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Abstract: The post-synthesis procedure for cyclic amine (morpholine and 1-methylpiperazine) modi-
fied mesoporous MCM-48 and SBA-15 silicas was developed. The procedure for preparation of the
modified mesoporous materials does not affect the structural characteristics of the initial mesoporous
silicas strongly. The initial and modified materials were characterized by XRD, N2 physisorption,
thermal analysis, and solid-state NMR. The CO2 adsorption of the obtained materials was tested
under dynamic and equilibrium conditions. The NMR data revealed the formation of different CO2

adsorbed forms. The materials exhibited high CO2 absorption capacity lying above the benchmark
value of 2 mmol/g and stretching out to the outstanding 4.4 mmol/g in the case of 1-methylpiperazin
modified MCM-48. The materials are reusable, and their CO2 adsorption capacities are slightly lower
in three adsorption/desorption cycles.

Keywords: CO2 capture; modified mesoporous silicas; morpholine and methylpiperazine; solid-
state NMR

1. Introduction

The increasing emission of greenhouse gases (GHGs) and their severe effect on the
climate has come into the spotlight as a major challenge to sustainable development [1–3].
A variety of documents from the scientific community and policy-makers raise awareness
and advocate for a transition towards a resource-efficient and competitive economy. The
European Green Deal is a new EU strategy aiming to combat climate change by no net
emissions of (GHGs) by 2050. Carbon dioxide (CO2) is a major anthropogenic greenhouse
gas. Over the last century, atmospheric CO2 levels have increased by over 39%, from
280 ppm in the pre-industrial era (1880) to a record high of 400 ppm measured in May
2013, leading to synchronous rising of earth’s global surface temperature by about 0.8 ◦C.
It is concerning that the global concentration of CO2 continues to rise and by 2021 it
was already at 417 ppm. Critical climate change has triggered global efforts by countries
around the world to reach agreements (the Paris Agreement of December 2015) to reduce
greenhouse gas emissions, and in particular CO2, with the main objective of limiting
global temperature increases to 2 ◦C. The intensive activities on the reduction of CO2
emissions into the atmosphere lead to the development of innovative technologies [4–7].
One of the main approaches to reducing CO2 emissions is carbon capture and utilization
(CCU), which aims at the conversion of the captured CO2 into a valuable feedstock for
the production of commercial products as valuable chemicals and/or fuels. The power
plants may capture at least 85% of the CO2 formed during the power generation process
and heavy industry emissions may have to use CO2 capture techniques to further decrease
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their carbon emissions. Therefore, CCU came into the spotlight as the most promising
“smart” platform to achieve a “zero emission economy” [5–10].

In recent years, the adsorption of CO2 on nanoporous materials with a high specific
surface area has been the subject of extensive research [6]. The physical characteristics and
surface chemical properties of porous materials determine their CO2 adsorption capacity,
as well as their selectivity and stability in the presence of other contaminants and water
vapor. Typical sorbents include activated carbon (AC), molecular sieves, zeolites, silica gel,
mesoporous silicates and metal oxides such as activated alumina, calcium oxide, hydrotal-
cites and lithium zirconate, as well as other porous materials with a modified surface [6–24].
The microporous Polymers or COFs type of materials also show high CO2 adsorption ca-
pacities and selectivity over N2 [25,26]. Adsorption of CO2 on solid sorbents is a reversible
process and has many advantages over other CO2 capture and separation technologies,
such as higher capacity, better selectivity, reduced desorption energy (regeneration), easier
operational management, etc. [8] The energy required to regenerate CO2 trapped on a solid
sorbent is significantly less than that in technologies using an amino-based liquid sorbent
due to the absence of large amounts of water. Moreover, the heat capacity of solid sorbents
is significantly lower than that of aqueous-liquid amino solutions. In many instances,
these materials exhibit a CO2 adsorption capacity below the benchmark value for practical
commercialization, which is approximately 2 mmol/g [16]. Therefore, the success of the
adsorption approach depends on the development of new materials with high adsorption
capacity, high CO2 selectivity, mechanical, thermal and chemical resistance, as well as
relatively fast adsorption and desorption kinetics. The selection of a suitable sorbent is
a complex problem. Sorption materials must meet a number of important criteria, both
operational and economic, in order to be suitable for CO2 capture from flue gases [16–24].

Therefore, in the present study we have developed new morpholine and methylpiper-
azine modified mesoporous MCM-48 and SBA-15 silicas that possess remarkably high CO2
uptake of up to 4.4 mmol/ g−1.

2. Materials and Methods
2.1. Synthesis of SBA-15 and MCM-48

In principle, Pluronic P123 (12.0 g) was dissolved in a solution containing 365.8 g
distilled H2O and 37.1 g 37% HCl under vigorous stirring at 35 ◦C until reaching total
template dissolution [27]. After that, 24.0 g TEOS was added and then stirred for 24 h.
The gel was transferred into an autoclave and heated at 100 ◦C for 24 h. The suspension
was filtrated, washed with distilled water and dried at room temperature. For template
removal, the obtained sample was calcined with a temperature rate of 1 ◦C/min up to
550 ◦C and dwelling times of 2 h at 290 ◦C and 6 h at 550 ◦C.

MCM-48 nanoparticles were synthesized by a hydrothermal procedure. A total of
4.4 g CTAB was dissolved in 40 mL water at 35 ◦C under continuous stirring, and 5 mL
of aqueous 2M NaOH was added [28]. After that, 5 mL TEOS was added in drops with
uninterrupted stirring. The gel mixture has the following molar composition: 1 SiO2:
0.23 NaOH: 0.55 CTAB: 11H2O and was stirred for 1.5 h. The hydrothermal treatment of the
gel mixture was performed in an autoclave at 80 ◦C for 72 h. The product was recovered by
filtration, washed with water and dried overnight at 80 ◦C. The dried product was heated
at 300 ◦C initially for 2 h and at 550 ◦C for the next 8 h for total surfactant decomposition.

2.2. Preparation of Iodo-Functionalized Silica-Based Mesoporous Materials

A total of 1.0 g of the corresponding mesoporous material (SBA-15, MCM-48) was
suspended in 8.0 mL of dry toluene, and 1.0 g of (3-iodopropyl)trimethoxysilane was added
(Scheme 1). The mixture was refluxed for 48 h. The modified silica was filtered through
Nylon Membrane Filter (pore size 0.45 µm, diam. 47 mm) and washed with toluene.
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2.3. Preparation of Morpholine- and 1-Methylpiperazine-Functionalized Silica-Based
Mesoporous Materials

A total of 0.71 g of the corresponding modified mesoporous material (SBA-15-I, MCM-
48-I) was suspended in 7.0 mL of dry toluene and 0.71 g of the corresponding cyclic amine
(morpholine, 1-methylpiperazine) were added (Scheme 1). Then a few drops of NEt3 were
added and the reaction mixture was refluxed for 72 h. The solid phase was filtered through
Nylon Membrane Filter (pore size 0.45 µm, diam. 47 mm) and washed consecutively
with toluene and ethanol. The obtained materials were denoted as SBA-15-P, MCM-48-P,
SBA-15-M, MCM-48-M, where P = 1-methylpiperazine and M = morpholine.

2.4. Characterization

X-ray diffractograms were recorded by a Philips PW 1810/3710 diffractometer Bruker
D8 Advance diffractometer (Bruker AXS Advanced X-ray Solutions GmbH, Karlsruhe,
Germany) with Bregg-Brentano parafocusing geometry applying monochromatized CuKα

(λ = 0.15418 nm) radiation (40 kV, 35 mA) and a proportional counter.
Nitrogen physisorption measurements were carried out at −200 ◦C using Quan-

tachrome instruments AUTOSORB iQ-MP-AG (Boynton Beach, FL, USA. The pore-size
distributions were calculated from the desorption branch of the isotherms with the BJH
method. Samples were pre-treated at 80 ◦C before measurements.

The thermogravimetric measurements were performed with a STA449F5 Jupiter of
NETZSCH Gerätebau GmbH (Netzsch, Germany) with a heating rate of 5 ◦C/min in
air flow.

NMR spectra were recorded on a Bruker Avance II+ 600 NMR spectrometer (Karlsruhe,
Germany) operating at 600.01 MHz 1H frequency (119.21 MHz for 29Si), using 4 mm solid-
state CP/MAS dual 1H/X probehead (Karlsruhe, Germany). The samples were loaded
in 4 mm zirconia rotors and spun at magic angle spinning (MAS) rate of 10 kHz for 29Si
spectra and 6 kHz for 13C spectra. The quantitative 29Si NMR spectra were recorded with
one-pulse sequence, 90◦ pulse length of 4.5 µs, 3 K time domain data points, spectrum
width of 29 kHz, 400 scans and a relaxation delay of 120 s. The spectra were processed
with an exponential window function (line broadening factor 10) and zero filled to 16 K
data points. The 1H→29Si and 1H→13C cross-polarization MAS (CP MAS) spectra were
acquired with the following experimental parameters: 1H excitation pulse of 3.6 µs, 2 ms
contact time, 5 s relaxation delay, more than 20,000 scans for 1H→29Si and 2000 scans for
1H→13C spectra. The 1H SPINAL-64 decoupling scheme was used during acquisition of
CP experiments. 13C HPDEC NMR spectra were measured with a 90◦ pulse length of
4.6 µs, a recycle delay of 60 s, typically 512-1024 scans were accumulated and a power level
of 80 kHz for 1H decoupling during acquisition was employed.

The samples’ composition and electronic structure were investigated by X-ray photo-
electron spectroscopy (XPS). The measurements were carried out on AXIS Supra electron-
spectrometer (Kratos Analytical Ltd., a Shimadzu Group Company, Manchester, UK) with
base vacuum in the analysis chamber of ~10−7 Pa. The spectra were recorded using an
achromatic AlKα radiation with photon energy of 1486.8 eV and charge neutralization sys-
tem. The energy scale was calibrated by normalizing the C 1s line of adsorbed adventitious
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hydrocarbons to 284.8 eV. The binding energies (BE) were determined with an accuracy of
±0.1 eV. The deconvolutions of the peaks were performed using a Kratos Analytical Ltd.
Software (ESCAPE™).

2.5. CO2 Adsorption Measurements in Dynamic Conditions

CO2 adsorption experiments were performed in dynamic conditions in a flow system.
The sample (0.40 g adsorbent) was dried at 150 ◦C for 2 h, and 3 vol.% CO2/N2 at a flow
rate of 30 mL/min was applied for the experiments. The gas was analyzed online by GC
NEXIS GC-2030 ATF with 25 m PLOT Q capillary column. The experiments for CO2 and
water vapor adsorption (3 vol.% CO2 plus 1 vol.% water vapor) were performed at a flow
rate of 30 mL/min. The amounts of adsorbed CO2 and water vapor in the adsorbents were
determined and used to calculate the adsorption capacity.

2.6. CO2 Adsorption Measurements in Static Conditions

Static adsorption was studied with Quantachrome instruments AUTOSORB iQ-MP-
AG (Quantachrome Instruments, Anton Paar brand, Boynton Beach, FL, USA) using pure
CO2 as working gas at 0 ◦C. After evacuation, the vessels were filled with CO2 to a certain
pressure, and when equilibrium was established, the amount of CO2 retained by the sample
was determined. The adsorption isotherms were plotted as a function of the equilibrium
adsorbed quantity of CO2 onto adsorbents versus relative pressures p/p0 = 0.001–0.03.

3. Results and Discussion

Low angle XRD data of the parent SBA-15 and MCM-48 samples confirm the forma-
tion of the hexagonal and cubic mesoporous structure, respectively. However, decreased
intensity and some broadened reflections are observed for the morpholine and methylpiper-
azine modified mesoporous samples, indicating some structural disorder (Figure 1). These
observations are typical for functionalized mesoporous silicas.
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Nitrogen adsorption and desorption isotherms of the parent and amino-modified
SBA-15 and MCM-48 samples are presented in Figure 2.
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Figure 2. N2 adsorption/desorption isotherms of the initial and the modified SBA-15 (a) and MCM-48 (b) materials.

The calculated textural parameters for all samples are presented in Table 1.

Table 1. Textural data and the content of the formed functional groups in the prepared materials.

Samples BET (m2/g)
Pore Volume

(cm3/g) PDa (nm) Content of Organic
Functional Groups 1 (wt.%)

Content of Organic Functional
Groups 1 (mmol/g)

SBA-15 770 0.90 6.0 - -
MCM-48 1235 0.83 2.4 - -
SBA-15-P 680 0.76 5.8 26.0 2.13

MCM-48-P 945 0.63 2.3 28.7 2.35
SBA-15-M 650 0.70 5.8 27.2 2.23

MCM-48-M 885 0.58 2.3 27.5 2.25
1 determined by TG analysis.

The isotherms of the parent and the modified MCM-48 exhibit a sharp increase at a
relative pressure between p/po = 0.2–0.4, which is associated with capillary condensation
of nitrogen in the channels and also an indication of narrow pore size distribution (Figure 2).
The isotherms of the MCM-48 samples are reversible and do not show any hysteresis loop.
The modified samples are characterized with lower specific surface area and decreased
pore diameter and total pore volume. The isotherms of the SBA-15 samples are of type IV
with a hysteresis loop at 0.6–0.7 relative pressure, typical for the SBA-15 structure. The
observed decrease in the textural parameters, such as surface area and total pore volume of
the modified samples, is in accordance also with the XRD data. The decrease in the surface
area is more pronounced for MCM-48 modifications (23–28%), whereas it is only 11–15%
for the modified SBA-15. The peculiarity of the structure of the three-dimensional pores
of MCM-48 silica with sizes around 2.4 nm (Figure S1) is the reason for the significant
decrease in its surface area. The SBA-15 possesses a more open structure with bigger pore
sizes around 6.0 nm (Figure S1). The structure could thus be impacted to a small degree
during the modification procedure.

TEM images (not shown) indicate the preservation of the mesoporous structure after
the modification of SBA-15 and MCM-48 with 1-methylpiperazine and morpholine.

TG data (Table 1) reveal a similar content of 1-methylpiperazine and morpholine
groups on both silica supports (SBA-15 and MCM-48) (26.0–28.7 wt.%). The calculated
amounts correspond to the amount of silanol groups in the parent silicas.
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Successful modification of SBA-15 and MCM-48 with 1-methylpiperazine and mor-
pholine was evidenced by solid-state 1H→13C and 1H→29Si CP MAS NMR spectroscopy.
The results are presented in Figure 3A,B, respectively. The 1H→13C CP MAS NMR spectra
show the characteristic resonances of the structural fragments of 1-methylpiperazine and
morpholine. The chemical shifts for SBA-15-P and MCM-48-P materials functionalized with
1-methylpiperazine are as follows: 63 ppm (Si-CH2-CH2-CH2N-), 58 ppm (N- (CH2)2)2
1-methylpiperazine), 46 ppm (N-CH3 1-methylpiperazine), 23 ppm (Si-CH2-CH2-CH2N-),
13 ppm (Si-CH2-CH2-CH2N). The chemical shifts for morpholine-functionalized SBA-15-M
and MCM-48-M materials are as follows: 70 ppm (O-(CH2)2 morpholine), 63 ppm (Si-
CH2-CH2-CH2N-), 57 ppm (N-(CH2)2 morpholine), 23 ppm (Si-CH2-CH2-CH2N-), 13 ppm
(Si-CH2-CH2-CH2N).
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The successful functionalization of mesoporous silicas was also confirmed by 1H→29Si
CP MAS NMR spectra (Figure 3B). In the spectra of the functionalized mesoporous sil-
icas, in addition to the typical signals at −110 and −102 ppm for Q4 and Q3 structural
units of the silicate matrix [Qn = Si(OSi)n(OH)4−n, n = 2–4], two resonances at −66 and
−59 ppm were observed, which are characteristic for organosiloxane structural fragments
T3 [(SiO)3Si-R] and T2 [(SiO)2Si-(R1)-OR2], respectively. In order to assess the degree of
functionalization of mesoporous silicates, single-pulse 29Si NMR experiments were per-
formed. After deconvolution of the single pulse spectra, based on the ratio of the areas
of the NMR signals of the T/(T + Q) structural units, it was determined that the degree
of functionalization with organic groups is on average 20–25%, depending on the type of
starting silicate material.

The mesoporous silicas (SBA-15 and MCM-48) modified with 1-methylpiperazine
and morpholine were tested as new adsorbents for carbon dioxide capture in dynamic
conditions. The results are presented in Table 2.

Table 2. CO2 adsorption capacities of the prepared materials in dynamic conditions.

Entry Samples CO2 Adsorption from
CO2/N2

1, mmol/g
Selectivity of CO2 over N2,

Based on IAST Theory
Adsorption of CO2 from
CO2/H2O/N2

1, mmol/g

1 SBA-15 1.5 56 1.4
2 MCM-48 2.3 44 2.1
3 SBA-15-P 3.2 171 3.6
4 MCM-48-P 4.2 184 4.4
5 SBA-15-M 2.8 146 2.9
6 MCM-48-M 3.4 158 3.5

1 in dynamic conditions.
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Breakthrough curves for CO2 adsorption in dynamic conditions with 3% CO2/N2
flow are shown in Figure 4. It was found that the modified mesoporous silicas adsorbed
a higher amount of CO2 than the initial ones. The main adsorption sites in the initial
MCM-48 and SBA-15 materials are silanol groups, which predetermines the adsorption
behavior of the materials. The presence of smaller amounts of silanols in SBA-15 is the
reason for its lower adsorption capacity. Furthermore, the period needed for achieving the
total adsorption capacity for the MCM-48 material (T = 13 min) is longer than that needed
for the SBA-15 silica (T = 6 min). This result indicates that the interpenetrating network of
the three-dimensional pores of MCM-48 15 retard the access to some adsorption sites in
comparison to the more open two-dimensional pores in the hexagonal SBA-15.
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The highest CO2 adsorption capacity in dynamic conditions was detected for the
MCM-48-P sample modified with 1-methylpiperazine (4.4 mmol/g). The CO2 adsorp-
tion capacities of the samples decrease in the following order: MCM-48-P > SBA-15-P
> MCM-48-M > SBA-15M. The results show that structural characteristics of the meso-
porous supports as well as the nature and the content of the functional groups significantly
influence the formation and localization of the adsorption sites. The modification with
1-methylpiperazine and morpholine resulted in higher content of the finely dispersed
adsorption sites in comparison to the parent mesoporous silica. The modification by
1-methylpiperazine leads to higher CO2 adsorption capacity on MCM-48-P(P) and SBA-15-
P(P) than that of the morpholine-modified MCM-48-M and SBA-15-M materials (Table 2).
We anticipate that structural characteristics of MCM-48-P combined with the bis amine
moiety of the 1-methylpiperazine leading to the formation of bis bicarbonates are respon-
sible for the outstanding CO2 uptake of 4.4 mmol/g (Scheme 2). The positive effect over
the CO2 adsorption of the modification with 1-methylpiperazine compared to morhpoline
can be observed also for SBA-15 (Table 2 entry 3 vs. entry 5). The much higher selectivity
to CO2 over N2 was calculated for the modified samples in comparison to the initial ones
based on the IAST theory (Table 2).

The X-ray Photoelectron Spectroscopy (XPS) was used to provide information about
elements present on the surfaces of the materials. The atomic surface composition for
elements present on the surface (Table 3) showed that, after functionalization of the initial
mesoporous silicas, the atomic concentration of Si and O decreased as a consequence of the
appearance of two additional overlapping N1s peaks, proving the successful modification
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by 1-methylpiperazine and morpholine. The higher content of N in MCM-48-P (7.4 at%)
corresponds to the higher nitrogen content in 1-methylpiperazine in comparison to the
MSM-48-M containing morpholine (3.6 at%). The N 1s peak for MCM-41-P at lower binding
energy (399.4 eV) is with a higher content (72 at%) and the peak at higher binding energy
(401.7 eV) is with a content of 28 at% (Figure 5). The content of the peaks at 399.4 eV and
401.7 at% for MCM-41-M is 56.8 at% and 43.2 at%, respectively. The peaks are due to the
presence of N in cyclic amines [29,30]. The peak at 401.7 eV is more intensive for MCM-48-P
and may be assigned to hydrogen-bonded nitrogen [29,30].
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The total CO2 desorption was registered at 60 ◦C for the modified silica samples and
at 40 ◦C for the initial ones. The leaching of the active sites was not observed after the
adsorption experiments by TG analysis. The interaction between functional groups and the
CO2 molecules is weaker than that between primary NH2 groups and CO2, and therefore,
the total CO2 desorption can be achieved at a lower temperature, 40 ◦C for our non-
modified samples, whereas it is 75–100 ◦C for NH2-modified mesoporous silicas [31–35].
The selectivity for CO2 adsorption of the obtained adsorbents was tested in the presence
of 1 vol.% water vapor at a flow rate of 30 mL/min (CO2/H2O/N2). Interestingly, the
adsorption capacities of the modified samples in the presence of water vapors are increased
in comparison to those determined in the presence of CO2 at a flow rate of 30 mL/min
(CO2/N2). This effect is the opposite for the initial mesoporous silicas. The process
of chemisorption of CO2 in the presence of water on the active sites of the modified
materials leads to their higher selectivity to CO2 adsorption (Table 2), and this process
is more pronounced for 1-methylpiperazine modified silicas than for the morpholine-
modified ones.

The evaluation of the adsorption of CO2 on the obtained functionalized materials
under a static saturation mode without nitrogen stream shows lower adsorption capacities
than those obtained in dynamic conditions. Moreover, the studied materials show a similar
adsorption trend in static conditions as that in dynamic conditions depending on their
structure type and the surface functional groups.

The successful adsorption of CO2 by the new materials was also registered by solid-
state NMR spectroscopy using 13CO2. Two types of NMR experiments were performed
in order to determine the nature of the adsorbed CO2—chemisorbed or physically ad-
sorbed [33,35]. NMR experiments with cross polarization from protons to carbon (1H−13C
Cross Polarization (CP)) lead to a selective increase in the signal of chemisorbed 13CO2
due to the possibility for transfer of magnetization from protons of the organic structural
fragments to the carbon atom from adsorbed 13CO2. These experiments are not suitable
for registration of physically adsorbed 13CO2, since cross polarization transfer is ineffi-
cient due to its higher mobility. To detect the presence of physisorbed 13CO2, 13C spectra
experiments with high power proton decoupling were measured. 1-methylpiperazine-
modified mesoporous silicas were found to show much higher 13CO2 adsorption capacity.
In these materials, the amount of both types of 13CO2 is significantly higher compared to
the amount of 13CO2 adsorbed in mesoporous silicates modified with morpholine.

The results from the NMR experiments for 1-methylpiperazine and morpholine-
modified mesoporous silicas are presented in Figures 6 and 7, respectively.
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MCM-48-M (right). Mainly a small amount of physisorbed CO2 was detected in both materials.

In the 1H−13C spectra of 13CO2 adsorbed on 1-methylpiperazine-modified SBA-15-P
and MCM-48-P mesoporous silicates, in addition to resonances of the 1-methylpiperazine
fragment (10–70 ppm), a signal at 161 ppm was observed, which is characteristic of
chemisorbed 13CO2 (Figure 6 bottom spectra) [33,35]. Chemisorbed 13CO2 on tertiary
amine-modified mesoporous silicas is in the form of a bicarbonate ion (HCO3−) (Scheme 2),
which is formed in the presence of water molecules included in the pores of the silica ma-
trix [35,36]. The presence of physisorbed 13CO2 is identified by the signal at 124 ppm,
observed in the 13C spectra, detected with high power proton decoupling (Figure 6 top
spectra). The spectra of SBA-15-M and MCM-48-M mesoporous silicas modified with
morpholine (Figure 7) show mainly the presence of physisorbed CO2 (low intensity signal
at 124 ppm); however, its amount is significantly lower, which is an indication that these
adsorbents are less active than those modified with 1-methylpiperazine.

Isosteric heats of adsorption for CO2 in the functionalized mesoporous silicas were
calculated from the adsorption isotherms by using the Clausius–Clapeyron equation, and
the results are presented in Figure 8.
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The presented results show that the 1-methylpiperazine and morpholine-functionalized
MCM-48 and SBA-15 provided effective weak adsorption sites for CO2 with heats of ad-
sorption between 40 and 50 kJ/mol. The functionalized silica materials exhibited declining
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heats of adsorption for CO2 with the increase in the adsorbed amounts of CO2, indicating
the heterogeneity of the adsorption sites [37,38]. The modification with 1-methylpiperazine
results in a higher isosteric heat of adsorption than that detected for morpholine modified
materials due to the stronger interaction between functional groups and CO2 molecules.

1-methylpiperazine and morpholine-functionalized silicas exhibited a steep decrease
in the heats of adsorption as a function of the adsorbed amount of CO2 as compared to
parent silicas. This indicates that 1-methylpiperazine and morpholine-functionalizations
contribute not only to the decrease in the heat of the chemical interaction but also to the
creation of effective weak adsorption sites for CO2.

There is data in the published literature about the adsorption capacities for CO2 on N-
modified mesoporous silicas, for example, NH2-modified mesoporous silica materials also
show high CO2 adsorption capacity (around 3–5 mmol CO2/g) but the temperature needed
for the CO2 desorption is higher (75–100 ◦C) than that for our materials [39]. A large number
of amine moieties can also be accommodated inside the mesoporous silica support, leading
to a hybrid material with a high CO2 capture capacity. The amine functionalized zeolites,
MOF and carbons also show high CO2 adsorption capacity between 40 and 80 mg/g at
1 atm and 25 ◦C [39]. However, the loss of the adsorption sites after amine incorporation in
MOF structures leads to a decrease in CO2 capture capacity [39]. Our materials show high
and stable adsorption capacities in three adsorption cycles. Therefore, 1-methylpiperazine
and morpholine groups in the modified MCM-48 and SBA-15 are considered effective
adsorption sites and the obtained materials are promising CO2 adsorbents.

4. Conclusions

The morpholine and 1-methylpiperazine modified mesoporous MCM-48 and SBA-15
silicas were successfully synthesized by a simple two-step post-synthesis procedure. The
obtained modified mesoporous materials showed high specific surface area due to the
preservation of mesoporous structure during the modification procedure. High capacity
for CO2 adsorption was determined for all modified materials in dynamic and static
conditions, with some differences depending on the functional groups. The formation
of chemisorbed CO2 functionalities in the form of a bicarbonate ion (HCO3−) as well as
the presence of physiosorbed CO2 was evidenced by solid-state NMR. The modification
with 1-methylpiperazine results in a higher isosteric heat of adsorption than that detected
for morpholine-modified materials due to the stronger interaction between functional
groups and CO2 molecules. The highest adsorption capacity for CO2 adsorption was
determined for the 1-methylpiperazine modified mesoporous MCM-48-P silica. The total
CO2 desorption from the modified materials was achieved at 60 ◦C. The leaching of the
adsorption sites was not detected after three consecutive adsorption cycles. The high CO2
uptake and straightforward preparation make the herein-reported modified silicas the CO2
capture materials of the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
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