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Abstract
Normal aging is accompanied by an interindividually variable decline in cognitive abilities and

brain structure. This variability, in combination with methodical differences and differences in

sample characteristics across studies, pose a major challenge for generalizability of results from

different studies. Therefore, the current study aimed at cross-validating age-related differences

in cognitive abilities and brain structure (measured using cortical thickness [CT]) in two large

independent samples, each consisting of 228 healthy older adults aged between 65 and

85 years: the Longitudinal Healthy Aging Brain (LHAB) database (University of Zurich, Switzer-

land) and the 1000BRAINS (Research Centre Jülich, Germany). Participants from LHAB showed

significantly higher education, physical well-being, and cognitive abilities (processing speed,

concept shifting, reasoning, semantic verbal fluency, and vocabulary). In contrast, CT values

were larger for participants of 1000BRAINS. Though, both samples showed highly similar age-

related differences in both, cognitive abilities and CT. These effects were in accordance with

functional aging theories, for example, posterior to anterior shift in aging as was shown for the

default mode network. Thus, the current two-study approach provides evidence that indepen-

dently on heterogeneous metrics of brain structure or cognition across studies, age-related

effects on cognitive ability and brain structure can be generalized over different samples, assum-

ing the same methodology is used.
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1 | INTRODUCTION

As we get older, our brain undergoes substantial structural changes

that seem to be related to changes in behavior (i.e., cognitive decline

in older adults). However, previous research has shown that it is far

from simple to bring the two domains—namely brain structure and

behavior—together (Fjell et al., 2006; Jockwitz et al., 2017; Liu et al.,

2011; Raz & Rodrigue, 2006; Ziegler, Dahnke, Gaser, & Alzheimer's

Disease Neuroimaging, 2012). One important reason for this is that

age-related changes in both domains are complex and insufficiently

understood. For example, large between-study heterogeneity of

designs and methods, differences in sample characteristics and the

generally larger interindividual variability in samples of older adults

hamper the extraction of consistent findings regarding age-related

changes in brain structure in the existing literature.

Still, what we can conclude from previous work so far is that

effects of age are not homogeneous across the brain, but depend

on (a) the functional properties of the brain region of interest (e.g.,Svenja Caspers and Lutz Jäncke contributed equally to this study.

Received: 17 July 2018 Revised: 27 November 2018 Accepted: 8 January 2019

DOI: 10.1002/hbm.24524

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc.

Hum Brain Mapp. 2019;40:2305–2319. wileyonlinelibrary.com/journal/hbm 2305

https://orcid.org/0000-0001-9332-7982
mailto:c.jockwitz@fz-juelich.de
http://creativecommons.org/licenses/by/4.0/
http://wileyonlinelibrary.com/journal/hbm


association cortices vs. primary sensory cortices), (b) the brain tissue

(e.g., gray and white matter), (c) the brain structure metric looked at

(e.g., brain volume-based vs. surface-based metrics or cortical thick-

ness [CT] vs. surface area), and (d) methodological choices made

during processing and analyses (e.g., differences in spatial smoothing)

(Dickie et al., 2013; Fjell et al., 2014; Fjell, McEvoy, et al., 2014;

Hogstrom, Westlye, Walhovd, & Fjell, 2013; Liem et al., 2015; O'Sullivan

et al., 2001; Salat et al., 2005; Sowell et al., 2003; Walhovd et al., 2011;

Ziegler, Dahnke, Jancke, et al., 2012).

Although there is a more solid database when it comes to cogni-

tive aging (Schaie (1993); Schaie and Willis (2010); Schaie, Willis, and

Caskie (2004); for reviews, see Harada, Love, and Triebel (2013);

Kaup, Mirzakhanian, Jeste, and Eyler (2011); Salthouse (2010) it has

also been established that—in analogy to brain aging—age-related

changes in cognitive abilities are complex. First, different cognitive

abilities are differentially sensitive to age effects. Abilities such as

processing speed, executive functions, episodic, and working memory

have shown to be more vulnerable to age-related decline as compared

to verbal memory and world knowledge (Habib, Nyberg, & Nilsson,

2007; Hedden & Gabrieli, 2004; Park & Reuter-Lorenz, 2009; Schaie

et al., 2004; Schaie & Willis, 2010). And second, several studies sug-

gest that cognitive performance follows nonlinear trends from early to

late adulthood with a higher interindividual variability in older adults

(Habib et al., 2007; Hartshorne & Germine, 2015; Hedden & Gabrieli,

2004). Hence, it is difficult to generalize results from one sample to

another and, therefore, to draw reliable conclusions. Considering, for

example, that lifespan trajectories of structural atrophy vary between

brain regions (Fjell et al., 2013; Hogstrom et al., 2013; Sowell et al.,

2003; Walhovd et al., 2011; Ziegler, Dahnke, Jancke, et al., 2012),

age-related differences in brain atrophy might not be replicable across

samples when they do not match with respect to age distributions or

other sample characteristics.

At this time, there is a clear progress toward brain imaging con-

sortia and multicenter studies, such as ENIGMA (Thompson et al.,

2014), the German National Cohort study (Nationale Kohorte; NAKO

(Bamberg et al., 2015; German National Cohort, 2014), ADNI

(Alzheimer's Disease Neuroimaging Initiative; Jack Jr. et al., 2008),

U.K. Biobank (Miller et al., 2016; Sudlow et al., 2015), or Lifebrain

(Walhovd et al., 2018). In the field of healthy aging, such projects use

data pooling procedures (i.e., joint analysis of data from different inde-

pendent samples) to fulfill the need for large sample sizes required to

identify protective and risk factors that in combination might explain

why some older adults develop neurodegenerative diseases, while

others retain their cognitive integrity until very old. What comes along

with this, however, is the necessity for a cross-validation of so far

established results concerning the aging brain. Thus, the question that

arises is whether independent samples of older adults that differ in

demographics and lifestyle factors would still show similar association

patterns between age, global and regional brain structure, and cogni-

tive performance. While in the field of genetics, replication studies are

already well established, it is not yet common practice in the field of

neuroimaging. Therefore, the current study analyzed age-related dif-

ferences in brain structure and cognitive ability in two large indepen-

dent but closely matched cohorts of older adults—both situated in

central Europe—to explore how similar results are when using the

same state-of-the-art methodological protocols and what factors may

explain potential between-study differences.

Regarding brain structure, we used mean CT for the two hemi-

spheres as a rough outcome measure. In addition to that, we decided to

focus on brain regions that constitute the default mode network (DMN),

a network that recently received much attention in aging research—

especially with regard to functional connectivity (e.g., Hafkemeijer,

van der Grond, & Rombouts, 2012). Because recent evidence from

our group suggests a structural correlate for age differences in

functional connectivity (Jockwitz et al., 2017), we were particularly

interested to validate such first findings and assessed regional

within-network differences of the age-brain structure relationships.

2 | METHODS

Participants included in the current research project were recruited

from two independent samples investigating brain–behavior relation-

ships in older adults located in the larger Zurich area (Switzerland) and

in the Ruhr district (Germany).

One sample comprised the ongoing Longitudinal Healthy Aging

Brain (LHAB) database project at the University Research Priority

Program “Dynamics of Healthy Aging” of the University of Zurich

(Zollig et al., 2011). LHAB investigates age-related dynamics of brain–

behavior relationships in healthy older adults. A particular focus is

placed on assessing and explaining interindividual variability in the

observed aging trajectories, thus a broad spectrum of factors that sup-

posingly influence such trajectories (i.e., lifestyle, sleep, and nutrition)

is collected. In LHAB, older adults from Zurich and surrounding areas

aged 65 and older (at baseline) are observed longitudinally with

between-measurement intervals of 1–2 years. Besides the eligibility

requirements for the MR acquisition, further exclusion criteria were

neurological and psychiatric diseases, a score on the Mini-Mental

State Examination of 26 and below and left handedness. LHAB partic-

ipants are German native speakers or at least as proficient in German

as it would be their native language. The study protocol was approved

by the local Ethics Committee (Kantonale Ethikkommission Zurich).

The initial sample of LHAB comprised 231 participants ranging from

64 to 87 years of age. Data acquisition in the LHAB project started in

2011. Currently, the data set covers an observation period of 4 years.

The second sample comprised 1000BRAINS at the Institute of

Neuroscience and Medicine, Research Centre Jülich, a longitudinal

population-based study that assesses variability in brain structure and

function during aging (Caspers et al., 2014). The 1000BRAINS sample

is drawn from the 10-year follow-up cohort of the Heinz Nixdorf

Recall Study, an epidemiological population-based study of risk factors

for atherosclerosis, cardiovascular disease, cardiac infarction, and

death (Schmermund et al., 2002) and the affiliated MultiGeneration

study. In 1000BRAINS, older adults aged 55 and older (at baseline)

from the Heinz Nixdorf Recall study and their relatives (spouses and

offspring; sampled from MultiGeneration study) are recruited, mea-

sured two times over a period of about 3–4 years. Exclusion from the

study was dependent on the eligibility requirements for the MR

acquisition based on the MR safety guidelines only (e.g., stents and

heart pacemaker led to exclusion from the study). The study protocol
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was approved by the University of Duisburg-Essen. The initial

sample of 1000BRAINS comprised 1,317 participants ranging from

18 to 87 years of age.

For the aim of the current study, we focused on the first time

point in both samples. Participants with missing values for the

whole neuropsychological and/or brain data were excluded.

Furthermore, participants were matched with respect to the age

ranges in the two samples. Therefore, we first excluded 666 partici-

pants from 1000BRAINS being younger than 64 years of age. After-

ward, we matched the two samples for gender and group size by

randomly selecting the same number of participants within each

age and gender group (64–69 years, 70–74 years, 75–79 years, and

80–85 years). This resulted in 228 participants for each of the two

final samples: (a) LHAB: mean age: 70.7 years ± 4.9, 114 males, and

114 females; (b) 1000BRAINS: mean age: 70.7 ± 5.0 years, 114 males,

and 114 females. For an overview of demographic variables of the two

samples, see Table 1. Both studies assessed years of formal education

as part of a structured anamnestic interview. In addition, all participants

filled in a questionnaire concerning their physical and mental well-being

(LHAB: SF12; 1000BRAINS: SF36). In both samples, physical and men-

tal health status scores (Ware, Keller, & Kosinski, 1995) were computed

using only the SF12 items in order to assure comparability. Further-

more, global cognition was assessed in both samples. While participants

from LHAB performed the Mini-Mental State Examination (Folstein,

Robins, & Helzer, 1983), participants from 1000BRAINS performed the

DemTect in order to estimate a global cognitive status for each partici-

pant (Kalbe et al., 2004).

2.1 | Cognitive performance

Participants from both LHAB and 1000BRAINS took part in a large

neuropsychological assessment consisting of tests in the domains

attention, executive functions, working memory, episodic memory,

and language functions. For comparison between the two samples,

the following tasks were chosen: Trail Making Test (TMT; proces-

sing speed and concept shifting; Morris et al. (1989)), Leistungsprü-

fungssystem 50+ (LPS50+) Subtest 3 (reasoning; Sturm, Willmes,

and Horn (1993)), Regensburger Wortflüssigkeitstest (RWT, seman-

tic condition (verbal fluency); Aschenbrenner, Tucha, and Lange

(2000)) and vocabulary tests (LHAB: Mehrfachwahl-Wortschatz-Intelli-

genztest (MWT-B; Lehrl (2005)), 1000BRAINS: Wortschatztest (WST);

Schmidt and Metzler (1992)). To extract comparable scores from the

two vocabulary tests, we calculated the ratio between the total

amount of words (MWT_B: 37 words; WST: 40 words) and the

amount of correctly identified words. Since the selected neuropsy-

chological tests were not normally distributed, all cognitive tests

were first rank-transformed and mean-centered afterward before

entering the statistical analysis. For a detailed test description,

administration differences between samples and mean values per

sample, see Table 2.

2.2 | Data acquisition

For LHAB, data were acquired on a 3.0T Philips Ingenia scanner

(Philips Medical Systems, Best, The Netherlands). T1-weighted struc-

tural brain images were measured per visits with: TR = 8.18 ms, TE =

3.8 ms, flip angle = 8�, field of view (FoV) = 240 × 240 mm, isotropic

voxel size = 1 × 1 × 1 mm, 160 slices per volume. For 1000BRAINS,

data were acquired on a 3.0T Tim-Trio MR scanner (Siemens Medical

System, Erlangen, Germany). The T1-weighted structural brain images

were scanned per visit with: TR = 2.25 s, TE = 3.03 ms, flip angle = 9�,

FoV = 256 × 256 mm, voxel resolution = 1 × 1 × 1 mm, 176 slices

per volume. In both studies, T1-imaging was part of a larger MR imag-

ing protocol (see Caspers et al., 2014; Zollig et al., 2011).

2.3 | Preprocessing

Anatomical images from both samples were preprocessed using the

same automated surface-based processing stream of the FreeSurfer

Software package (version 6.0.0). For the LHAB sample, this was

done via the FreeSurfer BIDS App (v6.0.0-2; Gorgolewski et al.

(2017). A detailed description of this pipeline is provided by Dale,

Fischl, and Sereno (1999) as well as on http://surfer.nmr.mgh.

harvard.edu. In short, the surface reconstruction pipeline includes

(a) the segmentation of the structural brain images into gray matter,

white matter, and cerebrospinal fluid, (b) motion correction,

(c) intensity normalization, (d) transformation into Talairach space,

(e) tessellation of gray/white matter boundary, and (f ) correction of

topological defects. The gray/white matter interface was then

(g) expanded to create the pial surface (boundary between gray mat-

ter and cerebrospinal fluid), which finally consists of about 150,000

vertices per hemisphere with an average surface area of 0.5 mm2.

Afterwards, (h) CT was calculated for each vertex as the shortest dis-

tance between the white matter surface and the corresponding

TABLE 1 Demographics of the two samples (1000BRAINS and LHAB). Mean values and SD of raw scores as well as group comparisons including

T statistics, p-values, and effect sizes

1000BRAINS LHAB
Levene test of
equal variances (F/p-value)

T test for equality
of means (T/p-value) Cohen's d

Age (years) 70.69 ± 4.95 70.69 ± 4.89 0.056/0.814 −0.005/0.996 <0.001

Gender 114 m/114 f 114 m/114 f NA <0.001/1.00 <0.001

Education (years) 13.51 (±3.76) 14.66 (±3.43) 0.398/0.529 −3.40/0.001 0.320

Physical WB 48.69 (±8.10) 51.06 (±7.21) 4.44/0.036 −3.31/0.001 0.309

Mental WB 54.39 (±6.83) 55.06 (±5.84) 8.38/0.004 −1.12/0.263 0.105

Dementia screening 14.55 (±3.76) (DemTect) 28.83 (±1.02) (MMSE) NA/NA NA/NA NA

LHAB = Longitudinal Healthy Aging Brain; WB = well-being. Note. NA: not applicable since different tests were used that are not directly comparable.
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vertex on the pial surface. No manual correction of the recon-

structed surfaces (white matter, pial surface) was performed in the

two studies.

For the purpose of the current study, mean measurements of

CT per hemisphere were extracted from FreeSurfer (Fischl and

Dale, 2000). In addition, CT was determined for six regions of

interest belonging to the DMN, a bilateral network composed of

the medial prefrontal cortex (anterior DMN), the posterior cingu-

late cortex/precuneus (medial posterior DMN) as well as the infe-

rior parietal lobule (lateral posterior DMN). Those regions have

been defined for the purpose of a previous study and are described

in detail by Jockwitz et al. (2017). In short, functional resting state

scans from 691 subjects in 1000BRAINS were preprocessed using

the preprocessing pipeline provided by the FSL software package

5.0 (including denoising strategies: FIX; Griffanti et al. (2014);

Salimi-Khorshidi et al. (2014)). Afterwards, the DMN was extracted

using an independent component analysis (ICA; MELODIC, imple-

mented in FSL). To provide high reliability, this procedure was

repeated 100 times (each sample consisted of 200 subjects).

Finally, the resulting probability map was thresholded at 95%

(using fslmaths, FSL) and binarized.

2.4 | Statistical analysis

The purpose of the current study was to compare age-related dif-

ferences in cognitive abilities and CT in two large independent

samples of older adults. Therefore, we first assessed general differ-

ences in sample characteristics (i.e., demographic variables), as well

as cognitive abilities and CT (i.e., mean CT per hemisphere and

regions of the DMN) using independent samples T tests. Thereaf-

ter, we assessed the following general linear models for each sam-

ple individually: (a) age-related differences in CT, (b) age-related

differences in cognitive abilities, and (c) the relation between CT

and cognitive abilities. To correct for possible factors that might

influence the relation between age and cognitive abilities and CT,

different models were set up including several covariates of no

interest. The BASE model included the factors age and gender. The

MAIN model was set up with age, gender, and education as factors,

and the SENS (sensitivity) model included the factors age, gender,

education as well as mental and physical well-being. Results were

corrected for multiple comparisons using the Bonferroni approach.

To test whether trajectories of age-related differences in the

different dependent variables (cognitive abilities and CT) are com-

parable between the two samples, we calculated correlations

between age and cognitive abilities and CT (while correcting for

gender and education; MAIN) and compared them using Fisher's

Z test (Eid, Gollwitzer, & Schmitt, 2011). Finally, in a supplementary

analysis, we assessed age-related differences in terms of cognitive

performance and CT in a joint analysis (pooled samples), with addi-

tionally including “sample” as covariate (for results, see Supporting

Information). The reason for this was an additional validation whether

the results obtained by the “individual analyses” versus the “joint analy-

sis” would be comparable in the current study.T
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3 | RESULTS

When matching the two independent samples for age and gender, the

two samples differed in both, demographic variables and cognitive

performance. For raw scores and T statistics and Cohen's d, see

Table 1 (Cohen's d < 0.5 = small; d < 0.8 = medium, and d > 0.8 =

large). In more detail, participants from LHAB generally had a signifi-

cantly higher formal education (years of education: T = −3.4;

p = 0.001; d = 0.32) and higher physical well-being (T = −3.31;

p = 0.001; d = 0.31) as compared to participants from 1000BRAINS.

Mental well-being, however, did not differ between the two samples

(T = −1.12; p = 0.263; d = 0.11).

With respect to cognitive abilities, we found that participants

from LHAB showed better performance as compared to partici-

pants from 1000BRAINS in all psychometric tests assessed

(processing speed: T = −2.89; p = 0.004; d = 0.271, concept shifting:

T = −2.30; p = 0.022; d = 0.215, verbal fluency: T = −5.21; p < 0.001;

d = 0.489, reasoning: T = −8.50; p < 0.001; d = 0.796 and vocabulary:

T = −12.10; p < 0.001; d = 1.08; for detailed information, see Table 2).

When comparing structural brain metrics, we observed higher

values for the participants from 1000BRAINS as compared to partici-

pants from LHAB, that is, total mean CT for right and left hemi-

spheres, (right: T = 6.13; p < 0.001; d = 0.714; left: T = 7.62;

p < 0.001; d = 0.574). The same was found for CT within the different

parts of the DMN (left aDMN: T = 7.11; p < 0.001; d = 0.665; right

aDMN: T = 5.02; p < 0.001; d = 0.470; left medial pDMN: T = 2.52;

p = 0.012; d = 0.236; right medial pDMN: T = 4.79; p < 0.001;

d = 0.448; left lateral pDMN: T = 6.93; p < 0.001; d = 0.649; right lat-

eral pDMN: T = 4.48; p < 0.001, d = 0.420).

In the following analyses, the relation between age and cognitive

performance and CT, respectively, was assessed using different

models (BASE, MAIN, and SENS). With respect to BASE (covariate:

gender), we found age-related differences for most of the cognitive

tasks (i.e., lower cognitive performance in older adults). Effect sizes,

measured using partial eta square were estimated as small to moder-

ate (partial eta square is measured as the proportion of the total vari-

ance explained by the independent variable while correcting for the

other independent variables, with partial eta square <0.01 is ranked as

small; <0.06 as medium and >0.14 as large (Field, 2005; Richardson,

2011). Performance on the vocabulary tests remained stable across

the ages in both samples. Almost all of these results remained signifi-

cant in the MAIN model (covariates: age, gender, years of education;

only exception: verbal fluency in 1000BRAINS did not survive correc-

tion for multiple comparisons) and in the SENS model (covariates: age,

gender, years of education, mental well-being, and physical well-being;

exceptions: verbal fluency and concept shifting did not survive correc-

tion for multiple comparisons). Importantly, age-related differences

were highly similar in the two samples (see Figure 1; results based on

MAIN model: Fisher's Z: processing speed <0.001 [p = 0.251];

concept shifting = −0.67 [p = 0.503]; reasoning = 1.28 [p = 0.200];

verbal fluency = 1.45 [p = 0.147]; vocabulary = −1.5 [p = 0.134]).

For profile plots showing the effects of the different covariates

(age, gender, years of education, mental well-being, and physical

well-being), see Figure 2. Table S1 (see Supporting Information)

contains the detailed statistics for the age differences in cognitive

performance and for the effects of the covariates of no interest

(gender, years of education, mental, and physical well-being).

In the second part of our analysis, we assessed age-related differ-

ences in mean CT within left and right hemisphere (Figure 3, for

effects sizes, see Figure 4, for statistics, see Table S2, Supporting

Information), as well as parts of the DMN (see Figure 5; left and right:

anterior DMN, medial posterior DMN, and lateral posterior DMN, for

effect sizes, see Figure 6, for statistics, see Figure S3, Supporting

Information). In our two samples, we find mean CT differences with

age for the two hemispheres (left hemisphere: F = 33.24 [p < 0.001],

right hemisphere: F = 40.15 [p < 0.001]; Table S2, see Supporting

Information). With respect to regional differences in the association

between CT and age, we found more pronounced age differences in

CT for the posterior as compared to the anterior parts of the DMN

(Table S3, see Supporting Information). For both samples, we found

that for the left and right medial and lateral posterior DMN CT was

smaller with higher age with a moderate effect size (partial eta

square ranged from 0.07 to 0.12 in 1000BRAINS and from 0.08 to

0.13 in LHAB). Again, these effects were highly similar in the two

samples (Fisher's Z: left medial posterior DMN = 0 [p = 1]; left

lateral posterior DMN = −0.34 [p = 0.734]; right medial posterior

DMN = −0.95 [p = 0.342]; right lateral posterior DMN = −0.82

[p = 0.412]; left anterior DMN = 0.11 [p = 0.913]; right anterior

DMN = 1.2 [p = 0.230]).

Moreover, we assessed the relation between age (and other

demographics), CT (of the DMN ROI's), and cognitive performance,

with age and CT of the six ROIs being independent variables and cog-

nitive performance being the dependent variable. Only the relations

between age and cognitive performance (partial eta square ranged

from 0.02 to 0.073 in 1000BRAINS and from 0.039 to 0.102 in LHAB)

and education and cognitive performance (partial eta square ranged

from 0.047 to 0.243 in 1000BRAINS and from 0.051 to 0.116 in

LHAB) remained significant even when including all covariates into

one model with small to moderate effect sizes. For all other factors,

none of the analyses revealed significant results (after correction for

multiple comparisons) in any of the two samples (Table S4; see Sup-

porting Information).

In subsequent analyses, we also assessed age-related differences

of CT and cognitive abilities in a joint analysis for the two samples to

additionally validate the results obtained by the individual analyses

of the two samples. Here, again, the pooled sample showed age-

related differences in both, cognitive abilities (exception: vocabulary)

as well as for the posterior parts of the DMN. In addition, the rela-

tion between CT and cognitive performance remained nonsignificant

even when the two samples were analyzed in one statistical model.

For a detailed overview of statistics, see Tables S1–S4 (Supporting

Information).

Furthermore, assessing nonlinear effects of age (age2) on CT and

cognitive performance (corrected for gender, education, physical, and

mental well-being) revealed no significant results after correction for

multiple comparisons (for statistics, see Tables S5 and S6, Supporting

Information). Finally, to rule out confounding of differences in data or

surface reconstruction quality, we performed a supplementary analy-

sis of the relation between age and CT in the DMN while including
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FIGURE 1 Relation between age and cognitive performance (residuals, corrected for gender and education) for the two samples,

including regression lines, 95% confidence intervals, correlation coefficients, corresponding p-values as well as the Fisher's Z test
statistic and corresponding p-value. 1000BRAINS is presented in blue and LHAB is presented in orange: (a) processing speed;
(b) vocabulary; (c) concept shifting; (d) verbal fluency; and (e) problem solving. LHAB = Longitudinal Healthy Aging Brain [Color figure can

be viewed at wileyonlinelibrary.com]
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quality measurements (contrast to noise ratio for general data quality

and Euler Numbers for quality of the surface reconstructions) as addi-

tional covariates to the SENS model. Age-related differences in CT

remained stable even when including these quality control parameters

to the general linear model, that is, age-related differences in CT for

all posterior parts of the DMN but not the anterior DMN. For detailed

statistics including group means and comparison, as well as general

linear models, see Tables S7 and S8, Supporting Information.

Taken together, participants from LHAB seem to show a general

superiority in cognitive performance as compared to participants from

1000BRAINS. However, the analysis of age-related differences in cog-

nitive performance and global and regional metrics of CT revealed

similar results in both samples.

4 | DISCUSSION

The present study assessed age-related differences in cognitive abili-

ties (processing speed, concept shifting, reasoning, verbal fluency,

and vocabulary) and brain structure (measured by global and regional

CT) in two closely matched samples of older adults. Despite signifi-

cant differences in demographics between the two independent

samples, we observed highly similar patterns of age-related differ-

ences in both, cognitive abilities and brain structure, when using the

same methodological approach.

4.1 | Comparability of independent samples of older
adults

In times of population aging, there is an increasing interest in asses-

sing risk and protective factors that promote brain and cognitive

health until old age. Especially in older adults, however, there is an

enormous amount of variability between individuals regarding brain

structure and cognitive abilities and the “biological age” does not

prove itself sufficient to explain this variability (Goh & Park, 2009;

Park & Reuter-Lorenz, 2009; Reuter-Lorenz & Cappell, 2008;

Reuter-Lorenz & Lustig, 2005; Reuter-Lorenz & Park, 2014). Previ-

ous research rather suggests that interindividual differences in vari-

ables such as education, lifestyle habits, or genetic markers should

be taken into consideration to explain why some older adults

exhibit decline (up to developing neurodegenerative diseases),

while others are able to retain their level of functioning until old

age (Barnard et al., 2014; Kohncke et al., 2016; Laukka et al., 2013;

Lovden et al., 2017; Raz et al., 2005; van Hooren et al., 2007). The

problem with identifying such factors is that single risk or protec-

tive factors only explain small parts of the interindividual variance

regarding cognitive performance and brain structure in the older

adult population, which necessitates large sample sizes to increase

statistical power to uncover these small effects (Button et al.,

2013). One promising approach here is the pooling of existing

data, that is, the joint analysis of different samples. Data pooling

with different samples covering the whole adult age range revealed

FIGURE 2 Profile plots of effect sizes (partial eta square) for cognitive performance with all covariates assessed: age, gender, education, physical

WB, and mental WB 1000BRAINS are presented in blue, LHAB is presented in orange and the pooled data set is represented in green. LHAB =
Longitudinal Healthy Aging Brain, WB = well-being [Color figure can be viewed at wileyonlinelibrary.com]
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age-related differences in terms of CT (Dickerson et al., 2008; Fjell

et al., 2009; Jahanshad & Thompson, 2017; Jovicich et al., 2013).

However, one has to keep in mind that data pooling across differ-

ent study populations, might lead to an intermixture of sample-

specific biological as well methodological variability which might

result in an absence of effects, especially when assessing heteroge-

neous populations such as older adults. Differences in demographics,

methods applied as well as scanner variability have been proposed

to be main factors that lead to the heterogeneity of results in terms

of brain structure and function in older adults in the field of neuro-

science (Afonso et al., 2017; Han et al., 2006; Hanggi et al., 2015;

Jancke, Merillat, Liem, & Hanggi, 2015; Kohncke et al., 2016; Liem

et al., 2015; Lovden et al., 2017; Trachtenberg et al., 2012). The two

samples used in the current study, LHAB and 1000BRAINS, repre-

sent such heterogeneous study populations consisting of older

adults. Therefore, in the interest of the current study, we individually

characterized and compared two different independent samples in

terms of demographics, cognitive abilities, and their relationship with

brain aging.

LHAB has its focus on healthy older adults excluding participants

with a history of neurological diseases and cognitive impairment

(Zollig et al. (2011). On the other hand, 1000BRAINS is conducted as

a population-based epidemiological cohort study, excluding subjects

only if they do not meet the eligibility requirements for the MR

acquisition based on the MR safety guidelines (Caspers et al. (2014).

Thus, although in the current study, we assured that the two samples

would not differ in their age ranges and gender distribution, the two

samples differed in several sample characteristics. Participants from

LHAB on average had more years of education, as well as a higher

physical well-being as compared to participants from 1000BRAINS.

This result is completely in line with the observations made by the

Organization for Economic Co-operation and Development, namely

FIGURE 4 Profile plots of effect sizes (partial eta square) for mean cortical thickness with all covariates assessed: age, gender, education, physical

WB, and mental WB 1000BRAINS are presented in blue, LHAB is presented in orange, and the pooled data set is represented in green. LHAB =
Longitudinal Healthy Aging Brain, WB = well-being [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Relation between age and mean cortical thickness (residuals, corrected for gender and education) for the two samples, including

regression lines, correlation coefficients, and corresponding p-values, as well as the Steiger's Z test statistic and corresponding p-value.
1000BRAINS is presented in blue and LHAB is presented in orange: (a) left hemisphere and (b) right hemisphere. LHAB = Longitudinal Healthy
Aging Brain [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Relation between age and regional mean cortical thickness for parts of the DMN (residuals, corrected for gender and education) for

the two samples, including regression lines, correlation coefficients and corresponding p-values, as well as the Steiger's Z test statistic and
corresponding p-value. 1000BRAINS is presented in blue and LHAB is presented in orange: (a) DMN projected on a brain's surface consisting of
the anterior (a)DMN (medial PFC), medial posterior (p)DMN (PCC and precuneus) and the lateral pDMN (caudal IPL); (b) left anterior (a)DMN;
(c) right aDMN; (d) left medial posterior (p)DMN; (e) right medial pDMN; (f ) left lateral pDMN; and (g) right lateral pDMN. LHAB = Longitudinal
Healthy Aging Brain, PFC = prefrontal cortex, IPL = inferior parietal lobule, DMN = default mode network [Color figure can be viewed at
wileyonlinelibrary.com]
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that Switzerland compared to Germany is constantly ranked as being

superior in terms of job income and quality, health, life satisfaction,

as well as environmental and community factors (http://www.

oecdbetterlifeindex.org/countries/switzerland/).

In line with the predictions of the scaffolding theory of cognitive

aging (Goh & Park, 2009; Park & Reuter-Lorenz, 2009; Reuter-

Lorenz & Park, 2014), higher education as well as engagement in

physical activities (which seems to be related to higher physical well-

being as tested in the current studies; Bize, Johnson, and Plotnikoff

(2007)) have repeatedly been shown to protectively influence the neu-

rocognitive aging process. Both have been related to higher cognitive

functioning and less brain atrophy during normal as well as pathological

aging, such as mild cognitive impairment and Alzheimer's disease

(Afonso et al., 2017; Amieva et al., 2014; Miller, Taler, Davidson, &

Messier, 2012; Ritchie, Bates, Der, Starr, & Deary, 2013; Schneeweis,

Skirbekk, & Winter-Ebmer, 2014; Sofi et al., 2011; Tucker-Drob,

Johnson, & Jones, 2009; Zahodne et al., 2011). It is therefore plausi-

ble that participants from LHAB showed superior performances in all

cognitive tests assessed (processing speed, concept shifting, reason-

ing, verbal fluency, and vocabulary).

The comparison of CT between the two samples, however,

revealed higher global as well as regional CT values for participants

from 1000BRAINS. This result seems counterintuitive at first sight.

Based on the sample differences in terms of demographics and cogni-

tive abilities, one would have predicted participants from LHAB to

show thicker cortices given that the pertinent literature tends to show

positive associations between cognitive ability and the amount of gray

matter as measured with CT and gray matter volume or density in the

aging population (for an overview, see, e.g., Harada et al., 2013). From

our view, the most likely explanation is that these sample differences

in CT are due to the different MR scanners used. It has been shown

before that even when assessing structural 3D brain images from one

and the same person, CT values, but also other metrics, such as brain

volume differ between the different scanners (Bauer, Jara, Killiany, &

Alzheimer's Disease Neuroimaging, 2010; Dickerson et al., 2008;

Fortin et al., 2017; Han et al., 2006; Kruggel, Turner, Muftuler, &

Alzheimer's Disease Neuroimaging, 2010; Schlett et al., 2016;

Stonnington et al., 2008; Westlye et al., 2009). Thus, direct compari-

sons of brain metrics between different samples should only be exe-

cuted with caution.

4.2 | Generalizability of age-related differences in
cognitive abilities and CT

Within the scope of the current study, we decided to separately ana-

lyze the associations between age and brain structure and cognitive

abilities in the two samples and compared the resulting associations

using Fisher's Z. Although the two samples differed regarding both,

cognitive performance and CT, we revealed highly similar slopes for

age-related differences in global as well as regional CT. In line with

FIGURE 6 Profile plots of effect sizes (partial eta square) for regional mean cortical thickness (parts of the DMN) with all covariates assessed:

age, gender, education, physical WB, and mental WB. 1000BRAINS are presented in blue, LHAB is presented in orange, and the pooled data set is
represented in green. LHAB = Longitudinal Healthy Aging Brain, WB = well-being, DMN = default mode network [Color figure can be viewed at
wileyonlinelibrary.com]
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preceding studies examining global CT, higher age was associated with

lower mean CT in both hemispheres for the two samples (Lemaitre

et al., 2012; Long et al., 2012; Salat et al., 2004). Similarly, the age-

effect patterns found for cognitive ability did not differ across sam-

ples. Higher age was associated with lower cognitive functioning in all

cognitive tasks assessed, except in the vocabulary test, where no sig-

nificant relationship was revealed between age and ability scores.

The similarity of the cross-sectional age-effect patterns that we

observe across LHAB and 1000BRAINS indicates that the lower level of

education or physical well-being evident in 1000BRAINS does not con-

siderably enhance age differences (i.e., steeper slope in 1000BRAINS

sample). Put into the context of cognitive reserve, the between-sample

differences in cognitive ability together with the similarity of age slopes,

may suggest that participants from LHAB (with a higher education and

higher physical well-being) reach the criterion for cognitive impairment

later as compared to participants from 1000BRAINS, primarily because

they started off at higher levels of cognitive ability. However, by means

of the presently used cross-sectional data sets, this proposition cannot

be tested on the level of individual trajectories. More empirical studies in

the field of cognitive reserve and longitudinal changes of cognitive

abilities are necessary to shed more light on the role of cognitive

reserve—and education as one important proxy of it—in defining the

rate of cognitive decline (for a recent review, see Christie et al. (2017)).

To explore in more detail whether the relationship between age

and cognitive performance/CT would be differentially influenced by

the different covariates (education, physical, and mental well-being) in

the two samples, we set up different statistical models (BASE, MAIN,

and SENS). Although the different covariates seemed to explain differ-

ent amounts of variance in the cognitive abilities/CT in the two sam-

ples, age-related differences in cognition/CT remained highly similar

across samples. For example, mental well-being had a significant influ-

ence on processing speed for the sample of 1000BRAINS, but not

LHAB. Nevertheless, this difference obviously did not have a consid-

erable impact on the age-related differences in processing speed.

Thus, while education and physical well-being might influence the

general level of cognitive performance, it seems that these age-related

differences seem to be robust against the possible influences tested in

the current samples.

4.3 | Regional differences in CT

Beyond assessing mean CT for the two hemispheres, we also analyzed

age-related differences in regional CT (different parts of the DMN).

The choice of regions of interest was based on an earlier study of

Jockwitz et al. (2017). Herein, the authors aimed at assessing struc-

tural correlates for functionally established theories of the aging brain.

In detail, it has been shown that during performance of a memory task

(but also in the resting state), older in comparison to younger adults,

show stronger activation/connectivity patterns in the more anterior

parts of the DMN. At the same time, activation patterns in the more

posterior parts of the DMN were reported to be stronger in younger

compared to older participants. Thus, with increasing age, there seems

to be a shift in brain activation patterns from more posterior to more

anterior brain regions (posterior to anterior shift in aging [PASA]) that

helps to maintain cognitive performance as stable as possible (Davis,

Dennis, Daselaar, Fleck, & Cabeza, 2008; Jones et al., 2011).

In the current study, we exemplarily used the parts of the DMN

to assess regional generalizability of age-related differences in brain

structure and found age-related decreases in CT for all the posterior

parts of the DMN in both samples. In contrast to that, the anterior

parts of the DMN did not show age-related differences in any of the

two samples. This finding supports a previous study by Jockwitz et al.

(2017), in which the authors presented a structural correlate for the

posterior to anterior shift in activation patterns, namely a more pro-

nounced decrease in cortical folding for the posterior parts of the

DMN as compared to the more anterior parts of the DMN in a sample

of older adults (1000BRAINS). Moreover, the current results extend

previous results by showing that structural correlates for PASA can

also be generalized over different independent samples of older adults

with different demographical characteristics and different brain met-

rics used (local gyrification index vs. CT).

4.4 | Brain–behavior associations

In the current study, the associations between cognitive abilities and

CT were weak and did not survive correction for multiple comparisons.

This result was stable over the different statistical models used (BASE,

MAIN, SENS) as well as for the different samples (1000BRAINS, LHAB,

pooled sample of the two). This result is in line with previous studies

showing only weak associations between brain structure and cognitive

performance, especially when examining older adults (e.g., Gunning-

Dixon & Raz, 2000; de Mooij, Henson, Waldorp, & Kievit, 2017). This,

in turn accords with the scaffolding theory of aging stating that intrain-

dividual regulatory processes (e.g., changes in functional connectivity)

within older adults might compensate for structural brain decline

thereby keeping cognitive abilities relatively stable (Reuter-Lorenz &

Park, 2014). Thus, in the current study, the relation between CT and

cognitive abilities were expected to be rather weak. To explore this in

more detail, further longitudinal studies are warranted that assess both,

structural as well as functional changes in the course of aging in relation

to intraindividual changes in cognitive abilities.

Another reason, especially when comparing the current results to

the results reported in Jockwitz et al. (2017) for an absence of signifi-

cant relationships between cognitive abilities and CT could be due dif-

ferences in structural brain metrics used. The aforementioned study

of Jockwitz et al. (2017) used the local gyrification index as measure

for cortical atrophy in the regions of interest, measuring the complex-

ity of the brain composed of gray matter and structural connectivity.

The current study used CT as measure for cortical atrophy, since this

is one of the most often used brain metrics to study the effects of age

on brain structure. CT measures rather local gray matter differences

only. Thus, different structural brain metrics might result in different

results. Beyond that, it might still be possible that the chosen regions

of interest (DMN) might not be directly related to performance in the

neuropsychological tests assessed. Beyond that, it might still be

possible that the chosen regions of interest (DMN) might not be

directly related to performance in the neuropsychological tests

assessed. Although parts of the DMN have previously been associ-

ated with attention and executive functions, other tests, which
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were not available for the two samples, might be interesting to

investigate in this context for example, episodic memory function.

And finally, larger sample sizes might be necessary to obtain small

but significant results, as it has been the case in the aforemen-

tioned study of Jockwitz et al. (2017); n = 749.

4.5 | Pooled versus individual analyses

In the current study, we decided not to pool data of the two samples but

to analyze the samples individually with respect to age-related differ-

ences in cognitive performance and brain structure. While the results

were highly similar for the cross-sectional age trajectories in terms of CT

and cognitive performance, differences were found for the relation

between the other covariates included in the models (i.e., SENS) and cog-

nitive performance and CT, respectively. For example, when looking at

1000BRAINS, we found a moderate effect of mental well-being on

processing speed. On the other hand, for LHAB and for the pooled sam-

ple, there was no effect of mental well-being on processing speed. These

distinct outcomes might be the result of differences in sample character-

istics. The sample of 1000BRAINS is a population-based sample. In

contrast to that, the LHAB study only included participants without any

neurological and psychiatric diseases and a score on the Mini-Mental

State Examination of at least 26. These sample characteristics might be

one explanation why mental well-being plays a significant role in terms

of cognitive performance differences in 1000BRAINS but not in LHAB.

Previous studies often assessed age as independent factor in pooled data

analyses consisting of older adults (e.g., Fjell et al. (2009)). In the current

study, we could show that age revealed the strongest effects on both

cognitive performance and CT, and this seems to be highly similar even

in independent samples of older adults. Thus, for such robust effects data

pooling might be a good option to increase sample sizes and statistical

power (Button et al., 2013). However, other risk and protective factors

on the aging brain (such as mental well-being) might be study specific,

depending on the sample characteristics. Following, when samples are

highly heterogeneous, a pooled analysis might underestimate such influ-

ences. A combination of both, pooled and individual analyses seem to be

an optimal solution to explore influencing factors on the aging brain.

4.6 | Limitations and future directions

The study has several advantages as well as limitations which should be

addressed. First, the current study investigated CT as one metric of

brain structure. CT is a popular and sensitive metric in the frame of

age-related differences or changes in gray matter, for example, see Fjell

et al. (2009, 2013, 2015); Hogstrom et al., 2013. Given the upcoming

trend in data pooling procedures, we thought that CT would therefore

be of interest in the current cross-validation study. Nevertheless, in

future research, other estimated of gray and white matter as well as

functional connectivity should be validated between independent stud-

ies, to further evaluate the generalizability of results and advantages

and disadvantages of data pooling procedures. Second, with respect to

the current study, we decided to match the two samples with respect

to age and gender distributions and compare the correlations using

Fisher's Z. For the future, we suggest to further evaluate different

methodological approaches when cross-validating independent samples

with regard to brain metrics and or cognitive functions. First, different

matching procedures should be investigated and compared. For exam-

ple, future studies could not only match samples with regard to age and

gender, but also with respect to cognitive functioning using propensity

score matching. Furthermore, it would be useful to evaluate other sta-

tistical methods to cross validate age-related differences in brain struc-

ture and cognitive performance, especially when examining more than

two samples. Finally, future studies should explore the importance of

covariates. Since the choice of covariates to include into statistical

models is highly variable across studies (see Silberzahn et al., 2017),

future research should investigate this topic more intensively. For

example, the current study assessed education as one indicator for

socioeconomic status. Since socioeconomic status includes more than

education, for example, occupation and income, future research should

also assess other indicators and investigate the influence of these fac-

tors on cognition and brain structure.

Moreover, we are aware of the fact that scanner differences

might contribute to the differences in sample means in terms of CT in

the current study. One way to systematically explore this would be a

traveling phantom that can be used to assess scanner differences. The

current analyses investigated two independent samples of already

completed measurements. Therefore, a retrospective methodical vali-

dation was not feasible. However, we would suggest such quality con-

trol measurement for future studies with planned study comparisons.

Finally, we have to mention that PASA is just one explanation for

the results found in the current study. However, differences in image

quality between anterior and posterior parts of the brain might be also

responsible for the findings on age-related differences in CT. Future

studies should be designed to systematically investigate between-

subject variability across the different regions of the brain, its sources

(i.e., measurement quality) and implications for analysis of data result-

ing from regions with differing variability.

5 | CONCLUSIONS

Taken together, the current results show that when comparing age-

related differences in cognitive abilities and CT in two different and

independent samples within the same age range and composed of the

same gender distribution, age-related differences in cognitive perfor-

mance as well as global and regional CT can be generalized over dif-

ferent samples, assuming the same methodology is used. While data

pooling has the advantage to increase statistical power to uncover

small effects in the aging population, the current results show the use-

fulness of conducting separate analyses across samples consisting of

distinct study populations, with comparison of the overall trends

obtained in each analysis. Future multicenter studies and imaging con-

sortia might at least use a combination of the two approaches to

unravel the complexity of the aging brain in its entirety.
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