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Abstract

miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3'-UTR
of genes. Many recent studies have reported that miRNAs play important biological roles by
regulating specific mMRNAs or genes. Many sequence-based target prediction algorithms
have been developed to predict miRNA targets. However, these methods are not designed
for condition-specific target predictions and produce many false positives; thus, expression-
based target prediction algorithms have been developed for condition-specific target predic-
tions. A typical strategy to utilize expression data is to leverage the negative control roles of
miRNAs on genes. To control false positives, a stringent cutoff value is typically set, butin
this case, these methods tend to reject many true target relationships, i.e., false negatives.
To overcome these limitations, additional information should be utilized. The literature is
probably the best resource that we can utilize. Recent literature mining systems compile mil-
lions of articles with experiments designed for specific biological questions, and the systems
provide a function to search for specific information. To utilize the literature information, we
used a literature mining system, BEST, that automatically extracts information from the liter-
ature in PubMed and that allows the user to perform searches of the literature with any
English words. By integrating omics data analysis methods and BEST, we developed Con-
text-MMIA, a miRNA-mRNA target prediction method that combines expression data analy-
sis results and the literature information extracted based on the user-specified context. In
the pathway enrichment analysis using genes included in the top 200 miRNA-targets, Con-
text-MMIA outperformed the four existing target prediction methods that we tested. In
another test on whether prediction methods can re-produce experimentally validated target
relationships, Context-MMIA outperformed the four existing target prediction methods. In
summary, Context-MMIA allows the user to specify a context of the experimental data to
predict miRNA targets, and we believe that Context-MMIA is very useful for predicting condi-
tion-specific miRNA targets.

PLOS ONE | https://doi.org/10.1371/journal.pone.0174999 March 31,2017

1/15


https://doi.org/10.1371/journal.pone.0174999
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174999&domain=pdf&date_stamp=2017-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174999&domain=pdf&date_stamp=2017-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174999&domain=pdf&date_stamp=2017-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174999&domain=pdf&date_stamp=2017-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174999&domain=pdf&date_stamp=2017-03-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0174999&domain=pdf&date_stamp=2017-03-31
https://doi.org/10.1371/journal.pone.0174999
https://doi.org/10.1371/journal.pone.0174999
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.nrf.re.kr/nrf_tot_cms/index.jsp?pmi-sso-return2=none
http://www.nrf.re.kr/nrf_tot_cms/index.jsp?pmi-sso-return2=none

@° PLOS | ONE

Literature-based condition-specific miRNA-mRNA target prediction

study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

Introduction

MicroRNAs (miRNAs) are small non-coding RNAs that are 19-24 nucleotides in length.
These RNAs regulate gene expression at the post-transcriptional level by binding to the 3'-
UTR of mRNAs [1, 2]; thus, miRNAs are functionally important. There are numerous scien-
tific findings on the functional roles of miRNAs by regulating specific genes. For example, it is
reported that miR-15 and miR-16-1 bind to BCL2 [3] and that apoptosis is induced. Another
example is that miR-125b, miR-145, miR-21 and miR-155 are dysregulated in breast cancer
cells, and different expression levels of these miRNAs have significant correlations with breast
cancer phenotypes, such as tumor stages and status of estrogen and progesterone receptors [4].
Moreover, it is well known that miRNAs are related to proliferation, differentiation, and cell
death [5].

The functional roles of miRNAs differ in different contexts. In other words, the relationship
between miRNA and target genes is dynamic in different conditions. Thus, it is very important
to identify which genes are targeted by miRNAs in a given context. There are more than 1000
miRNAs, and approximately 60% of protein-coding genes are regulated by miRNAs [6]. Since
it is not possible to perform biological experiments for such a large number of miRNAs and
genes, computational prediction is very important, and numerous computational methods
have been developed for predicting targets of miRNAs. The first generation of computational
tools leverage sequence complementary information and binding energy potentials. These pre-
diction methods include TargetScan [7], PITA [8], mirSVR [9], miRanda [10] and PicTar [11].
These tools generally come with corresponding databases that compile miRNA-target infor-
mation. In addition to sequence complementary information, there are different approaches
used in each of these methods. miRanda estimates the energy on sequence matching of
miRNA and mRNA pairs to predict targets [10]. PicTar first finds candidate 3’-UTR sites and
uses a hidden Markov model (HMM) to filter out target sites [11]. TargetScan considers a con-
servation seed match and then considers regions outside seed matches [7]. The mirSVR algo-
rithm uses a support vector regression method to compute scores on candidate target sites that
are identified by miRanda [9]. PITA uses the accessibility of target sites as a main feature to
predict targets [8].

Target prediction methods based on the sequence similarity score rely on the existence of
target sites, and these methods are accompanied by target databases. However, such target
information is not condition specific without considering which miRNAs and which genes are
expressed; thus, there are many false positives even if the target information is accurate, which
is not the case since many target databases do not agree on the miRNA-target relationship. To
make the target information condition specific, many expression-based target prediction
methods have been developed. These methods take miRNA-mRNA expression data and sev-
eral sequence-based target databases as input data and filter out miRNA-mRNA targets using
statistical significance or computational algorithms. We briefly summarize the previous
expression-based algorithms. GenMiR++ used a Bayesian model and expectation maximiza-
tion algorithm to predict the posterior probability of a miRNA target for mRNA [12]. MMIA
employs a two-step method, where the first step is to select differentially expressed miRNA,
and the second step is to select negatively correlated differentially expressed mRNA [13] only
for the differentially expressed miRNAs. MMIA also supports sequence data analysis on a
cloud environment, which enables the user to utilize both microarray data and NGS data [14].
MAGIA2 is a web-based tool that considers the correlation among miRNA and mRNA and
transcription factor (TF) regulation [15]. CoSMic extracts the significant target mRNA cluster
for each miRNA [16]. CoSMic employs methods similar to gene set enrichment analysis
(GSEA) to identify miRNA targets [17]. miRNAmMRNA is a target prediction algorithm based
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on the global test of a linear regression model [18]. To extract condition-specific miRNA activ-
ity, identifying causal relationships using intervention calculus when the DAG is absent was
proposed [19]. A recent tool, PlantMirnaT, was designed as a plant-specific miRNA-mRNA
sequencing data analysis algorithm [20]. The unique feature of PlantMirnaT is using the
expression quantity information from sequencing data and employing a split ratio model to
identify the relationship of target pairs.

Motivation

There are approximately 1,500 known miRNAs in the human genome. The number of possible
miRNA-gene pairs exceeds 30 million when more than 20,000 protein-coding genes are con-
sidered. Among these pairs, only a fraction of the relationships are significant in terms of bio-
logical functions, e.g., phenotypes or cancer subtypes. Computational methods for predicting
the miRNA target employ various techniques to identify phenotype-specific miRNA targets.
Because this is a typical prediction problem, the challenges can be summarized in terms of
false positives and false negatives.

« Target databases have high false positive rates: Sequence-based target prediction algo-
rithms, such as TargetScan, mirSVR, and PITA, and their corresponding databases generally
produce high false positives. There are two major reasons for these high false positives. First,
these databases contain all known targets; thus, the target information is not condition spe-
cific. For this reason, when transcriptome data measured in a specific condition are analyzed,
many targets are false positives. Second, sequence-based prediction methods do not consider
the regulatory role of miRNA, which generally results in a negative correlation between
miRNA and the target gene. In addition, sequence-based prediction methods do not con-
sider sample-specific sequence information. For example, sequence variations in the target
regions can affect the target relationship, but the current algorithms do not consider minor
but subtle sequence variations.

« Expression-based methods may have false negative rates: Expression-based methods uti-
lize negative correlation information between miRNA and targets or similar approaches. For
these methods, there is always an issue of establishing a cutoff threshold value, e.g., for a neg-
ative correlation. If the cutoff value is not stringent, then there are too many miRNA-target
relationships. Thus, in general, it is a common practice to set a quite stringent cutoff value.
In this case, many true miRNA-target relationships can be rejected, i.e., the false negative
issue.

Addressing the false positive and false negative issues is a very challenging problem unless
we fully understand how miRNAs regulate target genes. Using sequence pairing information
and gene expression information is very useful because such methods have already produced
many biologically meaningful results. However, one important information source, the litera-
ture, is not utilized in current methods. The scientific literature is currently growing exponen-
tially. As shown in Fig 1, more than 100,000 papers related to ‘cancer’ are published every year.
Thus, if we combine sequence pairing information and gene expression information with the
literature information, we can certainly make a good improvement in predicting miRNA tar-
gets, reducing both false positives and false negatives. In particular, as with the use of gene
expression information, the use of the literature information should be condition specific. The
main issues are how to handle the vast amount of studies in the literature, how to allow the
user to specify the experimental conditions, and finally, how to combine sequence pairing
information, gene expression information and the literature information in a single computa-
tional framework.

PLOS ONE | https://doi.org/10.1371/journal.pone.0174999 March 31,2017 3/15


https://doi.org/10.1371/journal.pone.0174999

@° PLOS | ONE

Literature-based condition-specific miRNA-mRNA target prediction

16

x 100000

14 -

13 r

12 -

11 -

2010

2011 2012 2013 2014 2015

Fig 1. The number of published papers related to the keyword ‘cancer’ since 2010. More than 100,000 papers have been published every year.

https://doi.org/10.1371/journal.pone.0174999.9001

Toward this goal, two research groups are working together to design and implement a
novel human-specific miRNA-target prediction method.

First, we compute the omics score by utilizing sequence pairing information and gene
expression information to produce candidate miRNA-target pairs. Then, we compute the liter-
ature-based context score to evaluate each candidate miRNA-target pair using the Biomedical
Entity Search Tool (BEST) [21]. Using BEST, the user can specify the experimental condition
using a set of any keywords, which will automatically be translated to a set of genes and related
miRNAs. Subsequently, the two scores, the omics score and the context score, are combined
into a single score in a conditional probabilistic form.

The remainder of this paper is organized as follow. In the Methods section, we explain how
to compute the omics score based on the expression data and miRNA-gene relationship and
the context score from the literature according to user-provided keywords. In the Results sec-
tion, we show how our proposed method performs compared with four existing methods in
experiments with omics datasets in the public domain.

Methods

In this section, we explain how our method, Context-MMIA, predicts human miRNA targets
by combining the literature information and gene expression data. Context-MMIA takes two-
class (control vs. treated) human miRNA-mRNA expression data as input. Then, with user-
specified keywords as the context of the experiment, it computes the probabilities of miRNA-
gene pairs relevant to the phenotype differences by combining gene/miRNA expression data
and the literature data. Fig 2 illustrates the workflow of Context-MMIA. First, differentially
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Fig 2. Schematic workflow for Context-MMIA. The system accepts expression information of miRNA and mRNA
as inputs. In the MMIA step, DEmiRNAs and DEmRNAs are extracted based on their expression level difference, and
their negative correlation is computed. In the Context-MMIA step, the system computes omics and context scores
based on user-provided keywords by utilizing the BEST system. Finally, the system ranks miRNA-mRNA pairs using

the scores.
https://doi.org/10.1371/journal.pone.0174999.9002
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expressed miRNAs (DEmiRNAs) and differentially expressed mRNAs or genes (DEmRNAs)
are determined with a cutoff value at the relaxed level such that most of the true positives can
be retained in this step. Note that we use negative correlation information and the literature
information to filter out and re-weight candidates for interaction pairs in the following steps.
In the second step of processing omics data, human miRNA-mRNA pairs are predicted using
miRNA target databases such as TargetScan, mirSVR, and PITA. These miRNA-mRNA pairs
are further screened by negative correlation information between miRNA and mRNA. In the
third step, for each pair of miRNA and mRNA, Context-MMIA calculates the omics score
based on expression data and the context score based on the literature information compiled
based on the user-provided keywords. Finally, target pairs are ranked by combining the omics
score and context score. For each miRNA-mRNA pair, Context-MMIA computes alignments
of human miRNA and the 3’-UTR of mRNA and generates the visualization of the miRNA-
mRNA alignment on the website.

Identifying genes and miRNAs based on the user-provided context

Context-MMIA takes a set of keywords from the user to specify the context of the experiment.
Currently, the most widely used biomedical literature database, PubMed, contains over 26 mil-
lions records. When we perform a search with the keyword ‘cancer’, over 3 million records are
retrieved. Thus, we believe that this literature database contains enough articles to rank
miRNA-gene pairs in terms of the user-provided context. However, there are two major issues
in ranking miRNA-gene pairs: given the keywords, relevant papers should be identified and
relevant gene names and miRNA names should also be identified. Since not all papers contain
the user-provided keywords, it is necessary to infer the relevance of the words to extract genes
and miRNAs in the relevant articles. To address this issue, we use BEST to identify relevant
words and genes/miRNAs [21]. BEST has predefined biomedical entities for each category,
such as drug, pathway, gene, and disease, and then it identifies relevant entities extracted from
PubMed articles from the user query. For example, it returns entities such as ‘ERBB2’, ‘wnt sig-
naling pathway’, and ‘tamoxifen’ with the keyword ‘breast cancer’ as an input. BEST has its
own scoring system for entities, which is very useful in ranking gene-miRNA pairs with respect
to the user-provided keywords. For example, there are keywords ‘breast cancer’ and entities
‘cell cycle’, ‘mir-200¢’, ‘BRCAT’, and ‘ESR’. At the beginning, BEST compiles PubMed articles
containing ‘breast cancer’ and the four entities in the abstract. Then, it measures the score and
the rank for each entity and lists entities ordered by score. After compiling articles containing
‘BRCAT’ and ‘breast cancer’, BEST calculates a document score for each article and sums the
score to measure the entity score, which is denoted as BEST(BreastCancer, BRCA1). In this
paper, we use BEST to measure the relevance of each miRNA and mRNA for a given user

query.

Omics score

The omics score (OS) is the probability of a gene-miRNA contributing to the class difference
when expression data are analyzed. The OS is based on the general principle that differentially
expressed miRNA targets genes differentially, resulting in negative correlations between genes
and miRNA; then, differentially expressed gene explains the phenotype differences. Context-
MMIA computes the omics score based on a strategy similar to MMIA. It measures miRNA
differential scores, mRNA differential scores, and then correlation scores. The DEmiRNAs
and DEmRNASs can be determined by MMIA. After the DEmRNAs and DEmiRNAs are deter-
mined, the probability of miRNA-mRNA contributing to the class difference is calculated. Let
the p-values of miRNA and mRNA be p,, and Py respectively. For miRNA m;, m;’s differential
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score diff(m;) is defined by Eq 1, and its normalization diff,(m;) is defined by Eq 2.
diff(m,) = —log,(p,,,) (1)

diff (m,) — min (diff)
max (diff) — min (diff)

The calculation of diff,, for mRNA is similar to that of miRNA. The range of diff,, is between 0
and 1 by Eq 2. If miRNA is significantly differentially expressed in a given condition, then the
value of diff,, will be close to 1.

Correlation score is defined by measuring the Pearson’s correlation coefficient of the
miRNA-mRNA pair’s logarithmic expression as in [22]. Context-MMIA considers only nega-
tively correlated miRNA-mRNA pairs; thus, a negative value of the coefficient is defined as the
correlation score as in Eq 3.

diff, (m;) = (2)

corr(m,, g,) = —pearson_correlation(m,, g) (3)
The omics score of miRNA-mRNA OS(m;, gj) is defined in Eq 4.
OS8(my, g) = diff,(m,) * corr(m,, g) * diff ,(g) (4)

By definition, OS(m;, g;) € [0, 1]; thus, a value of OS close to 1 means that the miRNA and
mRNA are both significantly differentially expressed and anticorrelated. Thus, we predict that
the pair is related to the phenotype difference with a high confidence in terms of expression
data.

Context score

We defined the context score (CS) to measure the probability of a miRNA-mRNA pair con-
tributing to the phenotype difference in terms of the literature information. As described in
the previous section, BEST estimates a score between predefined entities and keywords. We
denoted the user-input keyword as k, which is context specified by the user (e.g., disease, gene,
pathway, and so forth). As shown in Eq 5, CS(m;, gj|k) measures the significance of the m;-g;
pair for k in terms of the literature information.

CS(m;, gj|k) = P(m;|k) * P(g;]k) (5)

To compute P(m;|k), we used Bayes’ rule and transformed P(m;|k) into Eq 6 because BEST
only measures the score for predefined entities and does not support undefined keywords
(e.g., broad keyword, new drug or pathway, and so on) [23].
Pn(k‘mz) * Pn(mi)
k) =— (6)
an(klml) * Pn(ml)

=1

P(m

i

By converting P(m;|k) using Bayes’ rule, our method provides the user with a freeform key-
word environment, which allows the user to easily utilize our system even when the user is not
familiar with biological terms.

P(Km,) = log,(BEST(k,m,) +1) 7)
The literature significance of miRNA (m;) for a given keyword k, P(k|m;), is computed as

shown in Eq 7. BEST(k, m;) is the score of m; for k computed by BEST, and we converted the
scale of the score by taking the logarithm of the BEST score. For example, assume that the
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keyword ‘immune system” and the miRNA ‘miR-155’ are used in an analysis. If the relation
between ‘miR-155" and ‘immune system’ is well studied, then P(immune system | miR155) and
BEST(immune system, miR155) will have a high score.

P(m,) = log,(BEST(m,,m,) + 1) (8)

Eq 8 describes how to compute P(m;), which denotes how much literature information exists
for m;; the more that papers report m;, the higher the value it will have. After computing P(m;)
and P(k|m;), normalization terms P,,(m;) and P, (k|m;) are defined by the min-max
normalization.

P(m;|k) is computed using Bayes’ rule and specifies the significance of m; given the literature
domain k, and the value of P(m;,|k) has a correlation with the amount of studies, i.e., the num-
ber of papers about m; in domain k. For mRNA gj, P(gj|k) is computed in a similar way, and we
measured the significance of the m;-g; pair in k by computing CS(m;, gj|k) using P(m;|k) and
P(gjk).

Pair score

The pair score of m;, g; and k is denoted as Score(m;, g;, k), which is a confidence value of target
prediction in terms of both expression and literature data.

Score(m,.,gj,k) = OS(m,.,g].) * CS(m,.,gj | k) 9)

Eq 9 can be interpreted as a weighted omics score, where the weight is determined by a proba-
bility of a m;, gj pair being true in terms of the user-provided context given keywords k.

Results

To evaluate Context-MMIA, we performed three experiments in comparison with four exist-
ing tools: MMIA, MAGIA2, CoSMic and GenMiR++.

The three experiments were pathway analysis, reproducibility of validated miRNA targets
in human, and sensitivity tests when different keywords were used for specifying the experi-
mental context. We used 2-class microarray datasets containing miRNA and mRNA expres-
sion profiles in humans. GSE21411 [24], GSE40059 [25], and GSE53482 [26] from human
disease studies were used. Each study reports experimentally validated miRNA and the corre-
lated target mRNA pair, which was used to evaluate the miRNA target prediction methods in
this section. A detailed description of each dataset is listed in Table 1.

Table 1 summarizes the validated target pair and the domain of the experimental design
in each dataset. In the interstitial lung diseases (ILD) study, it was reported that ZEB-1 affects
the persistence of disease in ILD through suppression of NEDD4L by miR-23a. In the
GSE40059 breast cancer study, the authors investigated differences between aggressive breast
cancer cell lines and less-aggressive cell lines and reported that CFL2 was up-regulated by
miR-200c. The authors also reported that CFL2 expression was correlated with tumor grade.
In the primary myelofibrosis (PMF) study, the authors revealed that overexpressed miR-155-
5p regulates JARID2, and they suggested that regulated JARID2 may be related to MK hyper-
plasia in PMF. Disease information was used to test performances when different contexts
are specified for Context-MMIA. It is necessary to choose keywords to specify contexts.
‘Interstitial lung disease’ and ‘primary myelofibrosis’ are too specific to use literature data;
thus, we used the more general words ‘lung disease’ and ‘myelofibrosis’ as the keywords for
Context-MMIA.
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Table 1. Dataset summary. Each GEO study comes with an experimentally validated miRNA-mRNA target (the second column) to affect their disease
domain (the third column). Disease information was used to test performances when different contexts are specified.

Data
GSE21411
GSE40059
GSE53482

https://doi.org/10.1371/journal.pone.0174999.t001

Experimentally validated target Disease
hsa-miR-23a—NEDD4L Interstitial Lung Diseases
hsa-miR-200c—CFL2 Breast Cancer
hsa-miR-155—JARID2 Primary Myelofibrosis
Pathway analysis

To evaluate the effectiveness of the approach used in Context-MMIA, we compared it with
four expression-based methods: MMIA, MAGIA2, GenMiR++, and CoSMic. GenMiR++ com-
putes probabilities for target pairs using an EM algorithm. MMIA extracts DEmiRNA to
reduce the search space by a user-defined cutoff and finds negatively expressed target DEmR-
NAs. MAGIA?2 provides several methods for the integrated analysis, and we chose Pearson’s
correlation method from among these methods. After measuring the correlation, MAGIA2
calculates the false discovery rate (FDR) for each target. CoSMic extracts an mRNA cluster for
each miRNA and computes the significance of a cluster using permutation tests. Likewise,
each algorithm uses a different strategy to predict the miRNA target and to reduce the search
space. We used these four algorithms to compare performances in terms of the predictive
power. The methods compute confidence values for the predicted miRNA and mRNA targets,
typically probability or p-value. We ranked the prediction results in terms of the confidence
values. In the experiments, we used a p-value cutoff of 0.1 for Context-MMIA. For MMIA, a
p-value of 0.05 was used for both DEmiRNA and DEmRNA selection.

For the performance evaluation, we used the top 200 predicted miRNA-mRNA pairs pre-
dicted by each method. Then, we mapped genes included in the interacting pairs to human
pathways using DAVID [27, 28] to determine which pathways were significantly enriched.
Among these pathways, we carefully selected pathways that are most likely related to the dis-
ease through the literature study as shown in Table 1. We set evaluation criteria as how these
literature-guided pathways were predicted by each method. Table 2 shows the ratios of the
number of genes that are mapped to significantly enriched pathways to the number of genes
included in the top 200 miRNA-target edges. The number of genes is less than 200 because the
same gene was multiply targeted, e.g., miR-200c-BRCA1 and miR-23a-BRCAL.

As shown in Table 2, the number of genes mapped to the significantly enriched pathways is
quite different for each method even though the number of genes does not considerably differ
for each method. In terms of the ratio of mapped genes to predicted genes, Context-MMIA
outperforms the existing methods 2 to 4 times. A gene set in a pathway means that genes have
similar biological functions in terms of regulating molecular processes. Thus, the ratios in
Table 2 indicate that Context-MMIA produces more functionally coherent gene sets.

Table 2. The ratio of the mapped genes and the number of the genes in the top 200 miRNA-target pairs. From each method, we extracted the top 200
target pairs using each method and performed pathway analysis using DAVID. The numerator is the number of genes mapped to the enriched pathways, and
the denominator is the genes in the top 200 edges. The ratio of Context-MMIA is the largest for each dataset.

Methods
Context-MMIA
MMIA
GenMiR++
MAGIA2
CoSMic

https://doi.org/10.1371/journal.pone.0174999.1002

GSE21411 GSE40059 GSE53482
37/79 45/157 42/127
12/157 20/179 11/124
0/194 18/197 26/200
18/182 12/191 19/193
24/196 9/195 X
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Table 3. Enriched pathway analysis on GSE40059 breast cancer data. Breast-cancer-related pathways
are selected by the literature search. A circle in a cell means that the pathway is enriched by the gene set pre-
dicted by each method (A: Context-MMIA, B: MMIA, C: GenMiR++, D: MAGIA2, and E: CoSMic). More path-
ways are enriched by the gene set in the Context-MMIA resullt.

Breast-Cancer-Related Pathway A B C D E
Purine metabolism [29] (0]

Pyrimidine metabolism [30] (0]

ABC transporters [31] (0]

MAPK signaling pathway [32] (0]

Cytokine-cytokine receptor interaction [33] O

Neuroactive ligand-receptor interaction [34] O

p53 signaling pathway [35] O (0]

Apoptosis [36] (0]

Notch signaling pathway [37] (0]

TGF-beta signaling pathway [38] O

Axon guidance [39] (e}

Focal adhesion [40]
ECM-receptor interaction [41] (0]
Cell adhesion molecules (CAMs) [42]
Adherens junction [43]

Regulation of actin cytoskeleton [44]
Glioma [45]

Melanoma [46]

https://doi.org/10.1371/journal.pone.0174999.t1003

e}
e}
o

O/ 00 0|0

Table 3 lists pathways related to ‘breast cancer’ and enriched pathways predicted by each
method for the GSE40059 dataset. The enriched pathway analysis for the data from all three
experiments is presented in S1 File. The circles in Table 3 mean an enriched pathway when
DAVID pathway analysis was performed by using genes in the top 200 edges. For example, if
the ECM-receptor interaction is enriched in the Context-MMIA and GenMiR++ results, cir-
cles are marked in the context column and the second column for the corresponding tools. As
shown in Table 3, more pathways related to ‘breast cancer’ were enriched in the gene sets pro-
duced by Context-MMIA than in the gene sets produced by the competing methods. In addi-
tion, several important pathways were enriched only in Context-MMIA. For example, it is well
known that approximately half of breast tumors have stronger MAP kinase activity than the
surrounding benign tissues [32]. Inflammation plays a pivotal role in tumor initiation, promo-
tion, angiogenesis and metastasis. Cytokines are important in all the phenomena, and it has
been reported that cytokines participate in regulating both induction and protection in breast
cancer [33]. In addition, many studies have reported that TGF-beta signaling is critically
important in the regulation of breast cancer [38]. High focal adhesion kinase expression is
known to be related to aggressive breast cancer phenotypes [47]. Furthermore, cell adhesion
molecules (CAMs) have a strong relationship with the process of metastasis, which is an
important feature in predicting breast cancer prognosis [42]. Moreover, a study revealed that
activated leukocyte cell adhesion molecule (ALCAM) expression has a correlation with clinical
outcomes such as grade, TNM stage, and NPI [48].

Reproducibility of validated targets in humans

Table 4 shows the rankings of experimentally validated targets among the targets predicted by
each method. Because Context-MMIA computes the context score using the literature data for
given keywords, there is a possibility that the original papers of the datasets can affect the
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Table 4. Reproducibility of validated targets. This table contains the rankings of validated target pairs in three datasets. The validated targets are listed in
the second column of Table I. Context-MMIA outperformed existing tools in predicting the validated targets. MAGIA2 and CoSMic failed to reproduce the vali-

dated targets.

Data
Context-MMIA
MMIA
GenMiR++
MAGIA2
CoSMic

https://doi.org/10.1371/journal.pone.0174999.t004

GSE21411 GSE40059 GSE53482
481 338 21
1411 387 1465
8625 1673 95492
X X X
X X X (Not Work)

context score. Thus, we penalized the validated targets to compute P(k|m;) by excluding each
paper when the BEST tool measures a score BEST(k, m;).

As shown in Table 4, Context-MMIA outperformed the other expression-based methods
even though the penalized score is used. MMIA took the second place in reproducing the vali-
dated targets, but it ranked validated targets much lower than Context-MMIA. Although not
rejecting the validated targets, GenmiR++ ranked validated targets very low. This result shows
that GenmiR++ produced too many false positives for the three datasets. MAGIA?2 failed to
identify the validated targets as positive target pairs in any datasets because none of the vali-
dated target pairs satisfied the statistical cutoff. CoSMic also failed to identify the validated tar-
get pairs for two datasets, GSE21411 and GSE40059. In addition, CoSMic did not run
successfully for dataset GSE53482 due to an input error issue. Many tools were not successful
in reproducing validated targets, which can be an indication of false negatives.

To further confirm the reproducibility of our algorithm, we investigated how many experi-
mentally verified targets in humans are detected in the top 200 miRNA-mRNA pairs by each
of the methods. Experimentally validated human miRNA-mRNA pairs were extracted from
miRTarBase [49], which curated experimentally validated miRNA-target interactions (MTI)
by reporter assay, western blot, microarray, and next-generation sequencing experiments. We
used human functional MTIs with strong evidence for functionality in humans as true inter-
acting pairs. Table 5 summarizes the number of validated targets in the top 200 miRNA-
mRNA pairs predicted by each method.

As shown in 5, Context-MMIA predicted two to five times more validated targets compared
to the existing methods. Context-MMIA predicted more than 10% of the experimentally vali-
dated MTIs in humans, with is a considerably higher prediction accuracy than existing meth-
ods; thus, we believe that Context-MMIA suggests good candidates for further experimental
validation.

Sensitivity tests when different keywords are used

The performance of Context-MMIA depends on how the keywords to specify context are
related to the goal of the experiment. In addition to disease-related keywords, we performed

Table 5. Detection of human-specific validated targets. This table contains the number of validated target pairs in three datasets. The validated targets
are extracted from miRTarBase target pairs filtered by human functional miRNA target interaction (MTI).

Data
Context-MMIA
MMIA
GenMiR++
MAGIA2
CoSMic

https://doi.org/10.1371/journal.pone.0174999.t005

GSE21411 GSE40059 GSE53482
27 38 24
5 4 12
3 4 3
0 0 0
7 0 X (Not Work)
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Table 6. Sensitivity tests when different keywords are used. Rankings of validated targets are shown when different keywords are used. The validated tar-
gets had high ranks when disease-related keywords were used.

Keyword
Correct keyword
Insulin resistance
Influenzas
HIV
Hepatocellular carcinoma

https://doi.org/10.1371/journal.pone.0174999.t006

GSE21411 GSE40059 GSE53482
481 338 21
12479 2036 4250
6826 1169 1623
5865 4002 3238
5278 3265 7180

experiments using less-relevant keywords such as insulin resistance, influenzas, HIV and hepa-
tocellular carcinoma. The results of Context-MMIA using less-relevant keywords are pre-
sented in Table 6. The relevant keywords for the three datasets are listed in the third column of
Table 1. As shown in Table 6, the rankings of the validated pairs were considerably higher
when the keywords that reflect experimental designs were used. This result indicates that our
method is able to reflect the degree of relevance to the experimental design and capture the dif-
ferent miRNA-mRNA pairs when different keywords were used. In summary, the experiments
with irrelevant keywords showed that our method can capture the miRNA-mRNA pairs,
reflecting the user-specified biological context.

Conclusion

We presented Context-MMIA, a human-specific miRNA-mRNA target pair prediction system
that utilizes both expression profiles and the literature information from the user-specified
experimental design goals. A major contribution of our system is that we handled the false pos-
itives and false negatives, which are an inherent issue in expression-based prediction tools, by
incorporating the user-specified context information from the literature. Analyses on three
independent human datasets showed that Context-MMIA can capture the true positive
miRNA-mRNA target pairs that are specific to a biological context. Context-MMIA outper-
formed existing tools in a series of experiments, such as pathway analysis, validated target
ranking, and irrelevant keyword experiments.

We emphasize that computational predictions of miRNA-mRNA target pairs should be fur-
ther validated in biological experiments and that our system is intended to provide good candi-
dates for experimental validation. Context-MMIA is available at http://biohealth.snu.ac.kr/
software/context MMIA

Supporting information

S1 File. Pathway analysis results. S1 File contains pathway results for the other two datasets.
(PDF)
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