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Abstract

The ‘‘Spanish’’ pandemic influenza A virus, which killed more than 20 million worldwide in 1918-19, is one of the serious
pathogens in recorded history. Characterization of the 1918 pandemic virus reconstructed by reverse genetics showed that
PB1, hemagglutinin (HA), and neuraminidase (NA) genes contributed to the viral replication and virulence of the 1918
pandemic influenza virus. However, the function of the NA gene has remained unknown. Here we show that the avian-like
low-pH stability of sialidase activity discovered in the 1918 pandemic virus NA contributes to the viral replication efficiency.
We found that deletion of Thr at position 435 or deletion of Gly at position 455 in the 1918 pandemic virus NA was related
to the low-pH stability of the sialidase activity in the 1918 pandemic virus NA by comparison with the sequences of other
human N1 NAs and sialidase activity of chimeric constructs. Both amino acids were located in or near the amino acid resides
that were important for stabilization of the native tetramer structure in a low-pH condition like the N2 NAs of pandemic
viruses that emerged in 1957 and 1968. Two reverse-genetic viruses were generated from a genetic background of A/WSN/
33 (H1N1) that included low-pH-unstable N1 NA from A/USSR/92/77 (H1N1) and its counterpart N1 NA in which sialidase
activity was converted to a low-pH-stable property by a deletion and substitutions of two amino acid residues at position
435 and 455 related to the low-pH stability of the sialidase activity in 1918 NA. The mutant virus that included ‘‘Spanish Flu’’-
like low-pH-stable NA showed remarkable replication in comparison with the mutant virus that included low-pH-unstable
N1 NA. Our results suggest that the avian-like low-pH stability of sialidase activity in the 1918 pandemic virus NA contributes
to the viral replication efficiency.
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Introduction

The ‘‘Spanish’’ pandemic influenza A virus, which killed more

than 20 million worldwide in 1918-19, is one of the serious

pathogens in recorded history. Reverse genetics viruses with the

1918 virus genes have demonstrated that PB1 [1,2], hemagglutinin

(HA) [3], and neuraminidase (NA) genes [1,4,5] play critical roles

in the high virulence and replication of the virus. Phylogenetic

analysis of the gene sequences of the 1918 virus suggested that the

virus originated from an avian source [6]. From analysis of N1 NA

gene sequences, the 1918 virus NA gene has been suggested to

share many characteristics with both mammalian and avian

viruses. From analysis of N1 NA protein sequences, the 1918 virus

NA gene was placed within and near the root of the avian clade

[7]. However, there has been no study in which the origin of the

1918 virus NA gene was estimated by function or nature of the NA

protein.

Influenza virus NA is important for not only the release of newly

formed virions from infected cells but also the initiation of the viral

infection [8–10]. We have reported that sialidase activity of most

of human and swine epidemic viruses irreversibly disappeared in

an acidic condition (pH 4.0–5.0). In comparison with them, all of

the pandemic N2 NA viruses (‘‘Asian Flu’’ in 1957 and ‘‘Hong

Kong Flu’’ in 1968) and all types of duck viruses tested maintained

low-pH stability of sialidase activity in the NAs [11,12]. We have

identified the N2 NA amino acids responsible for the low-pH

stability of the A/Hong Kong/1/68 (H3N2) virus [13]. Four

reverse-genetic viruses were generated from a genetic background

of A/WSN/33 (H1N1) that included parental N2 NAs of 1968

pandemic (H3N2) and epidemic (H2N2) strains or their counter-

part N2 NAs in which low-pH stability of the sialidase activity was

changed by substitution of one or two amino acid residues. The

transfectant viruses bearing low-pH-stable sialidase activity of N2

NA showed obvious replication efficiency both in vitro and in vivo in
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comparison with the viruses bearing low-pH-unstable sialidase

activity and that the viral sialidase activity in late endosome/

lysosome traffic enhanced influenza A virus replication [10].

In the present study, we made a comparison of the low-pH

stability of sialidase activity between 1918 pandemic and epidemic

virus N1 NAs by measuring sialidase activities of cells genetically

expressing NAs. We found that the 1918 NAs had low-pH stability

like that of pandemic virus N2NAs and avian virus NAs. The 1918

NAs are thought to have inherited the avian virus-like property at

the protein level, although the sequence of NA genes had both

characteristics of avian and mammalian viruses. Experimental data

for chimeric N1 NAs showed that a deletion and substitutions of two

amino acid residues in the 1918 pandemic virus NA were associated

with the low-pH stability of sialidase activity of the NA.

Additionally, reverse genetics viruses including the low-pH-stable

or low-pH-unstable N1NA showed that the low-pH stability of

N1NA enhanced virus replication. This is the first study showing

that the low-pH stability of sialidase activity detected in the 1918

NA correlates with enhanced virus replication. The low-pH stability

of the 1918 NA confirmed that the 1918 NA is consistent with avian

virus in origin. Our studies suggest that the low-pH stability of NA

contributes to the pandemic potential of human influenza A viruses.

Results and Discussion

Measurement of the low-pH stabilities of N1NA sialidase
activities

To evaluate the low-pH stability of the 1918 NAs, we measured

sialidase activities of cells genetically expressing each N1 NA from

1918 pandemic viruses, A/New York/1/18 or A/South Carolina/

1/18 (1918NA) and A/Brevig Mission/1/18 (1918 L256FNA,

GenBank accession number AF25036) [7], and each N1 NA from

epidemic virus strains, A/WSN/33 (WSN33NA, GenBank

accession number L25817), A/USSR/92/77 (USSR77NA, Gen-

Bank accession number CY009286), A/Texas/91 (Tex91NA,

GenBank accession number CY009318) and A/Kawasaki/176/02

(Kaw02NA), and N1 NA from a duck virus strain, A/duck/849/

3/80 (Duck80NA), after preincubation for 10 min under acidic

conditions (pH 4.0 and 5.0). The 1918 virus NA gene had been

sequenced from A/South Carolina/1/18, A/New York/1/18 and

A/Brevig Mission/1/18, respectively [7]. One nucleotide (at

position 788) are known to be heterogeneous within A/Brevig

Mission/1/18 NA with two-thirds of clones having a C

(phenylalanine at amino acid 256) and the rest an A (leucine at

256) at this site. We therefore used two types of 1918 virus NA

Figure 1. Low-pH stability of sialidase activity of the 1918 virus NA. A, Low-pH stabilities of N1 NA sialidase activities. N1 NA-expressing cells
transfected with the NA genes of the 1918 virus (1918 and 1918 L256F), human H1N1 viruses (WSN33, USSR77, Tex91 and Kaw02) or duck H4N1 virus
(Duck80) were incubated at pH 4.0 (closed column), 5.0 (hatched column) and 6.0 (open column) and sialidase activities were measured. Sialidase
activities were expressed as a percentage of each activity at pH 6.0. B, Quantitation of NA expression on the cell surface. After fixation of cells with
paraformaldehyde, NA expression on the cell surface was detected by rabbit anti-N1 NA polyclonal antibody and analyzed with a flowcytometer.
Mean fluorescent intensity (MFI) was expressed as that relative to mock. C, Sialidase activity at NA expression levels of (A) under pH 6.0. Sialidase
activities were expressed as a percentage of that of the 1918 virus NA.
doi:10.1371/journal.pone.0015556.g001

The Low-pH Stability of 1918 Pandemic Virus N1NA

PLoS ONE | www.plosone.org 2 December 2010 | Volume 5 | Issue 12 | e15556



genes (1918NA and 1918 L256FNA). 1918NA and 1918

L256FNA, but not WSN33NA, USSR77NA, Tex91NA and

Kaw02NA, maintained sialidase activity under acidic conditions of

pH 4.0 and 5.0 as did Duck80NA, which is representative of low-

pH-stable NAs (Figure 1A). We measured NA expression on the

cell surface by using a flow cytometer. Mean fluorescent intensities

(MFI) of NA-expressing cells were 1 to 2-times higher than that of

mock-treated cells (Figure 1B). Sialidase activities of NA-

expressing cells were compared at the optimal condition

(pH 6.0) as shown in Figure 1C. Although the amount of the

low-pH stable 1918NA on the cell surface was similar to those of

the low-pH unstable Tex91NA and Kaw02NA, sialidase activity of

the 1918NA at pH 6.0 was about two-times higher than those of

Tex91NA and Kaw02NA (Figure 1B–C). Absolute sialidase

activity of 1918NA as well as Duck80NA also showed an avian

virus-like property [14]. Calcium ions are known to be important

for the enzyme activity of influenza virus NAs [15]. It has been

reported that influenza viruses reach the early endosome after

approximately 10 min of infection and late endosome with a low

pH after 40–60 min [16]. Calcium uptake via endocytosis is

known to rapidly release from acidifying endosomes. Ca2+

concentration in the endosomes of fibroblast cells after incubation

for 10 minutes in a solution containing 2 mM CaCl2 was

3.961.2 mM [17]. We therefore measured the degree of low-pH

stabilities of the NA-expressing cells with 10 mM acetate buffer

(pH 4.0, 5.0, and 6.0) containing 5 mM CaCl2. We confirmed that

the 1918 N1 NAs but not USSR77NA had avian-like low-pH

stability under the condition (Figure S1).

Degree of the low-pH stability of the 1918 NA
We measured the degree of low-pH stability of the 1918 NA.

NA-expressing cells were preincubated at pH 4.0, 5.0 and 6.0 for

0–60 min before addition of an enzymatic substrate. The cut-off

values for assessing loss of the sialidase activity at pH 4.0 and 5.0

were determined by the activities of WSN33NA, USSR77NA,

Tex91NA and Kaw02NA in Figure 1A. The cut- off values was

0.26 at pH 4.0 and 13.5 at pH 5.0, respectively. Sialidase activity

of the low-pH unstable USSR77NA irreversibly disappeared at

0 min at pH 4.0 and 5 min at pH 5.0 (Figure 2A), but sialidase

activity was maintained after preincubation for over 60 min at

pH 4.0 and 5.0 in the low-pH stable Duck80NA (Figure 2B).

Sialidase activity was maintained until preincubation for 30 min at

pH 4.0 and for over 60 min at pH 5.0 in the NA of the 1918 virus

(Figure 2C). The median values of the sialidase activity at pH 4.0

were compared between USSR77NA, Duck80NA and 1918NA.

The median values of USSR77NA, Duck80NA and 1918NA were

0.19, 26.6 and 18.8, respectively. Taken together, these results

indicate that the NA of the 1918 virus strains was originated from

an avian source. Like human pandemic N2 viruses, the low-pH

stability of the NA was thought to contribute to the pandemic

potential for the 1918 virus. However, the low-pH stability of

1918NA was slightly weaker than that of Duck80NA, suggesting

that the 1918 virus was adapting from avians to humans during

the pandemic period in 1918–1919.

Identification of amino acid residues responsible for the
low-pH stability of the 1918 NA

To specify determinant residues in the low-pH stability of the

1918 virus or recovered residues of low-pH stability in the low-pH-

unstable USSR77NA, we generated 6 chimeric N1 NA genes

between the 1918 virus and USSR77 (Figure 3A). Chimeras 2, 4

and 5 had low-pH stability like the 1918 virus, but other chimera

NAs had no sialidase activity at pH 4.0 and 5.0 like USSR77NA

(Figure 3B). Chimera 5 demonstrated that the NA amino acid

region between 426 and 457 was essential for maintenance of the

low-pH stability in the 1918 virus. Amino acid comparison within

this region among 1918NA, USSR77NA, Tex91NA, Kaw176NA

and Duck80NA suggested that each alteration at positions 430,

Figure 2. Time-dependency on the low-pH stability of sialidase
activity of the 1918 virus NA. 293T cells genetically expressing each
N1 NA from USSR77 (A), Duck80 (B) and 1918 (C) viruses were incubated
for the indicated times at pH 4.0 (closed column), 5.0 (hatched column)
and 6.0 (open column). Then sialidase activities were measured at each
pH and expressed as a percentage of each activity at pre-incubation
time of 0 min at pH 6.0.
doi:10.1371/journal.pone.0015556.g002
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432, 434, and 455 (USSR77 N1 numbering) or deletion at position

435 in the 1918 virus NA could determine the low-pH stability

(Figure 3C). Furthermore, we performed mutations between the

1918 NA and USSR77 NA at these positions. In the 1918 NA,

insertion of Thr at 435 and alteration from Gly to Asn at 455

diminished sialidase activity at pH 4.0 (Figure 4A). Conversely, in

the USSR77 NA, deletion of Thr at 435 and 2 alterations from

Arg to Gln at 430 and from Asn to Gly at 455 maintained sialidase

activity at pH 4.0 and 5.0 (Figure 4B). Single alteration at 430 or

455 in the 1918 NA also decreased the low-pH stability. However,

alteration at 430 or 455 in USSR77 NA did not contribute to the

low-pH stability. In the three-dimensional structure of A/Brevig

Mission/1/18 NA, Gln and Thr at positions 430 and 435 were

located near the active site, the calcium ion binding site and the

subunit interface of native NA homotetramer. Gly at position 455

was one of the residues constituting the subunit interface

(Figure 4C). Arg and Phe at positions 344 and 466 (N2

numbering), responsible for the low-pH stability of the pandemic

A/Hong Kong/1/68 N2 NA, were also located near such a site

[13]. Substitutions of these positions in N1 and N2 NA had a high

potential to confer conformational change to the overall native NA

structure, strongly suggesting that the low-pH stabilities of sialidase

activity were dependent on the structure of the native NA.

The low-pH-stable N1NA enhances virus replication
We have found that low-pH stability of pandemic virus N2 NA

increases virus replication [10]. To evaluate the contribution of

low-pH-stable N1 NA to virus replication, we generated reverse

genetics viruses (in the A/WSN/33 H1N1 background) possessing

the low-pH-unstable wild-type USSR77 NA (USSR77NA) or the

low-pH-stable N1 NA (mutant) by a deletion of Thr at 435 and 2

alterations from Arg to Gln at 430 and from Asn to Gly at 455 of

the USSR77 NA (Figure 5A). As expected, the mutant had low-pH

stability but USSR77NA did not (Figure 5B). Focus and plaque

sizes of the mutant were larger than those of USSR77NA

(Figure. 5C). Statistical analysis of focus area showed a significant

difference between USSR77NA and the mutant (Figure 5D). Low-

pH stability of the mutant significantly enhanced virus replication,

coinciding with results for focus and plaque sizes (Figure 5E).

These results demonstrate that the low-pH stability of N1 NA in

the 1918 virus contributes to virus replication.

Characterization of the 1918 pandemic virus reconstructed by

reverse genetics suggests that the 1918 NA activity facilitates HA

cleavage [5]. The A/WSN/33 N1 NA abrogates the need for

trypsin by conversion of plasminogen to plasmin, which facilitates

HA cleavage, resulting in increased virus replication [18].

However, the NA-dependent spread of the 1918 virus was not

due to plasminogen recruitment and NA facilitating HA cleavage

by the 1918 NA [19]. Avian influenza viruses have both strong NA

hemadsorption activity to chicken red blood cells and efficient

hydrolysis of macromolecular substrates, but the NA of the 1918

virus differed from avian N1 NAs by reduced hemadsorption

activity and less hydrolysis of macromolecular substrates. The NA

of the 1918 virus might have already differed from its putative

avian ancestor in birds [20]. This speculation is supported by the

intermediate degree of low-pH stability in the 1918 NA between

Figure 3. Low-pH stabilities of chimeric NAs between the 1918 NA and the USSR77 NA. A, Scheme of chimera NAs between the 1918 virus
(1918) and USSR77. B, Low-pH stabilities of sialidase activities of chimera NAs. Sialidase activities were expressed as a percentage of each activity at
pH 6.0. C, Comparison of NA amino acid sequences at positions 429 and 457 (USSR77 N1 numbering) among the viruses tested. c, Comparison of NA
amino acid sequences of tested viruses at positions between 429 and 457 (USSR77 N1 numbering).
doi:10.1371/journal.pone.0015556.g003

The Low-pH Stability of 1918 Pandemic Virus N1NA

PLoS ONE | www.plosone.org 4 December 2010 | Volume 5 | Issue 12 | e15556



the human NA and the avian NA (Figure 2). Our study is the first

research showing that the nature of the 1918 NA correlates to

enhanced virus replication.

The low-pH stability of the 1918 NA supports the origin from

avian NA. Determinants (deletion of Thr at position 435 and Gly

at position 455) of the low-pH stability of the 1918 virus N1 NA

were also conserved in highly pathogenic H5N1 viruses [21].

Further studies are needed to confirm that H5N1 virus NAs are

predicted to have low-pH stability which contributes to the viral

replication efficiency and a pandemic potential.

Materials and Methods

Viral NA genes and plasmids
The NA gene of the 1918 virus inserted into the pHH21

plasmid vector and the NA gene of the A/WSN/33 virus (WSN)

inserted into the pCAGGS/MCS expression plasmid vector were

prepared as described previously [10,13]. RNA genomes of

influenza A viruses, A/Texas/91 (H1N1), A/USSR/92/77

(H1N1), A/Kawasaki/176/02 (H1N1) and A/duck/849/3/80

(H4N1), were isolated and converted to cDNAs. Each NA gene

was inserted into the multicloning site between the EcoRI site and

the XhoI site of the pCAGGS/MCS expression plasmid vector.

Measurement of sialidase activity on cell-expressed NA
Human embryonic kidney 293T cells [22] were maintained in

high-glucose Dulbecco’s modified medium supplemented with

10% fetal bovine serum (FBS). 293T cells at 70% confluency in a

24-well tissue culture plate were transfected with 1 mg/well of each

pCAGGS expression vector using TransIT-293 (Mirus, Madison,

WI). After incubation for 24 h at 37uC, the transfected cells were

collected by suspension with phosphate-buffered saline (PBS;

1.2 ml/well). Fifty microliters of each cell suspension was

transferred into new microtubes and centrifuged. The cell pellets

were incubated with 50 ml of 10 mM acetate buffer (pH 4.0, 5.0,

and 6.0) at 37uC for 10 min and then reacted by addition of 2.5 ml

of 2 mM 29-(4-methyl-umbelliferyl)-N-acetylneuraminic acid

(4MU-Neu5Ac; Sigma-Aldrich Corp., Missouri) at 37uC for

30 min. The reaction was stopped by addition of 200 ml of

100 mM sodium carbonate buffer (pH 10.7). Then fluorescent

intensity (Ex, 355 nm; Em, 460 nm) was measured with a Wallac

1420 ARVOsx multi-label counter (Perkin Elmer, Waltham, MA).

Sialidase activities (%) of the cell-expressed NA were expressed as

a percentage of that at pH 6.0 of viral NA.

Flowcytometric analysis
The transfected cells in a 24-well plate were collected by

suspension with PBS (500 ml/well). After fixation with 4%

paraformaldehyde at room temperature for 10 min, NA expressed

on the cell surface was detected by rabbit anti-N1 NA polyclonal

antibody (Abcam, Cambridge, UK; ab21304) and fluorescein

isothiocyanate (FITC)-conjugated goat anti-rabbit IgG antibody

(Invitrogen, Carlsbad, CA). The mean fluorescent intensity (MFI)

of the cells was measured using FACS Canto II flow cytometer

(BD, Franklin Lakes, NJ). Relative MFI (%) of NA-expressing cells

were expressed as a percentage of that of mock-treated cells.

Generation of chimeric and mutated NAs
Utilizing shared restriction enzyme sites for PstI, VspI, and BalI

(at the 1918 virus N1 NA nucleotide positions 974, 1295, and

Figure 4. Determinant residues in the low-pH stabilities of sialidase activities of the 1918 and USSR77 NA. A–B, The low-pH stabilities
of sialidase avtivities of mutated NAs from the 1918 virus (A) or USSR77 (B). ‘‘+T’’ and ‘‘-T’’ indicate insertion and deletion of Thr, respectively.
C, Location of amino acid residues at positions 430 (red), 435 (orange) and 455 (light blue) on the NA dimer structure. Residues in the active site
(yellow) with zanamivir (stick model), calcium ion binding site (green) and subunit interface (purple and light blue) are shown in the structure.
doi:10.1371/journal.pone.0015556.g004
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1390) among the pCAGGS plasmid vectors containing the low-pH

stable 1918 virus NA and the low-pH unstable USSR77 NA, we

generated 6 chimeric constructs (Figure 3A).

NA genes were mutated according to the procedure of the

QuickChange II Site-directed Mutagenesis kit (Stratagene, La

Jolla, CA) by using respective mutated primer pairs. The mutated

NA genes generated on the pGEM-T easy vector (Promega,

Madison, WI) or pHH21 were amplified and inserted into

pCAGGS/MCS multi cloning sites between EcoRI and XhoI.

Generation of reverse genetics viruses
Reverse genetics in the A/WSN/33 H1N1 background [23]

was performed using the pHH21 vector containing the wild-type

USSR77 NA gene or mutated USSR77 NA gene (a deletion of

Thr at 435 and 2 alterations from Arg to Gln at 430 and from Asn

to Gly at 455), instead of the pHH21 vector containing the WSN

NA gene. Viruses were propagated using Madin-Darby canine

kidney (MDCK) cells [24] in a serum free medium (SFM),

Hybridoma-SFM (Invitrogen Corp., Carlsbad, CA) containing

acetylated trypsin (2.0 mg/ml).

Concentrated viruses were diluted with 100 mM acetate buffer

(pH 4.0 and 5.0) or 100 mM phosphate buffer (pH 6.0). Viruses

(protein of 300 ng) were incubated in each buffer at 37uC for

10 min and then reacted by addition of 5.0 ml of 2 mM 4MU-

Neu5Ac at 37uC for 30 min. The reaction was stopped by addition

of 100 ml of 100 mM sodium carbonate buffer (pH 10.7). Then

fluorescent intensity was measured. Sialidase activities (%) were

expressed as a percentage of that at pH 6.0 of viral NA.

Figure 5. Efficient virus replication of the H1N1 virus possessing low-pH-stable NA. A, Mutated amino acid residues (USSR77 N1
numbering) in the low-pH-unstable NA (USSR77 NA) modified to the low-pH-stable NA (Mutant). ‘‘2’’ indicates deletion of an amino acid. B, Low-pH
stabilities of sialidase avtivities of the viruses possessing USSR77NA or Mutant. C, Focus and plaque images of the viruses possessing USSR77NA or
Mutant. D, Comparison of focus area between the viruses possessing USSR77NA (n = 28) and Mutant (n = 23). Bar indicates median. *, p,0.01 Mann-
Whitney U test. E, Comparison of virus replication between the viruses possessing USSR77NA (closed circle, n = 3) and Mutant (open circle, n = 3).
*, p,0.01 unpaired Student’s t test.
doi:10.1371/journal.pone.0015556.g005
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Focus assay and virus titration
MDCK cells were maintained in Eagle’s minimum essential

medium supplemented with 5% FBS. Confluent monolayer

MDCK cells on a 6-well tissue culture plate were incubated with

log dilutions of the virus in SFM for 1.0 h at 37uC. The infected

monolayers were then overlaid with a solution of SFM containing

acetylated trypsin (2.0 mg/ml) and 0.8% agarose. The monolayers

were incubated at 37uC for 72 h. Cells were fixed with 2.0 ml/well

of ethanol: acetic acid (v/v = 5 : 1) solution at 4uC overnight. Viral

antigens in cells were reacted with anti-influenza A virus

nucleoprotein monoclonal antibody (4E6) for 30 min and then

with horseradish peroxidase-conjugated goat anti-mouse IgG+M

(Jackson Immuno Research, West Grove, PA) for 30 min at room

temperature. Viral foci were stained as previously described [25].

Area of stained focus was measured using Image J release 1.40 g

(National Institutes of Health, USA, http://rsb.info.nih.gov/ij/).

Virus replication
Confluent monolayer MDCK cells on a 12-well tissue culture

plate were infected with 0.0001 of multiplicity of infection (MOI)

of viruses at 37uC for 1.0 h. After washing viruses with 500 ml of

PBS, cells were incubated in SFM containing acetylated trypsin

(2.0 mg/ml) at 37uC. At 12, 16, 20 and 24 h, supernatants of cells

were recovered. Virus titers in the supernatants were measured by

focus assay.

Three-dimensional structure
Structure of the NA dimer (PDB ID, 3B7E) was depicted using

DeLano Scientific PyMOL release 1.11 (DeLano,W.L. The

PyMOL Molecular Graphics System, http://pymol.sourceforge.

net).

Supporting Information

Figure S1 Effect of Ca2+ on Low-pH stability of sialidase
activity of the 1918 virus NA. 293T cells genetically expressing

each N1 NA from USSR77 and 1918 viruses were incubated with

10 mM acetate buffer (pH 4.0, 5.0, and 6.0) containing 5 mM

CaCl2 at 37uC for 30 min and sialidase activities were measured.

Sialidase activities were expressed as a percentage of each activity

at pH 6.0. As a control, 10 mM acetate buffer (pH 4.0, 5.0, and

6.0) without CaCl2 was used.

(TIF)
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