 (2) 0.93	1.97 (2) 2.52	2.6081 (19) 3.251 (2)	131.2 (17) 135
Semenature and as (i) a				

Symmetry code: (i) $x, -y + 1, z - \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

BN, PJ and TK thank the Crystal Materials Research Unit, Prince of Songkla University, for financial support. The authors also thank the Prince of Songkla University and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS5008).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Angelusiu, M.-V., Barbuceanu, S.-F., Draghici, C. & Almajan, G.-L. (2010). Eur. J. Med. Chem. 45, 2055-2062.
- Bendre, R., Murugkar, A., Padhye, S., Kulkarni, P. & Karve, M. (1998). Met. Based Drugs, 5, 59-66.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Jansrisewangwong, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o2401-o2402.
- Fun, H.-K., Nilwanna, B., Jansrisewangwong, P., Kobkeatthawin, T. & Chantrapromma, S. (2011). Acta Cryst. E67, o3202-o3203.

[‡] Thomson Reuters ResearcherID: A-5085-2009.

[§] Additional correspondence author, e-mail: hkfun@usm.my. Thomson Reuters ResearcherID: A-3561-2009.

- Gokce, M., Utku, S. & Kupeli, E. (2009). *Eur. J. Med. Chem.* **44**, 3760–3764. Jansrisewangwong, P., Chantrapromma, S. & Fun, H.-K. (2010). *Acta Cryst.* E**66**, o2170.
- Li, T.-R., Yang, Z.-Y., Wang, B.-D. & Qin, D.-D. (2008). Eur. J. Med. Chem. 43, 1688–1695.

Loncle, C., Brunel, J. M., Vidal, N., Dherbomez, M. & Letourneux, Y. (2004). *Eur. J. Med. Chem.* **39**, 1067–1071.

- Nilwanna, B., Chantrapromma, S., Jansrisewangwong, P. & Fun, H.-K. (2011). Acta Cryst. E67, 03084–03085.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

Acta Cryst. (2011). E67, o3499-o3500 [doi:10.1107/S160053681105001X]

(E)-1-[1-(2-Chlorophenyl)ethylidene]-2-(2,4-dinitrophenyl)hydrazine

S. Chantrapromma, B. Nilwanna, P. Jansrisewangwong, T. Kobkeatthawin and H.-K. Fun

Comment

Hydrazones have been known to be responsible for various bioactivities such as antibacterial (Angelusiu *et al.*, 2010), antioxidant (Li *et al.*, 2008), antifungal (Loncle *et al.*, 2004), anti-inflammatory (Gokce *et al.*, 2009) and also tyrosinase inhibitory (Bendre *et al.*, 1998) activities. With our on-going research on medicinal chemistry, we previously reported the syntheses and crystal structures of some hydrazone derivatives (Fun *et al.*, 2010, 2011; Jansrisewangwong *et al.*, 2010; Nilwanna *et al.*, 2011). Herein we report the crystal structure of the title compound. It was screened for antioxidant and antibacterial activities and found to be inactive.

The title molecule (Fig. 1), $C_{14}H_{11}CIN_4O_4$, is twisted and exists in an *E* configuration with respect to the ethylidene C7=N1 double bond [1.2877 (17) Å] with the torsion angle N2–N1–C7–C8 = -176.69 (13)°. The dihedral angle between the benzene rings of the 2,4-dinitrophenyl and 2-chlorophenyl groups is 38.48 (8)°. The middle ethylidenehydrazine unit (C7/C14/N1/N2) is planar with an *r.m.s* deviation of 0.0040 (1) Å and the torsion angle of N2–N1–C7–C14 is -1.3 (2)°. This middle C/C/N/N plane makes the dihedral angles of 6.03 (10) and 44.04 (11)° with the 2,4-dinitrophenyl and 2-chlorophenyl rings, respectively. The two nitro groups of 2,4-dinitrophenyl are essentially co-planar with the bound benzene ring with an *r.m.s*. deviation of 0.0081 (1) Å for the twelve non H-atoms and the O–N–C–C angles are -0.3 (2), 0.2 (2), 0.1 (3) and -0.1 (3)°. An intramolecular N–H…O hydrogen bond between the hydrazone-NH and the *ortho* nitro group (Fig. 1 and Table 1) generates an S(6) ring motif (Bernstein *et al.*, 1995). The bond distances are within the normal range (Allen *et al.*, 1987) and are comparable with related structures (Fun *et al.*, 2010, 2011; Jansrisewangwong *et al.*, 2010; Nilwanna *et al.*, 2011).

In the crystal structure (Fig. 2), the molecules are linked by weak C—H···O interactions (Table 1) into chains along the *c* axis in a head-to-head manner. These chains are further stacked along the *b* axis by a π - π interaction with Cg1··· $Cg2^{11}$ distance of 3.6088 (10) Å [symmetry code: (ii) *x*, 1 - *y*, 1/2 + *z*]; *Cg*1 and *Cg*2 are the centroids of C1–C6 and C8–C13 benzene rings, respectively.

Experimental

The title compound (I) was synthesized by dissolving 2,4-dinitrophenylhydrazine (0.40 g, 2 mmol) in ethanol (10.00 ml) and H_2SO_4 (conc.) (98%, 0.50 ml) was slowly added with stirring. 2-Chloroacetophenone (0.30 ml, 2 mmol) was then added to the solution with continuous stirring. The solution was refluxed for 1 h yielding a yellow solid, which was filtered off and washed with methanol. Yellow block-shaped single crystals of the title compound suitable for X-ray diffraction were recrystalized from ethanol by slow evaporation of the solvent at room temperature over several days (m.p. 478–479).

Refinement

Amide H atom was located in a difference map and refined isotropically [N—H = 0.85 (2) Å]. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic and 0.96 Å for CH₃

atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups.

F(000) = 1376 $D_x = 1.527 \text{ Mg m}^{-3}$

 $\theta = 1.4-30.6^{\circ}$ $\mu = 0.29 \text{ mm}^{-1}$ T = 297 KBlock, yellow

Melting point = 478–479 K Mo $K\alpha$ radiation, λ = 0.71073 Å Cell parameters from 4458 reflections

 $0.36 \times 0.26 \times 0.15 \text{ mm}$

Figures

Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bond is shown as a dashed line.

Fig. 2. A crystal packing diagram of the title compound viewed along the a axis, showing chains running along the c axis. Hydrogen bonds are shown as dashed lines.

(E)-1-[1-(2-Chlorophenyl)ethylidene]-2-(2,4-dinitrophenyl)hydrazine

Crystal data

$C_{14}H_{11}CIN_4O_4$
$M_r = 334.72$
Monoclinic, C2/c
Hall symbol: -C 2yc
a = 32.660 (3) Å
<i>b</i> = 7.1435 (7) Å
c = 13.4798 (13) Å
$\beta = 112.215 \ (2)^{\circ}$
$V = 2911.5 (5) \text{ Å}^3$
Z = 8

Data collection

Bruker APEXII CCD area-detector diffractometer	4458 independent reflections
Radiation source: sealed tube	3036 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.028$
ϕ and ω scans	$\theta_{\text{max}} = 30.6^{\circ}, \ \theta_{\text{min}} = 1.4^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -46 \rightarrow 46$
$T_{\min} = 0.904, T_{\max} = 0.957$	$k = -10 \rightarrow 10$
16146 measured reflections	$l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.127$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0537P)^2 + 1.2234P]$ where $P = (F_o^2 + 2F_c^2)/3$
4458 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
213 parameters	$\Delta \rho_{max} = 0.24 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.015926 (14)	0.34149 (7)	0.42093 (4)	0.06172 (16)
01	0.06808 (4)	0.2345 (2)	0.95156 (10)	0.0573 (3)
O2	0.09965 (5)	0.2876 (2)	1.12043 (10)	0.0700 (4)
03	0.24764 (5)	0.5021 (3)	1.28114 (10)	0.0848 (5)
O4	0.28607 (4)	0.5486 (3)	1.18505 (11)	0.0805 (5)
N1	0.11688 (4)	0.28366 (18)	0.72895 (9)	0.0409 (3)
N2	0.10981 (4)	0.2894 (2)	0.82297 (10)	0.0419 (3)
H1N1	0.0863 (7)	0.249 (3)	0.8280 (15)	0.053 (5)*
N3	0.10020 (4)	0.2853 (2)	1.03026 (11)	0.0449 (3)
N4	0.25170 (5)	0.5037 (2)	1.19483 (11)	0.0556 (4)
C1	0.14355 (5)	0.3406 (2)	0.91423 (11)	0.0360 (3)
C2	0.14038 (4)	0.3427 (2)	1.01624 (11)	0.0367 (3)
C3	0.17560 (5)	0.3958 (2)	1.10769 (11)	0.0408 (3)
H3A	0.1729	0.3959	1.1739	0.049*
C4	0.21443 (5)	0.4482 (2)	1.09923 (11)	0.0421 (3)
C5	0.21904 (5)	0.4482 (2)	1.00072 (12)	0.0457 (4)
H5A	0.2457	0.4844	0.9964	0.055*
C6	0.18447 (5)	0.3951 (2)	0.91068 (11)	0.0433 (3)
H6A	0.1879	0.3947	0.8453	0.052*
C7	0.08535 (5)	0.2174 (2)	0.64630 (11)	0.0385 (3)
C8	0.09681 (5)	0.2063 (2)	0.54960 (11)	0.0388 (3)
C9	0.06866 (5)	0.2561 (2)	0.44575 (12)	0.0425 (3)
C10	0.08208 (6)	0.2441 (3)	0.35979 (13)	0.0516 (4)

supplementary materials

H10A	0.0628	0.2781	0.2915	0.062*
C11	0.12381 (7)	0.1822 (3)	0.37579 (14)	0.0565 (4)
H11A	0.1329	0.1738	0.3183	0.068*
C12	0.15241 (6)	0.1321 (3)	0.47736 (15)	0.0539 (4)
H12A	0.1807	0.0900	0.4882	0.065*
C13	0.13910 (5)	0.1445 (2)	0.56248 (13)	0.0456 (3)
H13A	0.1588	0.1109	0.6304	0.055*
C14	0.04246 (5)	0.1437 (3)	0.64700 (14)	0.0546 (4)
H14A	0.0482	0.0642	0.7082	0.082*
H14B	0.0276	0.0732	0.5827	0.082*
H14C	0.0241	0.2465	0.6505	0.082*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0465 (2)	0.0735 (3)	0.0510(2)	0.0134 (2)	0.00243 (17)	0.0014 (2)
01	0.0378 (6)	0.0795 (9)	0.0541 (7)	-0.0125 (6)	0.0168 (5)	-0.0065 (6)
O2	0.0663 (8)	0.1052 (11)	0.0496 (7)	-0.0225 (8)	0.0345 (6)	-0.0097 (7)
O3	0.0585 (8)	0.1510 (16)	0.0417 (7)	-0.0191 (9)	0.0154 (6)	-0.0282 (8)
O4	0.0416 (7)	0.1350 (14)	0.0594 (8)	-0.0233 (8)	0.0127 (6)	-0.0197 (9)
N1	0.0388 (6)	0.0484 (7)	0.0323 (6)	-0.0033 (5)	0.0097 (5)	-0.0021 (5)
N2	0.0358 (6)	0.0539 (8)	0.0343 (6)	-0.0052 (6)	0.0114 (5)	-0.0027 (5)
N3	0.0421 (7)	0.0511 (8)	0.0458 (7)	-0.0034 (6)	0.0214 (6)	-0.0025 (6)
N4	0.0406 (7)	0.0801 (11)	0.0413 (7)	-0.0039 (7)	0.0099 (6)	-0.0137 (7)
C1	0.0336 (6)	0.0390 (7)	0.0335 (6)	0.0020 (5)	0.0106 (5)	0.0000 (5)
C2	0.0334 (6)	0.0403 (7)	0.0381 (7)	0.0004 (5)	0.0152 (5)	-0.0013 (5)
C3	0.0409 (7)	0.0491 (8)	0.0338 (6)	0.0015 (6)	0.0156 (6)	-0.0038 (6)
C4	0.0338 (7)	0.0522 (9)	0.0358 (7)	0.0005 (6)	0.0079 (5)	-0.0063 (6)
C5	0.0331 (7)	0.0616 (10)	0.0427 (8)	-0.0019 (7)	0.0147 (6)	-0.0037 (7)
C6	0.0367 (7)	0.0597 (10)	0.0345 (7)	-0.0025 (7)	0.0147 (6)	-0.0016 (6)
C7	0.0343 (7)	0.0400 (7)	0.0359 (7)	0.0005 (6)	0.0072 (5)	0.0002 (6)
C8	0.0371 (7)	0.0383 (7)	0.0345 (6)	-0.0045 (6)	0.0062 (5)	-0.0045 (5)
C9	0.0408 (7)	0.0411 (8)	0.0366 (7)	-0.0020 (6)	0.0046 (6)	-0.0049 (6)
C10	0.0599 (10)	0.0528 (10)	0.0349 (7)	-0.0056 (8)	0.0099 (7)	-0.0042 (6)
C11	0.0673 (11)	0.0608 (11)	0.0454 (9)	-0.0083 (9)	0.0257 (8)	-0.0083 (8)
C12	0.0476 (9)	0.0564 (10)	0.0600 (10)	-0.0022 (8)	0.0229 (8)	-0.0086 (8)
C13	0.0394 (7)	0.0494 (9)	0.0415 (7)	-0.0004 (6)	0.0080 (6)	-0.0041 (6)
C14	0.0411 (8)	0.0684 (12)	0.0477 (9)	-0.0113 (8)	0.0094 (7)	0.0021 (8)

Geometric parameters (Å, °)

Cl1—C9	1.7364 (16)	С5—Н5А	0.9300
O1—N3	1.2314 (17)	С6—Н6А	0.9300
O2—N3	1.2224 (17)	C7—C8	1.488 (2)
O3—N4	1.2198 (19)	C7—C14	1.500 (2)
O4—N4	1.2213 (19)	C8—C13	1.397 (2)
N1—C7	1.2877 (17)	C8—C9	1.399 (2)
N1—N2	1.3720 (17)	C9—C10	1.388 (2)
N2—C1	1.3551 (18)	C10—C11	1.370 (3)

N2—H1N1	0.85 (2)	C10—H10A	0.9300
N3—C2	1.4537 (19)	C11—C12	1.381 (3)
N4—C4	1.4537 (19)	C11—H11A	0.9300
C1—C6	1.410 (2)	C12—C13	1.375 (2)
C1—C2	1.4176 (19)	C12—H12A	0.9300
C2—C3	1.384 (2)	C13—H13A	0.9300
C3—C4	1.368 (2)	C14—H14A	0.9600
С3—НЗА	0.9300	C14—H14B	0.9600
C4—C5	1.392 (2)	C14—H14C	0.9600
C5—C6	1.362 (2)		
C7—N1—N2	116.82 (13)	N1—C7—C8	113.18 (13)
C1—N2—N1	118.92 (13)	N1—C7—C14	124.54 (14)
C1—N2—H1N1	118.0 (13)	C8—C7—C14	122.11 (13)
N1—N2—H1N1	122.6 (13)	C13—C8—C9	116.70 (14)
O2—N3—O1	122.17 (13)	C13—C8—C7	118.19 (13)
O2—N3—C2	118.61 (13)	C9—C8—C7	125.09 (14)
O1—N3—C2	119.21 (12)	C10—C9—C8	121.61 (15)
O3—N4—O4	122.76 (14)	C10—C9—Cl1	117.66 (12)
O3—N4—C4	119.10 (14)	C8—C9—Cl1	120.71 (12)
O4—N4—C4	118.13 (14)	C11—C10—C9	119.86 (15)
N2—C1—C6	119.97 (13)	C11—C10—H10A	120.1
N2—C1—C2	123.43 (13)	С9—С10—Н10А	120.1
C6—C1—C2	116.60 (12)	C10-C11-C12	119.94 (16)
C3—C2—C1	121.74 (13)	C10—C11—H11A	120.0
C3—C2—N3	116.67 (12)	C12—C11—H11A	120.0
C1—C2—N3	121.58 (12)	C13—C12—C11	120.12 (16)
C4-C3-C2	119.05 (13)	C13—C12—H12A	119.9
C4—C3—H3A	120.5	C11—C12—H12A	119.9
C2—C3—H3A	120.5	C12—C13—C8	121.76 (15)
$C_3 - C_4 - C_5$	121.16(13)	C12—C13—H13A	119.1
C3—C4—N4	119.52 (13)	C8—C13—H13A	119.1
C5—C4—N4	119.31 (14)	C7—C14—H14A	109.5
C6—C5—C4	119.88 (14)	C7—C14—H14B	109.5
С6—С5—Н5А	120.1	H14A—C14—H14B	109.5
C4—C5—H5A	120.1	C7—C14—H14C	109.5
C5-C6-C1	121 56 (13)	H14A— $C14$ — $H14C$	109.5
C5-C6-H6A	119.2	H14B— $C14$ — $H14C$	109.5
C1—C6—H6A	119.2		109.0
C7—N1—N2—C1	173.61 (14)	C4—C5—C6—C1	0.4 (3)
N1—N2—C1—C6	2.9 (2)	N2-C1-C6-C5	179.70 (15)
N1—N2—C1—C2	-176.94 (14)	C2—C1—C6—C5	-0.5 (2)
N2—C1—C2—C3	179.97 (14)	N2—N1—C7—C8	-176.69 (13)
C6—C1—C2—C3	0.1 (2)	N2—N1—C7—C14	-1.3 (2)
N2—C1—C2—N3	1.3 (2)	N1—C7—C8—C13	41.4 (2)
C6—C1—C2—N3	-178.56 (14)	C14—C7—C8—C13	-134.06 (16)
O2—N3—C2—C3	0.2 (2)	N1—C7—C8—C9	-137.42 (16)
O1—N3—C2—C3	-179.10 (15)	C14—C7—C8—C9	47.1 (2)
O2—N3—C2—C1	179.01 (15)	C13—C8—C9—C10	0.2 (2)
	· ·		N 2

supplementary materials

O1—N3—C2—C1	-0.3 (2)	C7—C8—C9—C10	179.06 (15)
C1—C2—C3—C4	0.2 (2)	C13—C8—C9—Cl1	-178.03 (12)
N3—C2—C3—C4	178.97 (14)	C7—C8—C9—Cl1	0.8 (2)
C2—C3—C4—C5	-0.2 (3)	C8—C9—C10—C11	0.0 (3)
C2-C3-C4-N4	-179.79 (15)	Cl1—C9—C10—C11	178.32 (14)
O3—N4—C4—C3	0.1 (3)	C9-C10-C11-C12	-0.1 (3)
O4—N4—C4—C3	179.51 (17)	C10-C11-C12-C13	-0.1 (3)
O3—N4—C4—C5	-179.43 (18)	C11—C12—C13—C8	0.3 (3)
O4—N4—C4—C5	-0.1 (3)	C9—C8—C13—C12	-0.4 (2)
C3—C4—C5—C6	-0.1 (3)	C7—C8—C13—C12	-179.31 (15)
N4—C4—C5—C6	179.48 (16)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H1N1···O1	0.85 (2)	1.97 (2)	2.6081 (19)	131.2 (17)
C6—H6A···O3 ⁱ	0.93	2.52	3.251 (2)	135
Symmetry codes: (i) x , $-y+1$, $z-1/2$.				

Fig. 1

