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Abstract

We used NMR-based metabolomics to test two hypotheses–(i) there will be evolved differ-

ences in the metabolome of selected and control populations even under un-infected condi-

tions and (ii) post infection, the metabolomes of the selected and control populations will

respond differently. We selected replicate populations of Drosophila melanogaster for

increased survivorship (I) against a gram-negative pathogen. We subjected the selected (I)

and their control populations (S) to three different treatments: (1) infected with heat-killed

bacteria (i), (2) sham infected (s), and (3) untreated (u). We performed 1D and 2D NMR

experiments to identify the metabolic differences. Multivariate analysis of the metabolic pro-

files of the untreated (Iu and Su) flies yielded higher concentrations of lipids, organic acids,

sugars, amino acids, NAD and AMP in the Iu treatment as compared to the Su treatment,

showing that even in the absence of infection, the metabolome of the I and S regimes was

different. In the S and I regimes, post infection/injury, concentration of metabolites directly or

indirectly associated with energy related pathways (lipids, organic acids, sugars) declined

while the concentration of metabolites that are probably associated with immune response

(amino acids) increased. However, in most cases, the I regime flies had a higher concentra-

tion of such metabolites even under un-infected conditions. The change in the metabolite

concentration upon infection/injury was not always comparable between I and S regimes (in

case of lactate, alanine, leucine, lysine, threonine) indicating that the I and S regimes had

evolved to respond differentially to infection and to injury.

Introduction

Given the ubiquitous nature of pathogens, the ability to mount an effective immune response

is an important determinant of the fitness of an organism. However, the maintenance and

deployment of an immune response is energetically costly and therefore, it is not surprising

that in most animals, immune response and metabolic regulation are tightly coupled [1–2].
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Infection, in most animals including flies and humans, leads to the disruption of metabolism.

The shifting of resources from metabolism towards the energy intensive immune response is

claimed to be central to these changes. Several lines of evidence are in line with this claim. Pro-

longed infection and immune activation can lead to metabolic dysregulation causing wasting

in animals [3]. Infection with certain bacteria and fungi leads to loss of metabolic energy

reserves and decline in triglyceride levels in flies [4–6]. In Drosophila larvae, systemic infection

leads to increased transcription and depletion of nutrient stores, thereby affecting the growth

of the organism [4]. In many cases, the molecular mechanism of the switch regulating invest-

ment in immunity versus metabolism is also very well worked out. For example, MEF 2, a tran-

scription factor acts as a critical switch between energy storage and immune function in adult

Drosophila fat bodies [2] while Foxo dependent transcription mediate immunity versus growth

in larvae [5]. Using microarrays, Felix et al [7] found that the variation in bacterial clearance in

inbred lines of Drosophila was not majorly explained by variation in immunity related gene

expression. Instead, a large amount of the variation in bacterial clearing ability was associated

with genes related to energy metabolism including the insulin/TOR signaling pathway. Taken

together, these data clearly indicate a genetic basis for the strong coupling of immune response

and metabolism.

Given that (a) immune response is an important component of fitness, (b) immune

response involves alteration in metabolism and (c) variation in metabolism related genes, to a

large extent, explains variation in immune response, it is reasonable to expect that under direc-

tional selection, both immune response and the associated metabolic pathways will evolve.

While many studies have addressed the relationship between immune response and the meta-

bolome (for example [6]), none have tracked the simultaneous evolution of immune response

and the metabolome. In the present study, we address this issue by performing high-resolution

nuclear magnetic resonance (NMR)-based metabolomics on replicate populations of Drosoph-
ila melanogaster selected for increased survival in the face of a bacterial infection. When a pop-

ulation consistently faces infection across generations, then, it is quite possible that the basal

metabolome (ie metabolome in the un-infected state) evolves to be different from the controls

in such a way that the selected population is better prepared to handle infection. Additionally/

alternatively, the selected population can evolve with respect to the way in which its metabo-

lome changes post infection. Therefore, in the present study we specifically asked two

questions-

1. Is the metabolome of the selected populations different from that of the control populations

even under un-infected conditions?

2. Are the changes in the metabolome of the selected populations post infection similar to the

changes in the metabolome of the control populations post infection?

Metabolomics describes correlations between the metabolome of an organism and its phe-

notypic state. High-resolution NMR-based metabolomics combined with pattern recognition

methods and multivariate statistical analysis, has provided interesting insights into the Dro-
sophila metabolome. NMR-based entometabolomics studies have helped reveal hitherto hid-

den aspects of insect behavior and development [8–12], immunity and infection [6], response

to temperature stress [13–17], temperature acclimation [18], bacteria-insect symbiosis [19],

effects of inbreeding [20], as well as circadian rhythms [21,22]. Such NMR-based studies have

yielded clear metabolomic signatures of adaptation to temperature [23], hypoxia [24–25], and

selection for increased lifespan [26].

In the present study we used 1D and 2D high-resolution NMR experiments to profile the

metabolites that contribute significantly to the differences between the immune selected (I)
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and the control (S) fly populations, under three different treatments namely: infection by a

pathogen (i), injury by pricking with a needle containing a buffer(s) and unhandled control

treatment (u). Thus we had six different combinations of treated flies (Ii, Is and Iu for I popula-

tion and Si, Ss and Su for S population). We were able to identify a large number of metabolites

in the spectra of all the six different combinations of treatments. Of these, we found 12 metab-

olites that had evolved to have different concentrations in the I and S regimes at the basal level

(i.e Iu and Su populations). Upon prick injury and infection by a pathogen, both I and S

regimes responded differently. For some metabolites, both I and S regimes showed similar

changes in the metabolome whereas for others, the change in the metabolite concentration

was different for both I and S regimes. Our results highlight the important role that metabo-

lism plays in an organism’s response to infection by a pathogen and to injury. Our results are

the first to show the evolution of the metabolome in response to selection for increased immu-

nity against a bacterial pathogen.

Results

Metabolite fingerprinting

Both 1D and 2D NMR spectra were recorded to identify the presence of a wide variety of

metabolites in Drosophila melanogaster. The metabolites were assigned specific resonances

based on their chemical shift values matching with the values of pure compounds recorded in

spectral databases such as BMRB and MMCD. The list of metabolites identified using their

chemical shift values and scalar coupling patterns (S1 Table and S1 Fig) were also confirmed

by homonuclear 2D experiments such as COSY and TOCSY and heteronuclear 2D experi-

ments such as HSQC and HMQC (S2 and S3 Figs).

Statistical analysis

Multivariate analysis was performed to identify the metabolic differences in both I and S selec-

tion regimes and to see how both the regimes respond to prick injury and bacterial infection.

Fig 1 shows the experimental design, where four independent blocks were analyzed individu-

ally, and each of the four blocks had both I and S populations. Both the populations were fur-

ther treated in three ways as mentioned in the introduction to have six different combinations

of flies. An initial comparison of all six types of treatments namely Iu, Ii, Is, Su, Si and Ss was

done using the statistical method of PCA, an unsupervised method usually used to identify

outliers and other patterns in the data. Fig 2(a) shows the PCA scores plot for all the six fly

treatments with component 1 explaining 38.9% of the variation and component 2 explaining

Fig 1. Experimental design for the NMR metabolomics experiments. Four independent blocks, each

having two regimes I and S were subjected to three treatments. Each treatment had 5 replicates.

https://doi.org/10.1371/journal.pone.0188089.g001
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25.4% of the variation. The figure shows one replicate sample of Ii population to be located

outside the 95% confidence area of the Hotellings T2 ellipse in the PCA score plot and thus

being an outlier, was removed from further analysis. This was followed by analysis of all the six

treatments using the supervised pattern recognition method of OPLS-DA. Fig 2(b) shows the

cross-validated OPLS-DA scores plot, showing that irrespective of the type of treatment given,

both I and S selection regimes are inherently different from each other. We then performed

OPLS-DA analysis for different treatments within I and S regimes individually (S4 Fig). It can

be seen from the predictive scores plot that individual treatments (u, s and i) are clearly sepa-

rated out in both I and S regimes, showing that the treatment does affect the metabolome of

both I and S regimes. Fig 3 shows the polar dendrogram plotted for all six treatments. As can

be seen, the main node separates both I and S populations and further nodes separate different

treatments within I and S regimes. This further confirms that both I and S populations have

evolved to have different metabolomes from each other.

Fig 2. PCA and OPLS-DA score plot. (a) Principal component analysis (PCA) score plot of 1H NMR spectra

of all six treatments, with component 1 showing 38.9% and component 2 showing 25.4% of the variation and

(b) the corresponding cross-validated OPLS-DA score plot after removal of the outlier.

https://doi.org/10.1371/journal.pone.0188089.g002

Fig 3. Polar dendrogram. Polar dendrogram showing differences between all the I treatments (Iu, Ii and Is)

and all the S treatments (Su, Si and Ss). Each treatment is an average of five replicates with each replicate

consisting of 20 flies.

https://doi.org/10.1371/journal.pone.0188089.g003
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Since this initial comparison includes the differences both due to selection and due to treat-

ments of prick injury and bacterial infection, we went on to individually compare the different

fly treatments. In order to identify the metabolites responsible for differentiating I and S selec-

tion regimes, which have evolved over the course of several generations, we compared the

unhandled control fly treatments (Iu and Su). We used the OPLS-DA statistical approach on

1D NMR spectral data aligned using the Icoshift algorithm [21, 27]. OPLS-DA maximizes the

covariance between the measured data and the response variable (NMR peak intensities and

predictive classifications respectively). Fig 4(a) shows the cross-validated OPLS-DA scores plot

for comparison between Iu and Su treatments, with one predictive component and one

orthogonal component showing a clear separation between the Iu and Su treatments. The

loadings plot shows the significant metabolites responsible for separation between both the

populations (Fig 4(b)). The significant metabolites were confirmed by first preselecting them

using the VIP score parameter (VIP > 1), followed by identifying the metabolites from the lin-

ear S-plot (abs(p(corr) [1]) > 0.6) (Fig 4(c)). The variance explained R2 and the variance pre-

dicted Q2 by the modelare given in Table 1. The model therefore was an effective model and

showed good predictive accuracy (S5 Fig). Testing with CV-ANOVA with α-value< 0.05 and

Fig 4. OPLS-DA analysis for Su and Iu treatments. OPLS-DA (a) score plot and (b) loading plot derived from 1H NMR

spectra of Su and Iu treatments, with the section above 0 in the loading plot representing metabolites higher in the Iu

treatment and the section below 0 in the loading plot representing metabolites higher in the Su treatment and (c) S-line plot

visualizing differences between Iu and Su populations.

https://doi.org/10.1371/journal.pone.0188089.g004

Table 1. Summary of parameters for assessing model quality.

Comparison No. of components R2X (cum) R2Y (cum) Q2Y (cum)

Iu-Su 1+2 0.764 0.937 0.957

Is-Iu 1+3 0.728 0.971 0.827

Ss-Su 1+2 0.792 0.836 0.901

Ii-Iu 1+2 0.985 0.911 0.912

Si-Su 1+2 0.831 0.881 0.934

https://doi.org/10.1371/journal.pone.0188089.t001
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validating with a permutation test (p-value < 0.05) also showed the model to be statistically

significant and robust in nature. We further used hierarchical cluster analysis (HCA) to look

for natural groupings in both the populations (S5 Fig). S5 Fig shows the tree dendrogram gen-

erated using HCA, summarizing the variation present in the dataset. As can be seen from the

figure, individual replicates within the treatment were fairly similar to each other whereas both

the Iu and Su treatments were clearly separated from each other, indicating the predominant

role of selection rather than genetic drift as a primary cause of evolutionary differentiation

between the I and S regimes. The metabolite peak concentrations of fatty acids, organic acids

(succinate and citrate), sugars (glucose and galactose), amino acids (leucine, proline, threo-

nine, lysine and arginine), NAD and AMP were found to differ significantly in both the treat-

ments and were found to be present in higher quantities in Iu treatment as compared to Su
treatment.

The above comparison identified the metabolites that get altered due to selection. In order

to identify the metabolites that are significantly altered due to prick injury within the I and S

lines, we compared the Is treated population with Iu population and Ss treated population

with Su population. Fig 5(a) shows the cross-validated OPLS-DA scores plot for Is-Iu compari-

son and Fig 5(b) shows the cross-validated OPLS-DA scores plot for Ss-Su comparison. As can

be seen from the figure, both Is and Ss populations are clearly separated from Iu and Su popu-

lations respectively along the predictive component. Fig 5(c) and 5(d) shows the respective S-

line plots giving metabolites responding to prick injury within both the I and S lines. The

model was validated using CV-ANOVA and permutation test as before. The variance

explained by the models and the variance predicted are given in Table 1, showing that both the

models were effective and had good predictive accuracy. For the I regime, the metabolite levels

of fatty acids, glucose and citrate were found to differ significantly between the Is and Iu popu-

lations and for the S regime, the levels of fatty acids, glucose, citrate, succinate and leucine

were found to differ significantly between Ss and Su populations, showing that these metabo-

lites get affected during prick injury.

We then compared the Ii treated population with Iu population and Si treated popula-

tion with Su population, to identify the metabolites that get affected by bacterial infection.

Fig 5. OPLS-DA analysis to see the effect of prick injury. (a) OPLS-DA score plot for Is-Iu comparison, (b)

OPLS-DA score plot for Ss-Su comparison, (c) S-line plot for Is-Iu comparison and (d) S-line plot for Ss-Su

comparison.

https://doi.org/10.1371/journal.pone.0188089.g005
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Fig 6(a) and 6(b) shows the cross-validated OPLS-DA scores plots for Ii-Iu and Si-Su com-

parisons respectively. As can be seen from the figure, both Ii and Si populations are clearly

separated from Iu and Su populations respectively along the predictive component. Fig 6(c)

and 6(d) shows the respective S-line plots giving metabolites responding to bacterial infec-

tion within both the I and S lines. The model was again validated using CV-ANOVA and

permutation test as before. Table 1 lists the variance explained and the variance predicted

by the models, showing that both the models were effective and had good predictive accu-

racy. For the I regime, the metabolite levels of fatty acids, glucose, citrate, succinate, lactate,

proline, arginine, myoinositol, NAD and AMP were found to differ significantly between

the Ii and Iu populations and for the S regime, the levels of fatty acids, glucose, citrate, suc-

cinate, lactate, leucine, proline, lysine, arginine, alanine, threonine, myoinositol, NAD and

AMP were found to differ significantly between Si and Su populations, showing that these

metabolites get affected during bacterial infection.

Univariate statistical analysis was also performed on all the variables identified in all the

above pair wise comparisons for statistical significance using a t-test. A multiple hypothesis

test correction method of Benjamini-Hochberg (BH) was applied to confirm the statistical sig-

nificance of the identified metabolites. Concentration values of these significant metabolites in

all the treatments are listed in S2 Table and shown as bar graph plots in Fig 7, with the BH cor-

rected p-values for all the comparisons listed in Table 2.

To confirm that the metabolic changes in the I and S regimes due to bacterial infection are

indeed due to infection and not due to prick injury, we also compared Ii treatment with Is
treatment and Si treatment with Ss treatment. S6 Fig shows OPLS-DA scores plot for Ii-Is and

Si-Ss comparisons, showing clear separation between Ii-Is and Si-Ss treatments respectively.

BH corrected p-values of the significant metabolites (identified using S-line plot) as listed in

Table 2 show that the same set of metabolites contributes to significant differences between Ii-
Is comparison as identified for Ii-Iu comparison and between Si-Ss comparison as identified

for Si-Su comparison.

We also compared different selection lines for the same treatment type to see the effect of

selection in the presence of treatment. S7 and S8 Figs shows OPLS-DA analysis for Is-Ss (prick

Fig 6. OPLS-DA analysis to see the effect of bacterial infection. (a) OPLS-DA score plot for Ii-Iu

comparison, (b) OPLS-DA score plot for Si-Su comparison, (c) S-line plot for Ii-Iu comparison and (d) S-line

plot for Si-Su comparison.

https://doi.org/10.1371/journal.pone.0188089.g006
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injury) and Ii-Si (bacterial infection) comparisons respectively, showing clear separation

between Is-Ss treatments and between Ii-Si treatments and confirming that both I and S selec-

tion lines remain different for the same treatment.

Univariate analysis was also performed on all the identified metabolites (a total of 37 metab-

olites whose peaks could be confidently assigned and quantified). Using a two-way ANOVA

approach, we tested the effects of selection, treatments and their interactions on each metabo-

lite and confirmed a robust metabolic response to both selection and treatments (S3 Table).

Selection regime was responsible for the major metabolic response with 19 metabolites show-

ing a significant effect of selection by having large F ratios and significant Q-values < 0.05. A

total of 11 metabolites showed significant response to treatment, with many of them overlap-

ping with selection as well. 5 metabolites responded differently to treatments between immune

and sham selected populations (showing the effect of interaction between treatments and

selection), with immune population showing less changes in the levels of these metabolites as

compared to sham population which showed more changes in the levels of these metabolites

Fig 7. Plots of relative concentrations (mean ± SE) of significant metabolites in all the I and S

treatments. X-axis shows the treatment given (untreated u, sham infected s and bacterial infection i) and Y-

axis shows the relative concentrations of the metabolites. Comparisons included: Iu-Su (selection), Is-Iu and

Ss-Su (prick injury) and Ii-Iu and Si-Su (infection).

https://doi.org/10.1371/journal.pone.0188089.g007
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upon treatment (Fig 7). The remaining 14 metabolites showed no effect of either selection or

treatment. Most of the metabolites identified using univariate analysis and multivariate analy-

sis overlap validating the results from both the methods.

Discussion

Impact of selection on metabolic profiles

Comparison between the un-infected selected (Iu) and control (Su) populations clearly shows

that the metabolome of the selected populations has evolved to be different from that of the

control populations even under un-infected conditions (Figs 4 and 7). The selected population

Iuhas evolved to have significantly higher concentrations of fatty acids, carbohydrates (glucose,

galactose), organic acids (citrate, succinate), amino acids (leucine, proline, lysine, arginine,

threonine), NAD and AMP as compared to the control population Su. Selection pressures

have previously been reported to alter the metabolome of Drosophila [23, 28]. Our results also

highlight the role played by selection in altering the metabolome of fruitfly Drosophila. It

should be emphasized here that the relative concentrations (normalized to total intensity) of

metabolites identified to be significantly different in selected and control populations are a

result of the flux of a large number of inter-related metabolic processes so it is difficult to dis-

cern the exact metabolic pathways getting affected by selection and further investigations are

thus needed in order to achieve a better understanding of the dynamics of metabolites and

their relation and response to selection.

Impact of prick injury on metabolic profiles

Prick injury alters the metabolic profiles of both the selected and control regimes (Figs 5 and

7). However, the same class of metabolites (fatty acids, carbohydrates and organic acids) is

affected in both the populations, showing a similarity in response, which is seen in the form of

decrease in fatty acids, carbohydrates and organic acids. This shows that there is no change in

the response to prick injury due to selection as both I and S populations respond in a similar

Table 2. Metabolites, their chemical shift values and BH corrected p-values for all pair wise comparisons, with significant metabolites (p < 0.05)

for that particular comparison marked in bold. " (up) or # (down) arrows indicate significant increase or decrease in concentration of metabolites respec-

tively, in first treatment as compared to second treatment for each pair-wise comparison.

Metabolite Peak (in ppm) p-value (for pair-wise comparisons)

Iu/Su Is/ Iu Ss/Su Ii/ Iu Si/ Su Ii/ Is Si/ Ss

Fatty acids 1.27–1.31 < 0.001" 0.007# < 0.001# 0.009# < 0.001# 0.036# 0.015#

Succinate 2.41–2.42 0.032" 0.174 0.046# 0.014# 0.019# 0.047# 0.009#

Citrate 2.53–2.55 0.034" 0.041# 0.036# 0.032# 0.027# 0.037# 0.024#

Glucose 4.62–4.65 0.014" 0.036# 0.009# 0.031# 0.018# 0.033# 0.038#

Galactose 4.07–4.08 0.047" 0.946 0.913 0.088 0.287 0.149 0.480

Leucine 0.95–0.97 0.035" 0.064 0.039" 0.073 0.029" 0.574 0.036"

Proline 2.33–2.38 0.028" 0.721 0.826 0.042" 0.032" 0.017" 0.004"

Threonine 4.24–4.28 0.042" 0.825 0.723 0.063 0.038" 0.382 0.045"

Lysine 3.00–3.02 0.035" 0.634 0.638 0.053 0.035" 0.274 0.040"

Arginine 1.60–1.75 0.028" 0.058 0.063 0.025" 0.012" 0.029" 0.007"

Alanine 1.46–1.50 0.083 0.953 0.631 0.572 0.018" 0.548 0.017"

Myoinositol 4.05–4.07 0.642 0.713 0.724 0.010" 0.034" 0.031" 0.011"

Lactate 1.32–1.33 0.837 0.806 0.367 0.028" 0.037" 0.029" 0.006"

NAD 8.44–8.45 0.046" 0.057 0.061 0.019" 0.006" 0.038" 0.013"

AMP 8.59–8.60 0.037" 0.478 0.389 0.004" 0.035" 0.041" 0.037"

https://doi.org/10.1371/journal.pone.0188089.t002
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fashion. It should be noted that even though both the populations respond in a similar man-

ner, the relative concentrations of all the prick responsive metabolites are still significantly

higher in selected populations (Is) than control populations (Ss) (Fig 7, S6 Fig).

Impact of infection on metabolic profiles

Upon infection, the metabolic profiles get affected at the levels of fatty acids, carbohydrates,

organic acids, amino acids and energy related metabolites like NAD, AMP in both selected

and control populations (Figs 6 and 7). Again the direction of response is the same for both

selected and control populations in the sense that the change in a given metabolite post infec-

tion are similar in direction in both selected and control populations. However as can be seen

from Fig 7, the change in concentration in case of many significant metabolites (lactate, leu-

cine, proline, lysine, arginine, alanine, threonine) is less severe in case of selected populations

as compared to control populations, which shows more sharp change in concentrations upon

infection. Also, the relative concentrations of these metabolites are still significantly higher in

Ii populations than Si populations (Fig 7, S7 Fig). Two inferences can be drawn from all of the

above comparisons- (1) the selected I populations continue to have higher concentrations of

most of the significant metabolites with or without the treatments as compared to control pop-

ulations and (2) the metabolome of the selected populations seems to be slightly more robust

to changes due to treatments than control populations, indicating a better maintenance of

metabolic homeostasis during bacterial infection.

Implications of changes in metabolite levels due to selection and

treatments

With respect to certain metabolites, the immediate phenotypic response to infection/injury

and evolutionary response to infection seem to be in line with each other. For example, the

concentration of amino acids like proline, arginine, lysine, NAD, AMP, myoinositol

increases with infection/injury in the control populations and the I populations have higher

concentration of these metabolites even under un-infected conditions. However, looking at

concentration changes in certain other metabolites during proximate infection gives an

impression that evolutionary and immediate phenotypic responses push the metabolome in

opposite directions. For example, concentration of fatty acids, sugars, organic acids decreases

upon infection/injury in the control populations, yet the selected populations evolve to have

higher levels of these metabolites. Such discordance between phenotypic and evolutionary

responses has been documented extensively in flies [29]. Yet as we shall argue below, overall

selection seems to push the whole metabolome towards being better prepared to fight

infections.

In both the I and S regimes, post infection/injury, metabolites such as fatty acids, glucose,

succinate and citrate that are typically associated with energy-related pathways, decline in

concentration indicating that mounting a response to infection/injury is an energy intensive

process (Fig 7, Table 2, S2 Table). Similar to our results of decrease in fatty acids and carbohy-

drates, a decrease in fatty acids has previously been reported during recovery phase following

exposure to heat stress [14, 30] and during V.cholerae infection in drosophila [31] and decrease

in both fatty acids and carbohydrates has been reported during Listeria monocytogenes infec-

tion [6] wherein energy metabolism has been shown to get affected. Increase in concentration

of other metabolites like NAD, AMP, leucine and alanine (all associated with energy-yielding

pathways) post infection/injury also indicates increased energy requirements (Fig 7, Table 2,

S2 Table). Thus, given that energy requirements are high post injury/infection, one would
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expect our selected populations to be better prepared to fight infections in terms of having

higher concentrations of energy rich metabolites (fatty acids, sugars, organic acids, NAD,

AMP, ceratin amino acids) even under un-infected conditions. In line with this expectation,

we find higher concentrations of fatty acids, sugars, organic acids, NAD and AMP in I popula-

tions even under un-infected conditions (Fig 7, Table 2, S2 Table).

The concentration of many amino acids (proline, lysine, arginine) increases post infection/

injury in both the I and S populations. Amino acids are components of antimicrobial peptides

which are an important component of Drosophila immunity [32]. Hence, their increase post

infection is expected. Therefore, it is also expected that the selected populations may evolve to

have higher concentration of amino acids even under un-infected conditions to be better pre-

pared to handle infection. This is again borne out by the increased concentration of these

amino acids like proline, arginine, threonine in the un-infected I populations. Similarly, some

other amino acids like lysine which have a role in clot formation [33] undergo an increase

during infection in both the populations indicating a possibility of its role in clot formation

during infection/injury in our populations and are also present in higher quantities in selected

populations.

Lactate, an indicator of anaerobic metabolism during stressful conditions [34], increases at

a greater rate in the control populations post infection, indicating a possibility of higher stress

and energy requirements in control populations following infection. However, the increase in

lactate in the selected I populations is much lower, indicating that they have probably evolved

ways to handle infection related stress. This is further supported by the fact that myoinositol

which functions as messenger in signal transduction and helps in coping with stress [35–38]

was also present in higher concentration in the selected populations.

It is important to note that while both I and S regime flies show similar pattern with most

metabolites post infection/injury (for example amino acids like proline, arginine, molecules

like NAD, AMP, myoinositol increase in both I and S post infection/injury while fatty acids,

sugars like glucose, organic acids like succinate, citrate decrease in both I and S post infection/

injury), the magnitude of change is not always similar in I and S populations, indicating that

probably at least a part of the response to infection/injury has evolved to be different between

S and I populations.

Thus, in general, the overall push of selection seems to be towards better preparing the

metabolome to withstand and fight the harmful effects of infection.

Materials and methods

Fly stock

The fly stocks have been described in detail in [39]. The selected populations were derived

from a laboratory adapted population—BRB (Blue Ridge Baseline). BRB is an outbred popula-

tion started from 19 isofemale lines caught from the wild in Blue Ridge, USA. After about 10

generations, four replicate populations of BRB(1–4) were created. These independent replicate

populations are maintained on a 14-day discrete generation cycle, 12:12 light:dark regime,

25˚C temperature and 60–70% relative humidity. Every generation, about 70 eggs were trans-

ferred to 6 mL of standard banana-jaggery food, in 8 dram vials. 40 such vials were set up per

population. On the 12th day post egg collection, flies were transferred to a fly cage (25 cm

length × 20 cm width × 15 cm height) with standard banana-jaggery food and ad libitum live

yeast paste. On the 14th day post egg collection, a food plate was provided for 18 hours for ovi-

position. After 18 hours, eggs were collected at a density of 70 eggs per vial. The adult popula-

tion size of each replicate was maintained close to 2500 individuals.

Evolution of the metabolome

PLOS ONE | https://doi.org/10.1371/journal.pone.0188089 November 17, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0188089


Selection regime

The derivation and maintenance of the selection regime has been described in detail in [40].

Briefly, a total of three selection regimes were created from each BRB population- I (Infected

with pathogen), S (Sham Infected) and U (Unhandled control). For these NMR experiments,

two regimes were used–I (Infected with pathogen) and S (Sham Infected) whereas U

(Unhandled control) was omitted. With an aim to identify metabolites responsive to bacterial

infection, I regime was compared with S regime (as its control) to negate the effect of prick

injury from bacterial infection. Thus we had four I populations I(1–4) and four S populations

S(1–4). Since I and S populations bearing the same numerical subscript were derived from the

same BRB population, they were more closely related to each other than to any other popula-

tion. For example, I1 and S1were derived from BRB1 and were more closely related to each

other than to I2 or S2. These populations bearing the same numerical subscript were treated as

Random Blocks in the statistical analysis. Thus, I1 and S1 constituted Block 1 and so on. In the

I populations, on the 12th day post egg collection, 150 males and 150 females were infected

with a bacterial suspension of a gram-negative pathogen Pseudomonas entomophila. In the S

populations, 100 males and 100 females from S were pricked with a needle dipped in a 10 mM

MgSO4 solution. These flies were then maintained in cages (14cm length × 16cm width ×
13cm height) for four days during which ~40% of the flies in the I population died due to

infection. On 16th day, food plate was given for 18 hours for oviposition. After 18 hrs of egg

laying, eggs were collected at a density of 70 eggs per vial, with 10 such vials for each popula-

tion. All the populations were maintained on a standard banana-jaggery diet in a 12:12 light:

dark regime, 25˚C temperature and 60–70% relative humidity. Each Block containing two

populations (I and S) was handled independently on different days. Adult numbers of the S

populations were scaled according to the percentage survivorship in the I populations. The

number of flies in S was also increased when the survivorship in the I population changed,

most likely due to selection.

Bacterial stock

Pseudomonas entomophila(strain L48 (Pe)) was procured from Dr Brian Lazarro’s lab at

Cornell University, New York. The bacteriawas cultured in LB medium at 27˚C. For infection

during selection, an overnight culture of bacteria was subcultured by diluting it 1000 fold. Bac-

terial culture of optical density (OD) 1 at 600 nm was pelleted down and suspended in equal

volume of 10 mM MgSO4 to obtain a final OD 1. This bacterial suspension was used for infec-

tions. OD of the bacterial culture was subsequently increased whenever survivorship in I popu-

lations reached above 50%. Increase in OD was not required until five generations of selection.

Post five generations of selection, OD was increased every 2–3 generations in small incre-

ments. For infection during treatment, heat killed bacteria was used instead of live pathogen.

Final OD of the pelleted down bacteria was set at 1.5. Bacterial suspension was then heated at

92˚C for half an hour. It was then cooled down and used for infecting the standardized flies. It

was confirmed that the bacteria were killed by the treatment, by wiping a swab containing bac-

terial suspension on the surface of LB agar containing plate and looking for the colonies of bac-

teria after 24 hours. The absence of any bacterial colony confirmed that the bacteria had been

heat killed [39].

Standardization of flies

To equalize non-genetic parental effects, we passed all the I and S populations through one

generation of common rearing during which they were neither infected nor pricked. We refer

to these flies as standardized flies.
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Experimental set-up

All NMR experiments were done on the flies after 40 generations of selection. Flies from both

the regimes were transferred to cages on the 12th day and given live yeast paste for two days.

We then collected eggs from the standardized flies from the I and S populations at a standard

density and maintained at standard laboratory conditions (see above). On the 10th day post

egg collection, when the flies had just begun to eclose, virgin female flies were collected by sort-

ing the flies using light CO2 anesthesia and used for NMR experiments. Flies were handled at a

density of 20 females per vial. On the 12th day post egg collection (when the flies were 2–3 days

old as adults), flies from the both the I and S populations were randomly assigned to one of the

three treatments: (i) infected by pricking with a fine needle (Minutein pin 0.1 mm, Fine Sci-

ence Tools, CA) dipped in heat-killed bacterial suspension (bacteria suspended in 10 mM

MgSO4) in the thorax (labeled as Ii and Si respectively), (ii) infected with a needle dipped in

sterile 10 mM MgSO4 (labeled as Is and Ss respectively) and (iii) unhandled controls (labeled

as Iu and Su respectively). Treatment (i) in both I and S populations served to see the changes

in the metabolome due to immune response to bacterial infection whereas treatment (ii)

served to see the changes in the metabolome due to prick injury. Treatment (iii) identified the

basal differences in the metabolome of both the populations due to their different evolution.

Each treatment had 5 replicates, with each replicate having 20 flies to make a total of 100 flies

per treatment. There was no difference in body size between control and selected populations

[40]. Flies in the vials were flash-frozen, 6 hours after the treatment, by immersing the vials in

liquid nitrogen and then transferred to pre-labeled microfuges for NMR experiments.

NMR sample preparation

Flies from each treatment were mechanically homogenized using a battery run homogenizer

in 300 μL of ice-cold acetonitrile (50%) and centrifuged at 12000 rpm for 10 min at 4˚C. The

supernatant was transferred to new, pre-weighed tubes, lyophilized and stored at −80˚C until

the NMR experiments were performed. Immediately before the NMR measurements, the sam-

ples were rehydrated in 500 μL of D2O, containing 0.5mg/ml of an NMR reference 3-(tri-

methylsilyl)-propionicacid-D4 sodium salt (TMSP),and then transferred to 5mm NMR tubes.

NMR spectroscopy and data analysis

High-resolution NMR spectra were recorded at 298 K on a BrukerBiospin 400 Avance-III

spectrometer operating at a 1H frequency of 400 MHz and equipped with a 5 mm BBO rf pro-

behead. Three different kinds of 1D 1H NMR spectra were acquired: (i) One-dimensional

spectra with water presaturation achieved by cw irradiation applied during the relaxation

delay to suppress the residual HOD signal. (ii) One-dimensional spectra with water suppres-

sion using the NOESY presaturation sequence with a mixing time of 10 ms and (iii) a water-

suppressed Car-Purcell-Meiboom-Gill (CPMG) spin-echo pulse sequence optimized for a spin

echo delay time t of 300 μs (n = 400) and a total spin-spin relaxation delay (2nt) time of 240 ms

to achieve attenuation of fast-relaxing broad signals from larger molecules. The proton 1D

spectra were collected with a 90˚ pulse width of 12.25 μs, a relaxation delay of 1s, 32 scans, 64

K data points and a spectral width of 12 ppm. Data were zero-filled by a factor of 2 and the free

induction decays (FIDs) were multiplied by an exponential weighting function equivalent to a

line broadening of 1 Hz prior to Fourier transformation. Automatic phasing and polynomial

baseline correction was performed, and resonance peaks were referenced to the TMSP reso-

nance at δ = 0.00 ppm. For resonance assignment and metabolite identification, a set of two-

dimensional NMR spectra were recorded, including correlation spectroscopy (COSY), total

correlation spectroscopy (TOCSY), nuclear Overhauser effect spectroscopy (NOESY), and
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heteronuclear single quantum and multiple quantum coherence spectroscopy (HSQC,

HMQC). 2D 1H-13C heteronuclear spectra were obtained with a spectral width of 12 ppm and

220 ppm in the proton and carbon dimensions respectively, with 1K data points, 16 scans, 256

t1 increments and a recycle delay of 2s. The 2D homonuclear COSY and TOCSY spectra were

acquired with a spectral width of 12 ppm in both dimensions, with 1K data points, a recycle

delay of 2s, 16 scans and 256 t1 increments.

Metabolite identification

Metabolites were identified from peaks in the 1D proton NMR spectra and from proton-car-

bon coupling information obtained from 2D HSQC and HMQC experiments. Non-over-

lapped peak intensities that were identified as belonging to a single compound, were chosen

for quantification. Peak integrals were compared to the integral of the NMR internal standard

TMSP. Metabolite identification was confirmed by matching metabolite peaks with standard

NMR spectral databases such as the Biological Magnetic Resonance Data Bank (BMRB) http://

www.bmrb.wise.edu and the Madison Metabolomics Consortium Database (MMCD) http://

mmcd.nmrfam.wise.edu.

Statistical analysis

The entire range of resonances in the 1D 1H NMR spectra was used without binning for the

statistical analysis. Spectral data were converted into ASCII format and aligned using the Ico-
shift algorithm [27]. The spectral region between δ = 4.6 − 4.8 ppm was excluded from the

analysis, to remove errors due to the residual water signal. Data were normalized to the total

area, to be able to compare spectra with possibly different signal-to-noise ratios.

Multivariate statistical analysis was performed using SIMCA 14.0 software (Umetrics

Umea Sweden) and MetaboAnalyst 2.0 http://www.metaboanalyst.ca), a web-based platform

for metabolomics data analysis [41]. The data were Pareto-scaled and initially analyzed using

the unsupervised method of principal component analysis (PCA). Data points located out-

side the 95% confidence area of the Hotellings T2 ellipses in the PCA score plots were treated

as outliers and excluded from further analysis. The performance of the PCA model was eval-

uated using the coefficient Q2 (using the 7-fold internal cross-validation method [42]) and

the coefficient R2, defining the variance predicted and explained by the model, respectively.

The data were further analyzed using the supervised pattern recognition method of orthogo-

nal projections to latent structures-discriminant analysis (OPLS-DA), which maximizes the

class discrimination. The loadings plot was used to identify significant metabolites responsi-

ble for maximum separation in the OPLS-DA scores plot and these metabolites were ranked

according to their variable influence on projection (VIP) scores. VIP scores are weighted

sums of squares of the OPLS-DA weights, which indicate the importance of the variable. The

VIP score of the first principal component in the OPLS-DA model (VIP >1.0) was used to

screen significantly different metabolites. This was followed by identifying the significant

metabolites using the S-line plot which visualizes the covariance (p(ctr)) and correlation

coefficient (abs(p(corr)) between the variables and the classification score in the model. The

magnitude of covariance is difficult to interpret as it is scale dependent and influenced by the

intensity of the signal with respect to the noise level and thus will likely indicate variables

with large signal intensities. The correlation coefficient gives a linear indication of the

strength of the correlation and is independent of the intensity of the variable so it is a better

measure for the reliability of the variable in the classification process. Strongly discriminat-

ing variables have a clear covariance with a high absolute value for the correlation coefficient

[43]. The quality of the model was evaluated by the R2 and Q2 values, defining the variance
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explained (indicating goodness of fit) and the variance predicted by the model, respectively.

The performance of the OPLS-DA model was evaluated using CV-ANOVA (cross-validated

ANOVA) [44], where α-value <0.05 was considered to be statistically significant. Permuta-

tion analysis was further performed on the best model, using 1000 permutation tests with a

threshold p value of <0.05 indicating that none of the results are better than the original one

[45]. Hierarchical cluster analysis (HCA) was performed to create a tree dendrogram using

the complete linkage algorithm and the Euclidean distance between OPLS-DA scores. Fan

(polar) dendrograms were also generated using a MATLAB script (http://www.mathworks.

com/matlabcentral/fileexchange/21983-draw-a-polar-dendrogram), to better visualize the

clustering. Univariate analysis was also performed to confirm the statistical significance of

the metabolites identified. For all the two group comparisons, a t-test was performed on the
1H NMR peak integrals corresponding to the significant metabolites. Metabolites with

VIP>1, S-line plot abs(p(corr)>0.6 and t-test p-value <0.05 were then selected. Multiple

testing correction was also applied to adjust the individual p-value for each metabolite from

the t-test using the Benjamini-Hochberg method [46] with the level of significance selected

as 0.05. Two-way ANOVA was also performed on all the identified metabolites to test the

effect of selection, treatment and their interaction on each metabolite using the statistical

software package STATISTICA (StatSoft. Inc., Tulsa, Oklahoma).

Conclusions

Our study is the first to show the evolution of the metabolome in response to selection for

immunity. We show that the I regime selected for immunity is evolved to be better prepared to

handle infection than the S regime, through alterations in lipid, carbohydrate and amino acid

metabolisms. The NMR experiments provide tantalizing evidence for the important role

played by the Drosophilametabolome along its evolutionary trajectory, in response to selection

forincreased immunity.
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