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Abstract 
 
Axenfeld–Rieger Syndrome (ARS) is an autosomal dominant condition with both ocular and 
non-ocular manifestations. ARS is primarily caused by coding variants at the PITX2 or FOXC1 loci, 
yet many cases still remain undiagnosed. Here we used whole-genome sequencing to identify two 
non-coding structural variants associated with a typical presentation of PITX2-associated ARS: one 
with a 450 kb deletion removing a series of conserved enhancer elements distal to PITX2, and the 
second with a 12.5 Mb inversion displacing the PITX2 gene from these same enhancer elements. 
Neither variant disrupted the PITX2 gene itself, and therefore both were expected to reduce PITX2 
expression by disrupting its proximity or access to enhancer elements. Enhancer-disrupting 
intergenic inversions therefore represent a unique genetic mechanism for the development of ARS, 
which should be carefully considered in the context of ARS and other conditions without a 
conclusive genetic diagnosis. 
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Introduction 
 
Axenfeld–Rieger Syndrome (ARS) is a rare autosomal dominant condition, with primarily ocular 
manifestations. Key ocular features of ARS include posterior embryotoxon, iridocorneal adhesions, 
corectopia, and polycoria, with up to a 75% increased risk of developing glaucoma.1 Non-ocular 
syndromic features include dental anomalies (hypodontia, microdontia), mild craniofacial 
dysmorphism, and umbilical anomalies (redundant periumbilical skin, umbilical hernia).2–4 
 
ARS, as well as glaucoma associated with non-acquired ocular anomalies, is primarily caused by 
variation in PITX2 or FOXC1.5 Variants in these two genes account for approximately 70% of ARS 
cases, although it is unclear whether the remaining 30% are caused by undetected variants at 
these same loci, or others.6 Furthermore, the presence of microdontia/hypodontia and umbilical 
anomalies is highly specific for PITX2-associated ARS: in one case series these were observed in 
91% and 94% of cases with PITX2-associated ARS (n=59), as compared to 0% and 11% of 
FOXC1-associated ARS (n=69).6 
 
ARS-associated variants in PITX2 have provided some important insight into this question. Initially 
reported in 1996, PITX2 encodes a bicoid-like homeobox transcription factor that plays a vital role 
in regulating transcription during embryogenesis, particularly in the development of the eye and its 
anterior segment.7 The locus encodes at least three isoforms, one of which (PITX2c) exhibits 
cardiomyocyte specificity, and putative gain-of-function missense variants unique to this isoform 
(p.Pro41Ser) have recently been associated with atrial fibrillation.8 
 
Most ARS-associated PITX2 variants directly disrupt the canonical open reading frame via single 
nucleotide variants and short indels, or partial and full-length gene deletions.6 However, upstream 
non-coding deletions of different sizes have also been described in at least seven unrelated ARS 
families.9–14 These deletions all disrupt a series of conserved essential regulatory elements, with a 
common critical interval spanning three such elements (CE5-7, hg38 
chr4:110926950-111115957).9,14 Another two studies have identified balanced inversions or 
rearrangements disrupting PITX2.15,16 These variants all highlight the critical importance of 
conserved enhancer loci in ARS, as well as the need to carefully assess structural variation when 
investigating the genetic basis of ARS. 
 
Here we describe a unique genetic mechanism of ARS involving disruption of the PITX2 distal 
enhancer locus. Through short-read whole genome sequencing (WGS) and structural variant 
calling, we identified two non-coding structural variants: the first a non-coding 450 kb deletion, and 
the second a 12.5Mb inversion segregating within a family with a typical PITX2-associated ARS 
phenotype. While the PITX2 gene itself was not disrupted by either variant, its proximity to 
conserved enhancer loci was, with the inversion causing a significant spatial displacement of the 
gene from its enhancer. 
 
 
Methods 
 
Study participants 
Patients and family members were recruited as part of the Australian and New Zealand Registry of 
Advanced Glaucoma.5 Written informed consent was provided under protocols approved by the 
Southern Adelaide Clinical Human Research Ethics Committee (305–08), and adhering to the 
tenets of the revised Declaration of Helsinki. 
 
Exome and genome sequencing and analysis 
DNA was prepared from venous blood samples, after temporary storage at -80°C, using the 
QIAGEN DNeasy Blood and Tissue Kit (Hilden, Germany) and according to the manufacturer’s  
instructions. Whole exome sequencing was performed as previously described.17 PCR-free WGS 
was performed by the Clinical Research Sequencing Platform at the Broad Institute. Library 
construction was performed using a KAPA HyperPrep kit, with libraries dual-barcoded and 
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sequenced with 150 bp paired-end reads to a mean coverage of 30x. Alignment and calling of 
single nucleotide variants (SNVs) and insertions/deletions (indels) was performed using the 
Illumina DRAGEN (Dynamic Read Analysis for GENomics) pipeline. Structural variants (SV) were 
called using the GATK-SV pipeline (https://github.com/broadinstitute/gatk-sv).18 All variants were 
analysed using the seqr platform, and are represented in hg38 coordinates.19 
 
SNP genotyping and CNV calling 
Individuals from Family 1 were genotyped on either HumanOmniExpress-12-v1-0-K (I:2) or 
HumanCoreExome-24v1-0_A genotype (II:2) arrays. Each of the individuals reported here were 
members of larger batches of samples, with each batch assessed for quality using Illumina 
GenomeStudio. After export of ‘Genotype’, ‘Log R Ratio’ and ‘B Allele Frequency’, samples were 
assayed for CNV using acne (available at https://github.com/joshuamschmidt/acne), a nextflow 
pipeline for CNV calling that utilises PennCNV20 as the CNV caller. CNV calls were annotated and 
filtered using thresholds recommended in the PennCNV documentation. 
 
 
Results 
 
We investigated two kindreds both with a combination of ocular and systemic features typical of 
PITX2-associated ARS (Table 1), and phenotypic segregation suggesting autosomal dominant 
inheritance. 
 

 
Figure 1: Ocular and systemic features of Axenfeld Rieger Syndrome. Photographs of all affected family 
members, including (from left to right) the anterior segment of the right eye, left eye, teeth, and umbilicus. 
Corectopia and dental hypoplasia are evident in all individuals, with redundant periumbilical skin documented 
in two individuals, polycoria in two individuals, and bilateral penetrating keratoplasties in one individual. 
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Table 1: Clinical features of recruited family members. Y, years; BCVA, best corrected visual acuity; IOP, 
intraocular pressure; VCDR, vertical cup-to-disc ratio; CCT, central corneal thickness; RE, right eye; LE, left 
eye; CF, count fingers; HM, hand movements, CAKUT, congenital anomalies of the kidney and urinary tract. 
Data is presented as RE/LE for each individual. Clinical data from individual III:1 (Family 1) was not 
available. 
 

 Family 1 (g.4:110871515_111321256del) Family 2 (g.4:98141399_110685792inv) 

 I:2 (proband) II:2 II:2 (proband) III:1 III:2 

Age at last 
examination (y) 

66-70 46-50 26-30 6-10 0-5 

BCVA 6/12;6/12 prosthesis/CF 6/6;6/7.6 6/48;HM 3/4.8;3/4.8 

Highest IOP 
(mmHg) 

36/42 19 25 42 15 

VCDR 0.9/0.95 ./1.0 0.2;0.2 0.3;0.2 . 

Glaucoma Bilateral (advanced) Bilateral (advanced) Suspect LE . 

CCT (μm) 452/417 ./. 582/587 770/760 . 

Anterior segment Abnormal iris 
collarettes, peripheral 
anterior synechiae 

Rieger anomaly Rieger anomaly 
(iris hypoplasia, 
posterior 
embryotoxon, RE 
corectopia, LE 
polycoria) 

Peters anomaly, 
peripheral anterior 
synechiae 

Rieger anomaly 
(iris hypoplasia, 
posterior 
embryotoxon, 
corectopia, 
polycoria) 

Ocular surgery Bilateral 
trabeculectomies, 
bilateral cataract 
surgery, RE Baerveldt 
tube, LE Gunderson 
flap 

RE prosthesis, LE 
trabeculectomy, LE 
corneal graft 

. Bilateral corneal 
grafts, LE cataract 
surgery, 
LE Baerveldt tube 

. 

Systemic Hypodontia, umbilical 
hernia 

Hypodontia, 
umbilical hernia, stiff 
joints, double 
uterus, CAKUT 

Umbilical hernia, 
oligodontia, 
microdontia 

Redundant 
periumbilical skin, 
imperforate anus, 
hypodontia, 
microdontia, 
hearing loss 

Redundant 
periumbilical skin, 
hypodontia, 
microdontia 

Variant status ref/alt ref/alt ref/alt ref/alt ref/alt 

 
Family 1 was initially identified during a copy number variant analysis of genotyping array data (see 
methods), which revealed a potential non-coding deletion distal to the PITX2 locus, inferred to be 
482 kb in I:2 (g.4:110890464_111372690del) and 477 kb in II:2 (g.4:110891306_111368288del). 
These were further resolved on WGS, which confirmed a shared 450 kb deletion at 
(g.4:110871515_111321256del), overlapping a series of 6 conserved non-coding elements (CE5-9 
and CE15, Figure 2B). 
 
Based on the clinical presentation of Family 2 (II:2), in 2013 the complete coding sequence and 
intron-exon boundaries of FOXC1 and PITX2 were amplified by PCR and covered by capillary 
sequencing, and analysed for copy number variation by multiplex ligation-dependent probe 
amplification (MLPA), although neither assay revealed a likely genetic cause. Individual II:2 was 
also referred for karyotype studies and array CGH (BlueGnome Cytochip oligo ISCA (4080-5) 
8x60K array, 0.2Mb resolution), including a detailed examination of the FOXC1 and PITX2 loci. 
Both assays were reported as normal.  
 
Four members of Family 2 (I:2, II:2, III:1, and III:2) were then subjected to whole exome 
sequencing. There were no rare and predicted deleterious SNVs or short indels in any genes 
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associated with anterior segment dysgenesis, including missense, nonsense, and essential splice 
variants, although non-coding and structural variants could not be systematically examined. 
Manual inspection of all coding exons of FOXC1 and PITX2 also did not reveal any significant copy 
number variants to suggest a deletion or duplication, nor did a genome-wide analysis of copy 
number variation based on exome or genotyping array data (Schmidt et al., in preparation). 
 
Finally, the same four individuals were subjected to research-based whole genome sequencing. 
Again, close inspection of the FOXC1 and PITX2 loci did not reveal any rare SNVs or short indels 
with a predicted deleterious effect, nor did a careful manual inspection of coverage depth across 
both genes. A genome-wide structural variant callset was generated using the GATK-SV pipeline 
18: although this did not reveal any suspicious insertions or deletions at the FOXC1 and PITX2 loci, 
it did reveal a 12.54 Mb inversion on chromosome 4 (hg38, g.4:98141399_110685792inv), 
encompassing 66 genes including all coding exons of PITX2 (Figure 2). This inversion variant was 
present in a heterozygous state in the proband (II:2) and their affected children (III:1, III:2), but 
absent in II:2’s parent (I:2) who was unaffected. It was absent from the gnomAD SV v4.1.0 callset, 
and from a jointly-called dataset of 8920 alleles from a variety of rare disease patients and their 
family members. 
 
Since PITX2 was the most distal gene in the inverted region and adjacent to the distal breakpoint 
(TSS 43.7 kb proximal to the breakpoint) (Figure 2B), we hypothesised that displacement from an 
enhancer locus could explain the observed phenotype. This distal breakpoint was found to be 
proximal to a series of conserved PITX2 enhancer loci 9,14, including those deleted in Family 1 and 
other previously reported families (Figure 2B). The inversion variant would then be predicted to 
displace (and invert) the PITX2 gene another 12.54 Mb proximal to these enhancers, leading to a 
predicted reduction in PITX2 expression and haploinsufficient effect. 
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Figure 2: A 12.54 Mb inversion and 450 kb deletion at the PITX2 locus. (A) Schematic of chromosome 4, 
highlighting the g.4:98141399_110685792inv region in red.21 (B) Schematic of the PITX2 locus and 
surrounding region, demonstrating the location of the deletion and inversion variants described here (hg38, 
g.4:110871515_111321256del and g.4:98141399_110685792inv), along with previously reported PITX2 
enhancer deletions. Adapted from Protas et al. 2017.9 Note that only the PITX2 gene is shown for simplicity: 
another 65 genes are within the inverted region indicated for Family 1. Read-level support for the 
g.4:110871515_111321256del (C) and g.4:98141399_110685792inv (D) variants. The absence of mapped 
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reads at the proximal breakpoint in (C) is due to the presence of a common 4.89kb deletion in trans 
(4:111316365-111321256, gnomAD v4.1.0 NFE AF = 0.1243).22 
 
 
Discussion 
 
Here we describe two ARS families with non-coding structural variants: the first a 450 kb deletion 
(g.4:110871515_111321256del), and the second a 12.54Mb inversion 
(g.4:98141399_110685792inv). Both disrupt a series of conserved enhancer elements distal to the 
PITX2 gene, three of which (CE5-7, hg38 chr4:110926950_111115957) form part of a shared 
critical interval across 7 previously reported families with enhancer deletions (Figure 2B). In the 
case of the deletion observed in Family 1 these same elements are lost (in addition to CE8, CE9, 
and CE15), and in the case of the inversion in Family 2 these same elements become displaced 
from the PITX2 gene body. 
 
In light of recurrent non-coding deletions at the PITX2 locus, the haploinsufficient nature of 
PITX2-associated ARS, and the highly specific phenotype observed here, the most likely 
consequence of the Family 2 inversion appears to be a loss of PITX2 expression due to the 
displacement of the PITX2 gene body from its enhancer loci. A similar mechanism may also be at 
play in two ARS cases associated with balanced translocations t(4;16) and t(4;11)), where the 
breakpoints lie near the PITX2 gene although were not known to disrupt it.23 We also note that a 
similar gene-sparing inversion mechanism (involving the PAX6 and PITX2 loci) has also been 
mentioned in conference proceedings 24, although these are yet to be published.  
 
In summary, in addition to enhancer-disrupting deletions, intergenic inversions represent a unique 
genetic mechanism for the development of ARS, which should be carefully considered in any ARS 
families, or indeed any suspected monogenic condition, where a causal variant has not been 
confidently assigned.  
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