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Abstract
The logic of domains has become a key organizing principle for contemporary computing projects 
and in broader science policy. The logic parses collectives of expertise into ‘domains’ that are 
to be studied or engaged in order to inform computational advancements and/or interventions 
on the domains themselves. The concept of a domain is set against a proposition that there is 
a more general, domain independent or agnostic technique that can serve to intermediate the 
domains. This article contrasts instances of this discourse, organizing and techne, drawing from 
cases in artificial intelligence, software engineering, and science policy to illustrate three ongoing 
figurations of the logic as i) experimental research, ii) formalization in method and software tools, 
and iii) a de facto organizing principle for science policy and technology development.
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Introduction

In contemporary settings of applied computational research, such as data science, the use 
of the term ‘domain’ is ubiquitous. The term serves to identify, demarcate and character-
ize spheres of worldly action or knowledge, for instance, biology as the ‘domain science’ 
of life or geologists as the ‘domain experts’ of the earth. The use of the term implies, 
necessarily, that there is more than one domain, that they are in some way distinct from 
each other, and thus that domains are topically specific. The concept of a domain is set 
against a proposition that there is a more general, even universal, method or technique; 
so, for instance, a data analytic tool may be dubbed ‘domain independent’, meaning that 
it can be of use across many, and sometimes all, domains. This general or universal qual-
ity is characterized as the feature of a kind of field or expert, recently data science, but in 
the past a feature of other specializations such as the computing and information 
sciences.

Our goal is to articulate the regular and changing features of what we call the logic of 
domains. Our strategy of exposition is to contrast three characteristic figurations for the 
logic, as i) experimental or exploratory investigations of domains, ii) routinization and 
formalization in toolsets, and iii) naturalization in language, science policy and organi-
zational planning. The first figuration explores the nexus of artificial intelligence and 
cognitive science that flourished in the 1960s and 1970s as researchers proposed ‘to use 
all of our knowledge to construct a computer program that knows’ (McCarthy and Hayes, 
1981 [1969]: 6).1 The second figuration focuses on software engineering, where the logic 
of domains serves as a pathway for the reuse of software within and across domains. We 
track the endeavor to formalize inquiry and representation through efforts to transform 
domain analysis ‘from art to engineering’ (Arango, 1989: 152). Even while continuing 
on a trajectory of mounting academic interest in the form of research and tool building, 
beginning in the 1990s the logic of domains manifests as a novel figure, becoming an 
organizing principle for science policy and in technology development projects. Herein, 
domain becomes a vernacular term, and the logic a de facto organizational approach, 
serving to support and fund new research and tool building endeavors as an ‘engine of 
progress’ (National Research Council (NRC), 1992) that promises to advance both com-
putational capacity and the domains. As an ‘engine’, funding is made available for 
research projects in ways organized from inception by the logic of domains, thus further 
propelling the logic by supporting new research and tool-building endeavors.

The logic of domains is littered with its own criticisms even amongst its adherents, 
and throughout the article we recount fragments of key debates as revealing of recurrent 
challenges for the logic. What is a domain and what constitutes independence varies 
across these three figurations, even while still exhibiting both positions. In the discussion 
we offer a synthetic view of the problems that have been articulated by supporters and 
detractors of the logic of domains, parsing four recurrent topics: ontology; inquiry and 
representation; accountability; and the relationship of the general and the specific. The 
conclusion is cast programmatically, calling for research that inspects the practice and 
consequences of the logic of domains.

Our approach to the investigation of a ‘logic’ are in part inspired by Goody’s (1986) 
The Logic of Writing and the Organization of Society, with the adoption of writing 
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demonstrating regularities even across distinct regional manifestations. We also draw on 
Verran’s (2001) inspection of the practical creation of equivalencies across distinct for-
mal systems. But we are perhaps most inspired by Mol’s (2008) characterization of logic 
in her study of medical care:

I am after the rationality, or rather the rationale, of the practices I am studying. Here the term 
‘logic’ helps. It asks for something that one might also call a style. It invites the exploration of 
what it is appropriate or logical to do in some site or situation, and what is not. It seeks a local, 
fragile and yet pertinent coherence. This coherence is not necessarily obvious to the people 
involved. It need not even be verbally available to them. It may be implicit: embedded in 
practices, buildings, habits and machines. And yet, if we want to talk about it, we need to 
translate a logic into language. This, then, is what I am after. (p. 8)

And so too are we. What we trace in this article is a genealogy with many influential but 
untended branches, of direct connections through academic mentorship, shared intellec-
tual milieus, influential writings, concrete passing of technical artifacts, methodologies 
and standardized software support packages.

The logic of domains is not only a matter of science or research, it has also always 
been bound up with engineering and design goals, particularly of computational systems, 
tools or infrastructures that are developed, in part, with the goal of intervening on the 
domains. Thus, the logic of domains may be characterized as a style for organizing engi-
neering (see also Fujimura and Chou, 1994; Hacking, 1992; Keating and Cambrosio, 
2012).

Last, our naming for the logic of domains is a light pun, for one recurrent considera-
tion we track is whether domains may have logics of their own, and if so, would that 
conclude the project of the logic of domains, or offer its very grist?

Domains and their tertium quid

The logic parses the world into domains of human action or expertise, along with some-
thing beyond or between the domains that is somehow more general, even universal, that 
serves to intermediate the domains. Throughout the article our key analytic stance is to 
simultaneously keep in view both domains and independence, even while both positions 
exhibit changing, if still related, meanings. Much historical and sociological research 
that has explored the intersection of computing and some domain has failed to recognize 
intellectual ambitions and technological architectures that seek to transcend domain 
specificity. It is this goal, to develop cross-domain or domain independent tools, formal-
isms and methods that is our central focus here, and a key characterizing feature of the 
logic of domains.

The article is told via three figurations of the logic, roughly arranged in a chronologi-
cal manner and that share a genealogical relationship across them, but in no sense do we 
here attempt an historical account of the logic of domains. All three of these figurations 
can be observed in the present, none are in solely in the past: the logic of domains today 
remains a research endeavor, a tool-building enterprise, and an organizing principle for 
science funding and technology development.
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What is meant by ‘domain’ – more precisely, what domains ‘have’ or ‘are made of’ 
– has several different evolving or competing meanings and associated techniques of 
investigation and representation. In our first figuration, focused on artificial intelligence 
researchers during the 1960s and 70s, the concept of a domain serves to objectivize the 
knowledge of circumscribed groups in order to ‘capture’ and ‘encode’ it within expert 
systems. In our second figure, focused on domain analysis in software engineering, 
domains are the organizational settings that ‘have’ software tools to solve problems. 
‘Domain analysis’ names an approach that seeks to systematize or formalize inquiry and 
representation of domains. The third figuration is focused on science policy and a more 
general vernacularization of the logic of domains. Here, the term domain is regularly 
deployed but rarely defined, but one common feature is the proposition that all boats will 
rise, that is, that both domain and the computational field will profit from a common 
endeavor.

The term domain appears consistently even while varying in its referent, but what is 
beyond, above, between or below domains has a more nebulous designation, a tertium 
quid to the domains: a third position that is indefinite and undefined but is related to two 
definite or known things. Always cast in relation to domain specificity, it is given such 
names as ‘domain independent’, ‘domain general’, or ‘domain agnostic’. On other occa-
sions that position goes unnamed or unremarked, instead referenced by the medium of 
representation – e.g. ‘formalism’ or ‘knowledge representation language’ – used to cap-
ture or represent domains.

Paraphrasing Daston and Galison (1992: 82), independence is related to domains as 
wax to seal, as hollow imprint to the bolder and more solid features of domains. The 
tertium quid to the domains is thus described as independent, general, agnostic, or empty 
in the sense that it is defined by an absence of dependence, specificity, commitments or 
content. Yet even while negatively defined against this or that property of a domain, 
independence is not merely its opposite. The ‘stronger test of domain independence’ 
(Van Melle, 1980: 6) is in its additional capacity to be relevant, or applicable, to another 
domain, many of them, or all of them. In this article, we have included three visualiza-
tions that demonstrate the particular image of objectivity established by the logic of 
domains; each draws on distinct visual conventions, but all posit domain-specific and 
domain-independent positions in designing a computational system.

What counts as a domain, or independence from domains, shifts across our three figu-
rations. Both domains and independence are the object of contestation, sometimes 
explicitly while at other times more quietly; their scope and limits are at stake in the very 
debates we track in this article. We (and occasionally the actors) cast the logic of domains 
as occurring in a rough spectrum that, on the one end, treats the domains as decompos-
able in the same way, or, on the other end, treats them as fundamentally distinct while 
still available to intermediation. Respectively we call these representationalist and irre-
ductionist approaches (Latour, 1988; Stengers, 2000), and return to the topic more exten-
sively in the discussion.

Making the crossing from independence to domains, or vice versa, is a central con-
cern for those adopting the logic. Domain independent tools, techniques, algorithms, or 
theory must be ‘applied’, ‘tailored’, or ‘customized’ to a specific domain. Alternately, 



Ribes et al. 285

domain specific features (such as knowledge, software or data) are ‘solicited’, ‘extracted’ 
or ‘captured’ so as to be rendered independent or transportable within and across domains. 
We also draw attention to longstanding boundary-spanning figures – variously called the 
craftsman, domain analyst, knowledge engineer, pi-shaped person, or bilingual – who 
are simultaneously domain experts and capacitated to work beyond the domain. Such 
boundary-spanning figures proffer a solution to a central goal for those taking up the 
logic: that software, theory, data or algorithms will be adequate for use in one domain, 
but also in another, many and, on occasion, all of them.

As the logic of domains has become a vernacular feature of key science policy and 
technological development projects, it has become a de facto style of organizing for 
tool and system building. Here we limit our focus to policy documents and funding 
arrangements from the US National Science Foundation and National Academy of 
Science, but similar statements are apparent in other US science funding agencies and 
internationally. As a vernacular style of organizing, the logic retains its parsing of the 
domains, models of empirical inquiry, and its engineering goal to intermediate the 
domains, but it loses much of the debated intellectual quality that characterized its 
explicit discussion as an experimental endeavor. In short, beginning in the 1990s, in 
some spheres ‘domain’ has become less of an epistemic object and more a matter of 
fact (Latour and Woolgar, 1979), stripped of the modalities of debate that characterized 
its development even while gaining impact and momentum as a broadly used vernacu-
lar category and organizing principle in small and large information technology 
endeavors alike.

A ‘real world’ for artificial intelligence
Designing such a program requires commitments about what knowledge is and how it is 
obtained. Thus, some of the major traditional problems of philosophy arise in artificial 
intelligence. (McCarthy and Hayes, 1981 [1969])

Writing retrospectively in 1993 on the state of their field, Stanford computer scientists 
Edward Feigenbaum and Bruce Buchanan (1993) sought to characterize ‘a shift in para-
digm’ in artificial intelligence research from ‘one based on generality’ to ‘one that was 
knowledge-based’ (p. 236). A program called the General Problem Solver (GPS) served 
as their exemplar of generality, while another program called Mycin served as their 
exemplar of the knowledge-based paradigm. In this section we track this transition via 
these two artificial intelligence projects, though we ultimately conclude that they repre-
sent poles for the logic of domains rather than any paradigmatic transformation. The 
former treated all domains as decomposable in the same way, while the latter served to 
consider whether domains may have a logic or style of reasoning of their own, even 
while both proffered an approach that was independent of any domain.

Domains are the ‘real world’ to artificial intelligence researchers and expert systems 
designers. The phrase ‘real world’ is liberally scattered throughout the AI writings of the 
1960s and 1970s (and still today), often appearing in quotes, though sometimes without. As 
the developers of the expert system Mycin programmatically argued in their 1977 paper:
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Two recent trends in artificial intelligence research have been applications of AI to ‘real-world’ 
problems, and the incorporation in programs of large amounts of task-specific knowledge. The 
former is motivated in part by the belief that artificial problems may prove in the long run to be 
more a diversion than a base to build on, and in part by the belief that the field has developed 
sufficiently to provide techniques capable of tackling real problems. (Davis et al., 1977: 17)

If AI researchers were ready to tackle ‘real world’ problems in 1977, what had they been 
up to until then? The critique was already well-established within AI circles that success-
ful applications of AI had focused on ‘block worlds’ or ‘artificial problems’, primarily 
settings that operated with explicitly formulated rules readily amenable to the computa-
tional formalisms of the time, such as games (chess, checkers) and some highly mathe-
matized subfields such as physics that relied heavily on logical inference and deductive 
reasoning. One concern was that the techniques of AI would only ever be applicable to 
such artificial problems. But in the quote above, Davis et al. went further, suggesting that 
turning to the ‘real world’ would challenge the field to encounter and manage that world’s 
full complexity.

A pervasive goal of AI was problem-solving, so too one of the most common modi-
fiers for domains at the time is ‘problem’, as in ‘problem domains.’ In addition to having 
problems, domains were sometimes said to have the expertise, know-how or knowledge 
to solve them.2 An influential, but also controversial, formulation of problem domains 
was articulated in Herbert Simon’s (1973) well-known paper ‘The structure of ill struc-
tured problems’. Simon (1973) identifies much the same challenge for AI research as 
Davis et al. above, that is, transitioning AI from a focus on problems of logical and 
deductive reasoning such as chess or theoretical physics to ‘the real world of large prob-
lems’ (p. 186). However, in contrast to the assertion that past work on artificial problems 
might prove a dead end for AI, Simon (1973) strongly argued the exact opposite:

There is no reason to suppose that new and hitherto unknown concepts or techniques are needed 
to enable artificial intelligence systems to operate successfully in domains that have these 
characteristics [ill structured problems]. (p. 181)

Simon asserted that any problem, whether well- or ill-structured, could be decomposed 
using the same repertoire of analytical concepts and techniques, or ‘formalism.’ This line 
of argumentation recapitulated much of Simon’s work in collaboration with Allen Newell 
and John Shaw, such as the development of the renowned AI program the General 
Problem Solver (GPS):

the core of GPS consists of some general, but fairly powerful, problem-solving heuristics. To 
apply these heuristics to a particular problem domain, GPS must be augmented by the 
definitions and rules of mathematics or logic that describe that domain … The justification for 
calling GPS ‘general’ lies in this factorization of problem solving heuristics from subject 
matter, and its ability to use the same heuristics to deal with different subjects. (Newell et al., 
2000 [1959]: 72)

As with Simon, ‘problems’ in GPS are specific to domains, whereas problem-solving 
heuristics are general. AI researchers took inspiration from their model of the human 
mind (Nilsson, 2009): In particular, minds are capable of solving many kinds of 
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problems, and so, any program that deserved the title ‘intelligent’ would also have to be 
general. GPS came to be successfully used for applications such as certain chess and 
logic problems, and solving the Tower of Hanoi. However, only a few years later GPS 
came to stand in for an extant provinciality in AI research that merely focused on well-
structured domains. Would approaches such those of the GPS be limited to artificial 
problems, rather than the real world of ill-structured problems?

The language of the ‘real world’ was accompanied by an empiricist ethos: Knowing 
and representing the problems of the domains would involve some form of research 
rather than a logical or deductive arrival at their problems. John McCarthy (often attrib-
uted with naming artificial intelligence (Boden, 2008; Nilsson, 2009)) and Patrick Hayes 
put it this way:

The right way to think about the general problems of metaphysics and epistemology is not to 
attempt to clear one’s own mind of all knowledge and start with ‘Cogito ergo sum’ and build up 
from there. Instead, we propose to use all of our knowledge to construct a computer program 
that knows. (McCarthy and Hayes, 1981 [1969]: 6)3

The task at hand, then, was to scour the world for ‘all of our knowledge’ and represent it 
within computable formalisms. Or, cast programmatically: ‘How are observations to be 
used to get knowledge about the world, and how are the other kinds of knowledge to be 
obtained?’ and ‘In what kind of internal notation is the system’s knowledge to be 
expressed?’ (McCarthy and Hayes, 1981 [1969]). These two questions – how to acquire 
knowledge from domains, and how to represent that knowledge in a computable formal-
ism – become central challenge questions for the logic of domains thereafter.

While empiricism (or, more precisely, the assembly of extant knowledge) animated 
the discourse of expert systems in the 1960s and 70s, the methods of inquiry to capture 
that knowledge were rather haphazard. In the 1980s, discussions of methodology would 
flourish with the first formally articulated methods and support tools for ‘domain analy-
sis’, and eventually the founding of focused journals such as Knowledge Acquisition in 
1989 – discussed in the next section. But in the early 1970s, discussions of empirical 
methods for knowing the domains, or acquiring their knowledge, were usually inter-
leaved into the discussion of the development of particular programs rather than a dis-
crete topic to be addressed on its own.

Always accompanying commitments about the content of a domain was the question 
of how to ‘acquire’ or ‘elicit’ that knowledge, along with how to ‘represent’ or ‘capture’ 
it. Representing knowledge in a computable form requires forms of media for doing so; 
and so, in these years of AI we can observe the creation of a series of competing formal-
isms for computable knowledge representation (Poirier, 2018). In this milieu, formula-
tions of what matters in a domain (almost invariably, problems and the knowledge to 
solve them), coevolved with techniques for acquisition and media for representation.

Here we return to Mycin. In his 1980 report to the US Office of Naval Research, 
Edward Feigenbaum (1980: 1) characterized expert systems as ‘the applied side of arti-
ficial intelligence’. Feigenbaum himself had been a key developer of the expert system 
DENDRAL and the machine learning system Meta-DENDRAL, programs that analyzed 
mass spectral data to infer a likely chemical structure. Mycin borrowed many architec-
tural features from DENDRAL (discussed below), but at a more conceptual level 
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Feigenbaum and Buchanan (1993) characterized DENDRAL as having ‘set in motion a 
shift in paradigm in AI from one based on generality to one that was knowledge-based’ 
(p. 236). As we have noted, they took GPS to be characteristic of the generality para-
digm, while Mycin served as their exemplar of an expert system set in the knowledge 
based paradigm.

Mycin was initially developed as Robert Shortliffe’s medical dissertation, in collabo-
ration with artificial intelligence researchers Randal Davis, Bruce Buchanan and others 
in the computer science department at Stanford University (Berg, 1997). This expert 
system and its many descendants were to remain the research object of this lab of artifi-
cial intelligence researchers for over a decade. Mycin was intended to identify bacterial 
infections such as meningitis or bacteremia by having doctors input symptoms to the 
computer program. With sufficient and consistent inputs, Mycin would diagnose and 
then recommend an antibiotic treatment. The expert system itself was named after a 
common suffix for antibiotics: -mycin. Here we will briefly focus on the capture of 
domain knowledge in production rules, and then turn to the crafting of Mycin’s domain 
independent offspring, eMycin.

Mycin is known as a rule-based expert system; it represented the knowledge of infec-
tious disease specialists in if/then ‘production rules’, each with a premise and an action. 
For example,

If (1) the infection is primary-bacteremia, and
(2) the site of the culture is one of the sterilesites, and
(3) the suspected portal of entry of the organism is the gastrointestinal tract,
then there is suggestive evidence (.7) that the identity of the organism is bacteroides. (Davis et al., 
1977: 21)

Each rule is a ‘single, modular chunk of knowledge’ (p. 21), in that it can be added, 
altered or removed, without requiring a rewriting of the entire knowledge base. This 
design feature was intended ‘to accommodate a large and changing body of technical 
knowledge’ (p. 17), or more generally a recognition that the domain is not static. 
Modularity is a commonly posited solution to the problem of changing domains. In addi-
tion to changing knowledge, the domain of medicine demonstrated features that distin-
guished it from the ‘toy problems’ of earlier AI applications:

Since we want to deal with real-world domains in which reasoning is often judgmental and 
inexact, we require some mechanism for being able to say that ‘A suggests B’, or ‘C and D tend 
to rule out E’. (p. 22)

The developers of Mycin characterized medicine as a domain of judgmental reasoning in 
which evidence can be incomplete, uncertain, or contradictory, and yet decisions must be 
made in a time-bounded manner. And so, rules also had to reflect the uncertainty of the 
domain, and Mycin’s heuristics the real world procedures for decision-making in the face 
of uncertainty. For Mycin, the solution was to give each rule a certainty factor, or the 
‘numbers used to indicate the strength of a rule’ (p. 22), and to annotate the system’s 
output decisions a with an aggregated certainty factor (e.g. ‘.7’ in the quote above). More 
generally, Davis et al. called for more study of ‘models of inexact reasoning’  
(p. 29), which in addition to certainty factors included, for instance, the further 
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development of fuzzy logic. With the recognition that real world domains operate in the 
face of uncertainty, or using judgmental reasoning rather than predicate logics, one 
response was to develop formalisms that could reproduce or mirror those forms of rea-
soning. In the ‘knowledge based approach’ of Mycin, one consideration was that domains 
might have styles of reasoning, or logics, of their own.

The formal production rules were ‘encoded’ representations of domain knowledge, 
‘acquired’ from experts themselves. In publications, very little is reported about the experts 
who contributed their time and knowledge to this enterprise, who were primarily doctors in 
the Stanford medical school. Even less is reported about the practical process of knowledge 
acquisition, with only very high-level descriptions of the prompts and tasks given to experts, 
such as having experts articulate premises and actions. As we noted above, this is reflective 
of a thin methodological repertoire for relaying the knowledge acquisition process, a reper-
toire that would later expand enormously; this is discussed in the next section.

However, Davis et al. (1977) reflect extensively about the limitations of their acquisi-
tion process. For instance:

a fundamental assumption is that the expert teaching the system can be ‘debriefed’, thus transferring 
his knowledge to the program. That is, presented with any conclusion he makes during a 
consultation, the expert must be able to state a rule indicating all relevant premises for that 
conclusion. The rule must, in and of itself, represent a valid chunk of clinical knowledge. (p. 40)

These are indeed rather vast assumptions, and, as we noted above, they become the topic 
of an expanding literature and methodological repertoire focused on knowledge acquisition 
and representation, as well as the grist for critiques of the entire expert system research 
program (c.f., Collins, 1990; Forsythe and Buchanan, 1989; Schank and Jona, 1994).

We have thus far portrayed as distinct the approaches for Mycin and the General 
Problem Solver, but it their continuities that reveal a common style of organizing across 
the logic of domains. While the developers of these programs approached the domains 
differently, they shared the conviction that there is something beyond the domains that is 
‘general’ or ‘independent.’ As we have seen, initially Mycin was domain specific, but a 
key feature was that, from the start, it was developed with the goal of supporting domain 
independence. This becomes explicit with eMycin or ‘empty Mycin’.

What was eMycin empty of? Domain knowledge. eMycin is often described as the 
first ‘shell’ for expert systems. By emptying the program of its domain specific rules, 
what was left was a tool based on the ‘domain independent core of the Mycin pro-
gram’ (Van Melle, 1980: 1). As with GPS, what was general about eMycin was its 
reasoning heuristics. This core or shell was then ‘applied’ to other domains, sustain-
ing its reasoning heuristics, but thereafter filled with production rules specific to 
another domain.

How does one empty a program of its domain knowledge? According to the develop-
ers, Mycin had been designed to support such an activity from its inception by keeping 
separate the procedural knowledge base (domain) from the reasoning heuristics (inde-
pendent). This architectural design consideration had been inspired by the General 
Problem Solver and adapted from DENDRAL: ‘No other AI program, including 
DENDRAL, had been built using so much domain specific knowledge so clearly sepa-
rated from the inference procedures’ (Buchanan and Shortliffe, 1984: 11). Here, 
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the conceptual distinction between the domain specific and independent features was 
materialized in an architecture that separated knowledge from reasoning. However, as 
one developer of eMycin noted:

Despite the stated design goal, there was much code in Mycin that referred to specific aspects 
of the infectious disease domain. These ranged from the simple cases of strings and other 
quoted text referring to ‘the patient’ (these were changed to refer to variable strings, or more 
generally to ‘the case’), to instances of actual domain knowledge in the code. … In some cases 
this knowledge was reformulated into rules, while other instances became domain specific 
‘hooks’ (Van Melle, 1980: 8)

This account hints at the kind of practical boundary work required to enact the distinction 
between domain and independent features. In this case, boundaries were drawn by, first, 
designing in the software a division between general heuristics and domain specific 
rules, and thereafter creating a shell by carefully rewriting user prompts and code vocab-
ularies in a general language.4 Following this, using eMycin as a shell, various AI 
researchers went on to create domain specific production rules in the interpretation of, 
for instance, pulmonary function measurements (‘PUFF’); diagnoses of a range of psy-
chiatric disorders and recommended drug treatments (‘HEADMED’); and, with SACON, 
‘in a stronger test of domain independence, eMycin was applied to the non-medical 
domain of structural [engineering] analysis.’ (Van Melle, 1980: 6). Even while divesting 
and repopulating all this domain knowledge, eMycin retained its etymological roots via 
its antibiotic inspired naming.

eMycin came to serve as an exemplary second pathway to domain independence. 
While GPS had been developed to be general, thereafter to be ‘augmented’ with domain 
specific content, Mycin began as a tailored domain specific application organized so as 
to facilitate division of domain from independent features; from this a domain inde-
pendent shell was extracted.5 In almost all cases in the 1960s and 70s (but certainly not 
in all figurations in this article), reasoning heuristics are the central features of what 
constitutes generality or domain independence, while problems and the knowledge to 
solve them constitute domains. The development of a general tool thereafter tailored to 
domains (e.g. GPS), or a domain specific tool thereafter stripped of its specificity (e.g. 
eMycin), became two common approaches in AI and beyond. But these are only two of 
the proffered ways for achieving domain independence; we explore others, such as 
‘domain analysis’ in the next section, in which a feature is identified as common across 
domains and thereafter placed in circulation for general reuse across them.

With both GPS and eMycin, and more broadly in AI at the time, universality had been 
defined and architecturally materialized as an absence of specificity. This formulation 
thereafter propels a common dynamic in the logic of domains: Efforts to engineer gener-
ality or domain independence demand a concurrent empirical project that seeks out and 
fills in the missing quantity of specificity, i.e. the domains, or the ‘real world’.

The next section tracks the logic of domains beyond artificial intelligence, with a 
focus on the mutating and expanding content of domains, modes of inquiry, and materi-
alizations in formal methodologies and tools. However, while in this article we leave 
artificial intelligence behind, AI has not left behind the logic of domains. We can find 
papers, tools and programs throughout the late 20th century, and right up the present, that 
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rely on this formulation, advancing it, challenging it, and offering new modes of inquiry 
and formalisms for representation.

Domain analysis: Formalizing approaches to the domains

In the first approach explicitly called ‘domain analysis’, a domain came to refer to the 
organizational setting of software use. While artificial intelligence researchers had set 
themselves a grand task — developing knowing, reasoning and problem-solving machines 
— software engineering researchers in the 1980s took on the arguably more mundane 
goal of facilitating the reuse of software. Perhaps mundane, but certainly not easy, soft-
ware reuse remains a lively topic of research throughout the late 20th and early 21st cen-
turies, and descendants of domain analysis initially developed by James Neighbors, 
Rubén Prieto-Díaz, Guillermo Francisco Arango and Peter Freeman at the University of 
California Irvine in the 1980s remains one key method promising successful reuse.

This section focuses on domain analysis to illustrate the drive to formalize methods of 
inquiry on and encoding of domains. The discussions that surrounded domain analysis 
are exemplary of goals to encode the logic in explicit method, toolkits and software 
suites. Such approaches seek to regularize, systematize or render easier the doing of 
domain analysis. Domain analysis is an example of the development of methodic and 
tool-based approaches to the logic of domains. By delegating inquiry and representation 
to prepackaged methodic approaches, knowing domains and generating pathways 
between them becomes easier to do, and perhaps also harder to think about; not quite 
black-boxed, but on a pathway to it.

Set within a broader set of concerns that historian Ensmenger (2012) calls ‘software’s 
chronic crisis’, domain analysis sought to reuse general ‘software parts’ within and 
across specific domains. Drawing on the history of gun manufacturing, in his 1980 com-
puter science dissertation James Neighbors argued for a ‘parts and assemblies’ approach 
to software, in which problems or software features were identified in order to produce 
general software ‘parts’ and standard approaches to their reuse, or ‘assembly’. He called 
the approach Draco, and the process of identifying those common problems and tasks 
domain analysis: ‘The concept of domain analysis is introduced to describe the activity 
of identifying the objects and operations of a class of similar systems in a particular 
problem domain’ (Neighbors, 1980: 1).

As with domains in knowledge-based expert systems, domains in software engineer-
ing are empirical objects that must be investigated to be known, and thereafter repre-
sented. Neighbors identified his research as sitting at the intersection of AI and software 
engineering, and drew heavily from the expert systems literature and AI more generally. 
But while Neighbors made the genealogical lineage clear, he significantly transformed 
the concept of a domain, at times making it sound like the object of social scientific 
fieldwork, as in his example of developing software tools to aid travel agents:

[Domain analysts] would go out to travel agent offices and study the activities of travel agents. 
A model of the general activity of being a travel agent would be formed and the objects and 
operations of the activities identified. At this point, the analyst of the domain of travel agent 
systems would decide which general activities of a travel agent are appropriate to be included 
in travel agent systems. (p. 6)
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A notable difference from what we have seen before lies in what domains are ‘made of.’ 
In domain analysis, the object of interest is less ‘knowledge’ and more the ‘activities’ and 
‘objects’ in a domain. A second difference is a more capacious understanding of exper-
tise. AI researchers had focused largely (though not exclusively) on scientific contexts, 
but with domain analysis in software engineering, expertise is a property of business 
(e.g. a travel agent), or really any group using software.

But what most sets domain analysis apart from what we have seen before is the focus 
on developing a routine, repeatable method for inquiring upon and representing the 
domains. Neighbors posits several specialists who were to embark on the task, who he 
called domain analysts, modelers and designers. Figure 1 is drawn from a paper pub-
lished in 1989, in which the process of domain analysis is cast generally. On the left are 
‘users of similar systems’, in the middle various ‘domain modelers’ acting as translators, 
and on the right the Draco repository itself that collects the outcomes of iterations of 
domain analyses. The domain modeler’s goal is to identify commonalities across similar 
systems, encode or extract these as general software features, and place those features in 
a repository for reuse.

A careful inspection of Figure 1 reveals that users of similar systems (top-left) are 
portrayed as happy smiling characters, while the domain analysts (middle) appear 
ambivalent. This is no accident. Neighbors emphasized the investment and difficulty of 

Figure 1. The process of analyzing domains (Neighbors, 1989), moving from specific (left), to 
domain modeling (middle), the general Draco repository (right), and specific reuse (bottom). 
Domain analysis is hard (thus the frowny faces for analysts) but facilitates reuse (thus smiling 
faces below).



Ribes et al. 293

conducting domain analysis, and his methodology generally reflects a mounting drive to 
formalize inquiry and capture:

Domain analysis describes a range of systems and is very expensive to perform. … Domain 
analysis requires a craftsman with experience in the problem domain. (p. 7, emphasis added)

The craftsman is an intriguing figure for the logic of domains. As Neighbors notes, ‘a 
craftsman gains enough experience to create a problem domain’ (p. 8). Inscribing the 
logic of domains in a single individual, the craftsman may themselves be a domain expert 
but with the skills to identify and encode the domain in a computable formalism.

In the broader trajectory of the logic of domains, boundary-spanning figures such 
as the craftsman are a commonly proffered solution to the problem of transcending 
the specificity of domains. By various names, such figures populate each of the mani-
festations recounted in this article. Arguably, Shortliffe himself was that figure in the 
development of Mycin, gaining a dual expertise in medicine and in formulating infec-
tious disease as computable rules. As eMycin’s developers came to work with more 
and more domains, they articulated a role for an ‘intermediary’ or ‘knowledge 
engineer’:

In our experience, the model for this process has been that a person (‘knowledge engineer’) 
familiar with eMycin’s representation interacts with the expert, elucidating the task to be 
performed and the particular knowledge needed for reasoning in the domain. (Van Melle, 1980: 
149)

Representing the domain in computable rules requires understandings of the distinct 
technicalities of both the domain and the formalism. Later in this article we discuss ‘the 
bilingual’, ‘the pi-shaped person’, and efforts in Cyberinfrastructure to systematically 
develop a workforce of such boundary-spanning figures. Generally speaking, the hope is 
that such boundary-spanning figures will be able to sustain fidelity to esoteric expertise 
while transcending its specificity, faithfully encoding the domain in computational 
formalisms.

It is worth taking a moment to contrast the approaches to developing generality or 
independence across expert systems and domain analysis. With eMycin, the general shell 
for expert systems, that independent software artifact was moved from one domain to the 
next, and was ‘filled’ with that domain’s specific knowledge at each stop. On its own, it 
is ‘empty’, in that domain content was evacuated from Mycin to create a domain inde-
pendent shell, thereafter of potential use in any domain. In contrast, in domain analysis a 
feature is identified as common at a specific site, that feature is characterized in a formal 
domain representation (or software ‘parts and assembly’) and then deposited in the 
repository for reuse. Much like eMycin, the Draco repository is initially ‘empty’ of 
domain content. Over time, and across many domain analyses, the repository collects 
more software ‘parts and assemblies’ as further resources for software reuse. In that it is 
applicable to all domains, eMycin is general. In the case of domain analysis, specific 
software is rendered general and able to circulate across domains by placing that soft-
ware in a repository. While figured differently, both approaches exhibit the telltale 
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features of the logic of domains: domain specificity, independence or generality, and the 
goal to circulate resources across domains.

Multiple investigators have further sought ‘to formalize the domain analysis process, 
and to develop technologies and tools to support it’ (Prieto-Díaz, 1990: 48). For instance, 
Feature Oriented Domain Analysis (FODA), developed by researchers at Carnegie 
Mellon University, extensively describes multiple stages of customer engagement, 
research, identification of general features, modeling and representation, and formaliza-
tion. Much like the goals for software in domain analysis, such methodologies seek to 
render domain analysis itself into a portable ‘off the shelf’ approach for use in any con-
text where software reuse may be desirable. A 2009 review article identified 31 software 
tools developed to support domain analysis. Such tools encode methods and categories 
in order to facilitate the process of identifying and circulating general software compo-
nents, thus supporting ‘a repeatable process, and … reuse of higher level life cycle arti-
facts’ (Lisboa et al., 2010: 2).

Efforts to formalize methodology also speak to the challenge of actually analyz-
ing domains, for a recurrent theme in domain analysis has been the desire to trans-
form the approach ‘from art form to engineering discipline’ (Arango, 1989: 152). 
The many extant methodologies and tools speak to the success of formalizing the 
broader arc of domain analysis, even while other aspects have proven systematically 
challenging. In virtually every effort to systematize domain analysis, the authors 
have found themselves reminding readers of key challenges: ‘knowledge about a 
problem domain is often implicit and nonformal, while reusable information must be 
usually represented explicitly and formally’ (Arango, 1989: 154). Prieto-Díaz (1990), 
in his effort to codify domain analysis, remarked on the seemingly bottomless speci-
ficity of domains and consequent need to tailor analytic methodologies, once again 
calling for a boundary-spanning figure: ‘A domain analyst is expected to be a person 
of all trades’ (p. 52). Similarly, even while calling for domain analysis to become an 
engineering discipline, Arango (1989) lamented: ‘Potentially, there is a need for a 
large number of practical domain analysis methods, at least as many as there are 
types of reuse’ (p. 159). In short, even as these researchers sought to codify the over-
arching process of domain analysis, they noted how the heart and core of analyzing 
and representing a domain might prove recalcitrant to generalization, or, itself 
domain specific.

Domain analysis in software engineering remains an academic research enterprise.6 
As such, even while seeking to package up their approach in methodic or software based 
approaches they continued, and even promoted, a speculative discourse on what domains 
‘are’, ‘have’ or are ‘made of’, and what may be the nature of intermediation across 
domains. Methodic, formal or tool-based approaches to the logic of domains thus serve 
to facilitate the analysis and representation of domains, along with their intermediation, 
but without fully sealing into a black box such questions as: What are domains? How do 
we know them? In what formalism do we capture them? In the next section we explore 
how this discourse has been picked up in science policy, technological development 
projects and vernacular talk, and therein has largely lost this speculative quality, even 
while serving as a de facto organizing principle.
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From technical to vernacular: The logic of domains as an 
organizing principle in science policy

By necessity, our tone shifts markedly in this section as we focus on how the logic of 
domains has become a vernacular organizing principle. The general trajectory we observe 
is a shift from a series of academic research programs (i.e. expert systems or domain 
analysis) to an organizing principle that takes the logic as its implicit starting point. 
McCarthy and Hayes’ call to examine epistemological commitments is far more chal-
lenging in vernacular manifestations of the logic of domains, for in science policy and in 
everyday talk commitments are rarely made explicit and the concept of domains is 
treated casually, as a matter of fact, rather than speculatively. This is likely intentional as, 
for instance, calls for funding proposals are broadly worded to encourage a variety of 
submissions. But without explicitly stated commitments, so too fall out many of the 
debates we characterize for the logic of domains in this article. It is in this sense that we 
use the term ‘vernacular’, and it is in this sense that the logic of domains has become an 
organizing principle: Domains and the need for their intermediation act as received start-
ing points to arrange some technological endeavor of scientific and engineering research, 
to organize a heterogeneous collaboration, or to build tools and infrastructure.

Our inspections of policy are exclusively focused on US science policy and organiza-
tional forms — while there is strong evidence that some form of the logic reaches well 
beyond, we limit ourselves to the settings we understand best. Drawing on the language 
of the Computing the Future report, here the logic of domains becomes an ‘engine for 
progress’, as funding opportunities are organized as collaborations of computer (infor-
mation or data) scientists in tandem with domain experts, promising advance and utility 
for both.

The late 1980s is often described as an ‘AI winter’, a period in which the ambitious 
claims of AI, and of computer science more broadly, came under heightened scrutiny in 
the academy and greater suspicion within business (e.g. Boden, 2008; Nilsson, 2009). 
The result was a decline in public and private funding, and esteem. One response was to 
develop a new strategy: Rather than buttress the disciplinary boundaries of computer 
science, that discipline sought to embrace collaborations with other scientific and engi-
neering practitioners, and with business and government, i.e. the domains – see Figure 2. 
In the words of the Computing the Future report, computer science and engineering 
(CS&E) should:

recognize that intellectually substantive and challenging CS&E problems can and do arise in 
the context of problem domains outside CS&E per se. CS&E research can be framed within the 
discipline’s own intellectual traditions but also in a manner that is directly applicable to other 
problem domains. (NRC, 1992: p. 4)

Broadly read and influential, Computing the Future articulates the logic of domains as 
one de facto operating procedure for small and large applied computing ventures, prom-
ising insights for domains and basic advances for computing: ‘CS&E can thus be an 
engine of progress and conceptual change in other problem domains, even as these 
domains contribute to the identification of new areas of inquiry within CS&E’ (NRC, 
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1992: 4, emphasis added). We call this the all boats will rise thesis because it is often 
explicitly stated using the ‘a rising tide lifts all boats’ proverb in ventures that call for the 
collaboration of computation (information or data) science and the domains. Perhaps 
implicit throughout the figures we have examined, beginning in the 1990s, the all boats 
will rise thesis becomes a mainstay in science policy circles associated with the logic of 
domains.

Beyond this new strategy, Computing the Future articulates two common tensions 
that have haunted computational practitioners adopting the logic of domains: the threat 
of lessened academic prestige by being ‘applied researchers’, and the danger of being 
treated as a ‘service science’. As with most academic scientific enterprises, the label 
‘applied’ in the computing sciences has traditionally been associated with practical and 
site-specific outcomes, while ‘basic’ research carries with it promises of generality. More 
broadly, since the logic of domains has always been concerned with engaging some facet 
of the real world, the logic has been associated with applied research from its beginnings; 
for example, recall Feigenbaum’s characterization that expert systems are ‘the applied 
side of AI’.

The Computing the Future report vociferously rejected the basic and applied distinc-
tion for the computing sciences, instead asserting that working with the domains is a 
pathway to basic insights, generality and perhaps universality:

at least within CS&E, the traditional separation of basic research, applied research, and 
development is dubious. Given the way research in CS&E is practiced, distinctions between 
basic and applied research are especially artificial, since both call for the exercise of the same 
scientific and engineering judgment, creativity, skill, and talent. (NRC, 1992: 5)

Figure 2. Drawn from the Computing the Future report, caption in original (NRC, 1992).
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The distinction between basic and applied has never been a firm one, and Gieryn (1983) 
and Calvert (2006) have shown that it is best thought to be a strategically deployed 
boundary. But, as Gibbons et al. (1994) have also shown, the late 1980s and early 1990s 
witnessed a widescale revisioning of the importance of applied science, and of collabora-
tions across academic, industry and government sectors.

Being applied, however, bears more dangers than whether it can achieve generality. 
Applied computing also carries the risk of sidelining novel research, casting computer 
scientists as ‘mere’ technicians, software or web developers, or some sort of infrastruc-
tural plumber. The danger is quite real, as there is marked tension between the labor of 
research that pushes the limits of computation and the enormous task of developing sta-
ble, usable and sustainable systems (Ribes and Finholt, 2009). Computing the Future 
suggested a structural solution — one that has itself become a de facto organizing prin-
ciple — ensuring a protected position for novel computational research even while con-
tinuing to promise utility for the domains:

It is essential that such work be done by investigators from CS&E and other disciplines and 
areas who regard each other as intellectual equals … maintain[ing] both an understanding of 
the future state of the art in computing and an appreciation of the real problems in the application 
domains. One way of ensuring true collaborative work is to consider only proposals where 
principal investigators are drawn both from CS&E and some other discipline or area. (NRC, 
1992: 146 emphasis added)

By recommending that leadership be composed of computing and domain scientists, this 
funding structure sought to ensure that the research interests of computing were not sub-
jugated to goals for providing useful domain resources.

Following the Computing the Future report, this funding model became an organiza-
tional mainstay for computing funding, particularly through its ‘applied’ offshoots such 
as the National Science Foundation (NSF) Digital Libraries program and the Information 
Technology Research (ITR) funding line, Cyberinfrastructure and, most recently, Big 
Data, and data science more generally. Here we will focus on Cyberinfrastructure and 
data science funding ventures at the NSF.

Cyberinfrastructure presented a unique ‘infrastructural’ formulation of the logic of 
domains. Figure 3 is drawn from the influential Revolutionizing Science and Engineering 
Through Cyberinfrastructure NSF report, more commonly called the Atkins Report follow-
ing its chair (Atkins et al., 2003). This image of organization presents a vision for infrastruc-
ture across the sciences and engineering, tailored for the domains but designed for generality 
across them. Drawing on a common visual trope of a ‘stack’, elements higher on the diagram 
are closer to the user (i.e. domain scientists) while those elements lower on the stack are more 
general, universal or fundamental. Thus, domain specific applications are undergirded by 
generic applications and even more generic core information technologies.

Drawing on rhetoric similar to that of the software crisis in domain analysis, the 
Atkins Report asserted that Cyberinfrastructure should avoid the waste of recreation, and 
embrace modularity and reusability:

Commonalities across science and engineering disciplines must be captured. Absent appropriate 
levels of coordination and sharing of facilities and expertise, there would be considerable 
duplication of effort, inefficiency, and excess costs. (Atkins et al., 2003)
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Commonalities across domains are the bailiwick of core information technologies even as 
Cyberinfrastructure would continue to require the development of domain specific appli-
cations. Recapitulating the concerns of Computing the Future, the Atkins Report poses the 
development of infrastructure as a balance between domain and computational advances:

If the organization is weighted too heavily toward the domain scientists, the focus overemphasizes 
procurement of existing technologies, and computer scientists become viewed as ‘merely’ 
consultants and implementers. If the weight shifts too heavily toward computer science, the needs 
of end users may not be sufficiently addressed, or effort shifts too heavily toward creating new 
technologies with insufficient attention to stability and user support. (Atkins et al., 2003: 50)

Such programmatic policy formulations of the all boats will rise thesis cast a dual 
responsibility for technology development efforts: i.e. serving to push forward research 
on novel computational capacity while simultaneously capacitating the domains in com-
putational technique.

This dual responsibility is recapitulated throughout the vision of Cyberinfrastructure, 
such as with the people who will build it, and in the architecture itself. For example, the 
report called for the education of a new kind of workforce, involving a systematic train-
ing of boundary-spanning figures who are simultaneously domain and computational 
experts: ‘These individuals have expertise in a particular domain science area, as well as 
considerable expertise in computer science and mathematics’ (Atkins et al., 2003: 26). In 
addition, the report also inscribes the logic of domains into the very technical architec-
ture of Cyberinfrastructure: ‘Applications are a hybrid case with shared responsibility 
between technological and disciplinary programs.’ Applications thus have a dual job of 
meeting the needs of the domain (upwards in Figure 3), and a ‘responsibility’ to a generic 
architecture undergirding connections across the domains (downwards in Figure 3). 
Goals for spanning the boundaries between domains and what is beyond them (or with 
Cyberinfrastructure, ‘below them’) were thus recapitulated at each scale, or what Ribes 
(2018: 527–528) has called the fractal or holographic properties of domains: the indi-
vidual as both a domain and computational expert; a dually responsible application layer; 
and Cyberinfrastructure as intermediating all the scientific and engineering domains.

Figure 3. Cyberinfrastructure architecture diagram (Atkins et al., 2003). Specific disciplinary 
applications are undergirded by generic infrastructure: ‘[generic] applications are a hybrid case 
with shared responsibility between technological and disciplinary programs.’



Ribes et al. 299

The Cyberinfrastructure program primarily targeted what is perhaps the most com-
monly articulated feature of domains today: they have ‘real world’ data. In general, pro-
jects dubbed Cyberinfrastructure sought to facilitate the discovery, circulation and reuse 
of data across their targeted domains. This interest in data has magnified in the 2010’s 
with Big Data and data science.

Turning to data science, a recent call for proposals at NSF sought to foster the devel-
opment of a theoretical core for that nascent field: Transdisciplinary Research in 
Principles of Data Science, or TRIPODS. From its 2016 call for proposals, the TRIPODS 
funding program ‘aims to bring together the statistics, mathematics, and theoretical com-
puter science communities to develop the theoretical foundations of data science’ (NSF, 
2016). It is these three disciplines that are solicited to develop TRIPODS centers, mark-
ing them as the domain independent experts of data science.

Scrolling down to the Frequently Asked Questions (FAQ) released with the TRIPODS 
call for proposals, one finds the question ‘What is the role of domain scientists? Can a 
domain be the primary focus?’ The answer from the NSF (2016) is worth quoting in full 
here:

Domain scientists should serve as a resource for a TRIPODS institute to maintain connectivity 
to real-world issues and ensure relevance. That said, while practical applications serve as 
drivers, foundational work should be broadly applicable. Bear in mind that proposals will be 
reviewed by a broad range of mathematicians, statisticians, and computer scientists, and thus 
focusing too narrowly on a particular domain may not have the broad appeal to be considered 
competitive in the context of the goals of the TRIPODS program. (emphasis added)

TRIPODS simultaneously defines the insides and outsides of a theoretical core for data 
science, and thus the recipients of this funding allocation as the domain independent 
fields of mathematics, computation and statistics.

However, no formulation of the logic of domains is complete without a role for the 
domains. Following the awarding of 12 TRIPODS centers in 2017, NSF rolled out its 
follow-on funding program Partnerships between Science and Engineering Fields and 
the NSF TRIPODS Institutes. More commonly known as Tripods+X, in this formulation 
participating groups are ‘referred to as “Field X” or “domain science & engineering”’ 
(NSF, 2018), with ‘X’ evoking its traditional role in equation-solving as any unknown 
variable. Tripods+X projects are thus cast as ‘domain applications’ of fundamental or 
general data science theory, with, in 2018, projects funded to investigate a wide header 
of topics such as chemistry, climate science or supply chain optimization.

Projects funded by TRIPODS and TRIPODS+X grants thus return to the research, 
method and tool development activities we have recounted in previous sections. Science 
policy that adopts a de facto formulation of the logic of domains itself serves to generate 
new avenues for novel research on domains and independence, along with technology 
development efforts that serve to facilitate the analysis, representation and intermedia-
tion of domains. Inscribed in science policy, such funding opportunities indeed do 
become ‘an engine’ for the logic of domains, propelling it anew. However, whether this 
results in conceptual progress for both computation and the domains has received very 
little empirical treatment, as discussed below.
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While the figures we have presented in this article are roughly arranged in a chrono-
logic manner, later figures have not superseded earlier ones. Quite the opposite: Science 
policy that organizes (and funds) projects by the logic of domains opens new avenues for 
research and tool building. Today, there are many lively threads of the logic that explore, 
systematize and delegate, novel technical formulations for how to know and represent 
the domains. Neither wholly formalized nor wholly vernacularized, all these threads 
remain in active discourse, operating in parallel, in tacit coordination, and sometimes in 
agonistic encounters.

Recurrent challenges

By way of discussion, here we offer a synthetic view of the common set of problems that 
have accompanied formulations of the logic of domains. No single actor articulates all 
these problems; instead, they appear sporadically across literatures while also repeating 
systematically. We parse these into four repeated articulations of problems: ontology, 
inquiry and representation, accountability, and the relationship of the general and the 
specific. We offer these statements of problems, first, as responses to the vernaculariza-
tion of the logic, and second, as a means to set forth a program of research that will 
inspect the practice and consequences of the logic of domains.

The ontological problem: Are domains real? What are they? Are they the 
right way to approach the division of knowledge or expertise?

The use of ‘domain’ reveals several concurrent referents: world, expert and representa-
tion. The term is perhaps most commonly used to refer to the group of experts concerned 
with some worldly matter; such as, with Mycin, doctors diagnosing infectious illness. 
However, sometimes domain also refers to the representation of those experts; with 
Mycin, the knowledge base or collection of production rules. Finally, domain also refers 
to the world itself; with Mycin, infectious disease and its treatment. As computer scien-
tist Phil Agre (2002) has noted:

Even in domains that involve physical objects, it is common for AI people (and computer 
scientists in general) to employ the same words to name both the representations in a machine 
and the things that those representations represent. (p. 134)

On occasion, some investigator has set out on a Kantian endeavor to disentangle these, 
treating world, experts and representation discreetly. However, even in the most ardent 
such bounding efforts, usage tends to slip. More broadly, in talk and writing, the term 
‘domain’ can refer to one or more of: a facet of the world, the experts concerned with that 
facet, and representations of that expert group. In some sense, then, all three of these are 
the ‘real world’, as measured against domain independence, which is not.

Some approaches take domains to be self-evident, ready-made or ‘out there’ while 
others treat domains as constructs: ‘The domain is constructed in and through the process 
of planning, design and construction of a particular [system]’ (Albrechtsen, 2015: 559). 
Similarly, some, perhaps most, have taken an emic approach to defining the contours of 
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domains, ‘Each domain … is limited by a boundary that defines its scope. The borders 
define what objects, operations, and relationships belong to each domain’ (Prieto-Díaz, 
1990: 51). From such investigative approaches, domains come to mirror disciplinary 
formations, since when asked what counts as their domain, academic experts will often 
point to their discipline.

Others have taken an etic approach to the investigation of domains, such as with 
social network analyses of co-authorship or citation, ‘[s]ince there is no established, 
widely accepted “best grouping”, we determined to derive our own from observed rela-
tionships … (i.e. their co-citation in articles)’ (Porter and Rafols, 2009). This form of 
inquiry often reveals domains that do not mirror disciplinary identities. Such stances 
certainly have consequences, but the intellectual span of the logic of domains appears 
capable of operating across these seemingly disjunctured epistemological and ontologi-
cal commitments.

The most persistent and evolving threads of inquiry have routinely asked what 
domains ‘have’, what is their ‘content’, or what are they ‘made of’: e.g. problems, 
knowledge, or logics. With the logic of domains such questions are never rhetorical, as 
they drive the adoption of methods of inquiry and media of representation for domains.

The problem of inquiry and representation: How should domains be 
known? How should they be represented? Are some domains more 
amenable to inquiry and representation?

Whatever theoretically significant features domains are taken to ‘have’ need be reflected 
in what modes of inquiry ‘acquire’ and what media of representation can ‘capture’. As 
the potential content of domains has expanded, one response has been to adapt the meth-
ods of inquiry and representation from other fields (e.g. interviews, fieldwork, social 
network analyses) and to develop novel formalisms, such as for judgmental reasoning or 
domain specific logics.

A recurrent concern is whether the available approaches to inquiry and representation 
may forestall engaging some domains altogether. For example, the developers of Mycin 
recounted the limits of their method to represent knowledge as procedural rules: ‘Not 
every domain will support this. It appears to require a field which has attained a certain 
level of formalization, which includes perhaps a generally recognized set of primitives 
and a minimal understanding of basic processes’ (Davis et al., 1977: 30). If this is the 
case, what happens to those domains that have not ‘attained a level of formalization’? Or, 
put less teleologically, are some domains less amenable to the available forms of inquiry 
and representation? Does domain analysis demonstrate a preference for certain styles of 
domains, and if so, will some domains systematically fall out of promised computational 
benefits? Some investigators have taken a stronger stance and suggested intervening on 
the domain to encourage formalization: ‘A concern in domain analysis research is that 
we cannot wait indefinitely for a natural evolution of a domain but must stimulate its 
maturation process through a systematic process’ (Prieto-Díaz, 1990: 49).

Debates about the nature of domains have thus been coupled with strategies to expand 
forms of inquiry and representation that mirror that nature, and, occasionally, efforts to 
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prod the domain to remake itself in the shape of whatever representational formalism or 
epistemic ideal is held at the time. A more subtle recurrent concern has been whether 
analysis and formal representation itself may transform a domain, and whether that is 
desirable or presents a fundamental challenge for the faithfulness of representation. 
However, as we elaborate below, essentially no research has systematically inspected the 
consequences of organizing by the logic of domains.

Problems of accountability: Are representations faithful? Who will 
arbitrate?

Formalisms often encode knowledge in ways that are inaccessible to the experts they 
seek to represent. Who are the arbiters of faithful representation? If the answer is experts 
themselves, then the next question is, ‘How can we represent knowledge in a way that it 
is easily understood by humans and also machine processable?’ (Prieto-Díaz, 1990: 52).

We have not followed the thread of the logic that has sought to automate the represen-
tation of domains – such as with machine learning – but such approaches have been 
present from our first figuration. Writing in 1977 about the advantages of Mycin’s pro-
cedural rules over the machine learning system meta-DENDRAL, the authors extolled 
the virtues of symbolic AI:

a system capable of handling an interactive dialog, and one which was not a ‘black box’. This 
meant that it had to be capable of supplying coherent explanations of its results, rather than 
simply printing a collection of orders to the user. This was perhaps the major motivation for the 
selection of a symbolic reasoning paradigm, rather than one which, for example, relied totally 
on statistics. (Davis et al., 1977: 17)

Such long-standing discussions foreshadow contemporary concerns with the accounta-
bility of algorithms or the black-boxing of machine learning (Burrell, 2016; Kroll et al., 
2016). Today, machine learning and other semi-automated approaches to representing 
the domains seems poised to explode (c.f. McCallum et al., 1999), and offer novel prom-
ises and dangers for representation, intermediation and accountability.

We have also noted recurrent boundary-spanning figures as the proffered solution to 
faithful representation and the transcending of domain specificity, such as the ‘crafts-
man’ of domain analysis or the ‘knowledge engineer’ of expert systems. A vivid figure in 
contemporary data science is the ‘π-shaped person’, with each leg of pi representing a 
distinct skill set and the squiggle between them the capacity to translate across these 
(Ribes, 2018). In 2018, the president of MIT University, L. Rafael Reif, proffered a new 
figure: the bilingual. In his announcement promising an investment of one billion dollars 
for a new college focused on artificial intelligence, he stated that the goal of the unit is 
not only to train a new generation of computer scientists, but also to ‘educate the bilin-
guals of the future’ (Lohr, 2018), with bilinguals defined as people in fields like biology, 
chemistry, politics, history and linguistics who are also skilled in the techniques of mod-
ern computing that can be applied to them.

Apprehensions about the interpretability of formalisms or representations, and recur-
rent boundary-spanning characters, both speak to the concern that representing domains 
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is epistemically challenging, and that evaluating representations is itself doubly techni-
cal, i.e. domains are often esoteric, and in a completely different way, representations of 
domains too are esoteric.

The relationship of the general and the specific

A consequential philosophical element of the logic of domains is the posited relationship 
between domain specificity and independence (or generality, universality and interme-
diation). It has often been suggested that the computing sciences are not empirical, and 
in that sense are more akin to mathematics than, say, biology or geology. But domains are 
precisely that, one of the long standing if only partially acknowledged epistemic objects 
of the computational or data sciences. As with any epistemic object, domains have dis-
played an emergent and recurrent trajectory, at times recalcitrant to characterization and 
manipulation, at other times leading to great practical advances. Epistemic objects are 
generative, or, as Rheinberger (1992) puts it, they are ‘question machines’, recurring 
anew at each investigation. Domains have proven to be question machines for decades, 
even as they have also served engineering goals by grounding computing applications in 
the ‘real world’.

We (and occasionally the actors) have cast the logic of domains as occurring in a 
rough spectrum that, on the one end, treats domains as fully decomposable using a com-
mon analytic approach or formalism, and, on the other end, treats domains as distinct, 
arguably with logics of their own, but still available to intermediation. Respectively we 
call these representationalist and irreductionist approaches (Latour, 1988; McCarthy, 
2017; Monea, 2016). Herbert Simon has stood in for the representationalist end of the 
spectrum, with his (in)famous assertion that all problem domains, well- or ill-structured, 
can be approached in the same manner. This kind of assertion varies across figurations of 
the logic, but is recurrent. For example, in an effort to establish metrics for the represen-
tational capacity of computational ontologies, Wand and Weber (1993) proffer the con-
cept of ontological expressiveness: formalisms ‘are ontologically expressive if they are 
capable of describing all real-world phenomena completely and clearly’ (p. 217).

The irreductionist end of the spectrum is more nebulous, but is recurrently expressed 
as the possibility that domains may have logics of their own (such as ‘judgmental reason-
ing’) or the consideration that distinct methods and formalisms may be required for par-
ticular domains (e.g. as with domain analysis above). Star (1989) perhaps most clearly 
articulates the irreductionist position in an explicit critique of Simon’s classic paper:

Instead of a search for a logical Esperanto, … we should search for an analysis of objects. 
Problem-solving … produces workable solutions that are not, in Simon’s terms, well-structured. 
Rather, they are ill-structured: they are inconsistent, ambiguous, and often illogical. Yet, they 
are functional and serve to solve many tough problems. (p. 51)

Rather than positing a singular base formalism or procedure across the domains (a ‘logi-
cal Esperanto’), the tertium quid, which Star (1989) calls a boundary object, is: ‘abstracted 
from all domains, and may be fairly vague. However, it is adaptable to a local site pre-
cisely because it is fairly vague; it serves as a means of communicating and cooperating 
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symbolically’ (p. 49). This formulation sustains key features of the logic of domains: 
There are domains, they are specific and heterogenous and yet it is possible to translate 
or connect across these. But, as Star (1989) asserts, ‘unlike Turing’s universal computer, 
the creation of boundary objects both respects local contingencies and allows for cross-
site translation’ (p. 51).

Representationalist approaches appear to suggest that computational models can 
stand in for, even replace, domain expertise. Expertise appears as something to be 
extracted or automated, ‘stretching whatever discourse they find upon the ontological 
grid that is provided by their particular design methodology’ (Agre, 2004: 8). In such a 
model the expert is ultimately disposable, and the specificity of the domain is something 
to be overcome. Contemporary manifestations of this pole include arguments such as 
that big data analytics or machine learning will dispense with the need for (domain) 
theory altogether (c.f. Anderson, 2008; Slezak, 1989). In contrast, irreductionist 
approaches tend to take a realist stance to the heterogeneity of expertise, knowledge, or 
domains more broadly; in some form they tend to recognize that, say, infectious medi-
cine may require epistemologies and methods distinct from those for, say, understanding 
geologists, or travel agents. Irreductionist figurations of the logic speak to a desire for 
approaches to heterogeneity (of knowledge, expertise, methods or data) that do not resort 
to overcoming difference by reducing it to a single underlying logic or decompositional 
heuristic.

While the nature of the relationship domain/independent is a theoretical one, we have 
sought to show how such theoretical commitments are materialized in the development 
of systems, representational formalisms, and domain inquiry methodologies or software 
packages. There are many additional posited relationships between generality and speci-
ficity than we have been able to discuss here, and we expect that further axes of differ-
ence will be necessary to characterize them.

Future research

From the perspective of these four recurrent sets of problems, the vernacularization of 
the logic of domains and its de facto status as an organizing principle is troubling. In 
these literatures, reports and calls for proposals, theoretical commitments remain opaque, 
and claims for promised benefits remain uninspected. For example, there is no scholarly 
literature that has systematically examined the all will boats will rise thesis: Does organ-
izing by the logic of domains necessarily act as ‘an engine for progress and conceptual 
advance’ for both computing/data science and the participating domain? The assertion 
has proceeded as a token of faith, as a programmatic assumption, and as an organizing 
mythology. What scholarly literature does exist on the topic suggests systematic difficul-
ties. For instance, Ribes and Finholt (2009) have noted the tension between developing 
novel computational capacities and offering stable infrastructure: the ‘demos’ or ‘proofs 
of concepts’ that serve as intellectual contributions for applied computing research are a 
long way from the usable, useful or sustainable tools or infrastructures that can reliably 
serve domain users. The gap is a formidable one, requiring care, labor and expertise that 
are not always (or even rarely?) considered in projects organized by the logic of domains. 
It seems clear that all boats will rise should not be considered a necessary or automatic 
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outcome of organizing under the logic of domains. Stated more strongly, without careful 
social organization and investments in usability and the sustainability of systems, the 
most likely outcome is that all boats will not rise.

A key topic for future research, then, is to examine the practical and institutional 
organization of endeavors organized by the logic of domains. The disconnection from 
intellectual reflection that accompanies pithy phrases like ‘collaborations of domain and 
data science’ renders theoretical or epistemological commitments opaque. As a result, 
alongside pragmatic investigations of the organization of the logic of domains, reflexive 
and empirical-philosophical investigations are needed; these include an evaluation of the 
distribution of resources and benefits across domain and independent fields, and an 
inspection of the consequences of formalization and intermediation for activities cast as 
‘domains.’ Such questions return us full circle to our starting point with McCarthy and 
Hayes’ 1969 call to inspect ‘commitments about what knowledge is and how it is 
obtained’, a question that was once central to AI, subsequently marginalized, but remains 
of inarguable consequence for any endeavor organized by the logic of domains.
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Notes

1. The first figuration in this paper is not the ‘beginning’ of the logic of domains. The logic is 
observable before then, though less recognizably. For obvious reasons, before the 1960s the 
logic figures less as about developing computational systems, and more about logic, ana-
lytic philosophy and systems theory. All genealogical investigations demonstrate this quality: 
beginnings with receding horizons.

2. What AI researchers took to be the nature of knowledge at this time involves its own set of 
intricate debates, and attendant intellectual camps that formed around, for instance, whether 
expertise should best be thought of, and represented as, ‘declarative’ (i.e. what people say 
they know) or ‘procedural’ (i.e. know-how, or if/then rules). See (Adam, 2006; Winograd, 
1975).

3. Reflecting on his first encounters with artificial intelligence researchers in the 1970s, philoso-
pher Hubert Dreyfus sought to more precisely characterize their philosophical genealogies:

They had taken over Hobbes’ claim that reasoning was calculating, Descartes’ mental rep-
resentations, Leibniz’s idea of a ‘universal characteristic’ – a set of primitives in which all 
knowledge could be expressed – Kant’s claim that concepts were rules, Frege’s formalization 
of such rules. (Dreyfus, 2007: 1137)

To these we would add the influence of the mathematical theory of information, the universal 
Turing machine, and the algorithm as a central object for computer science.

4. See Ribes and Bowker (2009) and Suchman and Trigg (1993) for practical accounts of what 
such generalizing work might look like; and see Forsythe and Buchanan (1989) for a critical 
account that emerged from the collaboration of an ethnographer and one of the developers of 
Mycin.
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5. The approach of developing a domain independent shell was successful in that it inspired 
many similar efforts, but it was also the object of critique. For example, Schank and Jona 
(1994) called out the ‘misconception that plagues expert system shells, what we call the “I’ll 
build the architecture so all you have to do is put in the knowledge fallacy.”’ They instead 
argued for the primacy of mapping domain specific knowledge over general architectures. 
Within knowledge representation circles, this debate has been rehearsed again and again.

6. On several occasions there have been efforts to commercialize expert systems and domain 
analysis such as via academic consulting services or through creating new companies. We do 
not trace such efforts here.
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