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Crystalline/particulate substances trigger a plethora of signaling events in host cells. 
The most prominent consequence is the inflammatory reactions that underlie crystal 
arthropathies, such as gout and pseudogout. However, their impact on our health was 
underestimated. Recent work on the role of cholesterol crystal in the development of 
atherosclerosis and the harm of environmental particulates has set up new frontiers in 
our defense against their detrimental effects. On the other hand, in the last 100 years, 
crystalline/particulate substances have been used with increasing frequencies in our 
daily lives as a part of new industrial manufacturing and engineering. Importantly, they 
have become a tool in modern medicine, used as vaccine adjuvants and drug delivery 
vehicles. Their biological effects are also being dissected in great detail, particularly with 
regard to their inflammatory signaling pathways. Solid structure interaction with host 
cells is far from being uniform, with outcomes dependent on cell types and chemical/
physical properties of the particles involved. In this review, we offer a systematic and 
broad outlook of this landscape and a sage analysis of the complex nature of this topic.
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iNtRODUctiON

Solid amorphous/crystalline/fibrous particles are common in our environment. Looking outward, 
all life forms are exposed to particles varying in size, chemistry, and the state of agglomeration in the 
surroundings. With the technological advancements, human populations are facing new variations 
related to the exposure to environmental and/or occupational pollutants/hazards/toxins. In recent 
times, nanotechnologies bring ultrafine particles into our lives (1). Therefore, we are in an ever-
changing world of particulate substances. Looking inward, several essential biological components 
are in delicate balance near the point of precipitation, including nucleic acid metabolites, lipids, and 
ions. Some forms of solidification, such as cholesterol crystal (CC) formation and calcification of 
joints, are a part of aging physiology. Other precipitations, such as monosodium urate (MSU) (2), can 

Abbreviations: Alum, trivalent aluminum salts, including ALOH and AlPO4; BCP, basic calcium phosphate; CASR, calcium-
sensing receptor; CC, cholesterol crystal; CPPD, calcium pyrophosphate dihydrate; CVD, cardiovascular disease; DC, dendritic 
cell; LDH, layered double hydroxides; LDL, low density lipoprotein; HDL, high density lipoprotein; LLOMe, L-leucyl-L-leucine 
methyl ester; MLKL, mixed lineage kinase domain-like; MSU, monosodium uric acid crystal; NADPH, nicotinamide adenine 
dinucleotide phosphate oxidase; NET, neutrophil extracellular traps; NLRP3, NACHT, LRR, PYD domains-containing protein 
3; RIPK1/RIPK3, receptor-interacting serine/threonine-protein kinase 1/3; ROS, reactive oxygen species; SERCA, sarcoplas-
mic/ER Ca2+-ATPase; TXNIP, thioredoxin-interacting protein; TLR, toll-like receptor; VLPs, virus-like particles.
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lead to acute inflammation and tissue damage. In addition, with 
advancements in modern medicine, pharma-biotech companies/
institutes introduce particles in formulation development for vac-
cination, drug delivery and cancer therapy. Compared with other 
areas of biomedical research, so far there has not been a discipline 
dedicated to studying how hosts respond to solid structures.  
As such, our understanding and theories are mostly fragmented, 
creating a hidden deficit in our effort to control and utilize this 
class of materials.

Host responses to solid/crystalline particles have been studied 
by scientists and clinicians for decades for health concerns. 
Historical lessons are vivid. One of the most memorable is the 
chrysotile and amphibole asbestos-induced respiratory deficien-
cies and mesothelioma (3, 4). The impact was that guidelines were 
imposed by regulatory bodies to strictly ban its consumer use and 
minimize it human exposure of occupational operators (https://
www.epa.gov/asbestos). In recent years, cellular signaling events 
associated with crystal-triggered inflammation have become 
an intensely investigated topic (5). Some areas are covered with 
extreme depths, including inflammasome activation (6), cell 
death (7–9), reactive oxygen species (ROS) production (10, 11), 
and adjuvanticity (12, 13). However, crystals vary greatly in their 
geometry and chemistry. Host cells with whom they interact are 
also diverse. Therefore, the speedy accumulation of newly gained 
knowledge has not led to a sufficient number of consensuses.  
In addition, a solid structure/host cell response cannot be com-
prehended at any given cross section. It is a chain of events from 
crystal formation/entry, cell membrane binding, intracellular 
signaling cascades, cytokine release, cell death, secondary host 
responses, etc. In this review, we aim to integrate several less 
illuminated areas of cell responses to solid particles, including 
physiochemical properties, nanoparticles, particulate adjuvants, 
and ongoing debates regarding their activation mechanisms.  
In other words, we offer a panoramic view of this interesting topic.

PHySicaL aND cHemicaL PROPeRtieS

While research on signaling events in host response to solid 
particles is currently very active, the study of their chemical 
and physical properties remains a widely pursued subject.  
As particles under analysis and experimental readouts vary, it is 
hard to draw a set of conclusions with any precision. The over-
arching observations are: (1) Size of any given solid structure has 
a great impact on its biological effects. (2) A given volume of a 
particulate substance can have different effects depending on their 
geometric parameters. (3) Surface chemistry, including coating, 
can change outcomes. (4) Different host cell types can manifest 
different host responses. However, if the nature and types of 
experimental outcomes can hypothetically be set aside, and only 
activation intensity (i.e., cytokine production, adjuvanticity, and 
cellular morphology changes) is used as the readout, some internal 
consistencies can be extracted from the existing literature.

Size
Generally, solid structures of size 1–100  nm are considered as 
nanoparticles. For these particles, the general entry into the 
cells is mediated by endocytosis or simple diffusion without 

any defined receptors. Sizes beyond 100  nm and up to 10  µm 
are regarded as microcrystals. Within the latter, for particles 
with a diameter larger than 0.5  µm, phagocytosis is the domi-
nant form of entry (14). There have been some isolated studies 
(15–17) whereby the size of polylactide-co-glycolide (110 vs 
800–900 nm) did not show any significant changes in the ability 
to induce antibody responses to protein antigens from Neisseria 
meningitidis and HIV in mice (18). However, most papers appear 
to offer different results (1). Early work using simple stimulation 
and cell proliferation index measurement suggested that larger 
surface area (smaller diameter) of polystyrene and TiO2 particles 
seemed to block macrophage cell line proliferation in vitro (taken 
as an indicator of cell loss) (19). This finding was confirmed by 
another group where carbon black as well as TiO2 particles were 
used in vivo. In that study, both particles of 250 nm in diameter 
and those roughly one log smaller were instilled intratracheally. 
In rats, the smaller ultrafine particles induced drastically higher 
neutrophil infiltration in the lung and greater epithelial damage 
(20). Using epithelial cells as an example, amounts (total volume) 
required for small (below 20 nm) vs large (above 100 nm) silica 
crystals tended to create a log difference in the efficiency of induc-
ing cell death. In addition, smaller particles achieved the same 
effect much faster than the larger ones in human endothelial cells 
in  vitro (21). Similar observations were made by other groups 
studying human endothelial cells and macrophage in vitro (22). 
One reason for this difference is that small particles enter cells 
more readily. Using silver nanoparticles (SNP) SNP-5, SNP-20, 
and SNP-50 (numbers indicate diameter in nanometer) as an 
example, in  vitro cellular toxicity of smaller particles was cor-
related with their rapid presence inside the human epithelial 
cells (23). In one report that compared nano vs micro silica 
particles, smaller (30–1000 nm) crystals entered mouse BMDM 
easily and caused significant lysosomal marker loss, indicating 
lysosome destabilization, in comparison with the larger ones 
(1,000–10,000  nm) (24). An interesting contrast was another 
paper suggesting that silica particles 1,000 nm across were more 
toxic than small (30 nm) to THP-1 cells (25), a phenomenon asso-
ciated with the efficient uptake of the larger particles. This study, 
as well as several others, suggested that phagocytes, such as J774.2 
and RAW264.7 cells, were more prone to particle-induced cell 
damage than nonphagocytic cells (L929) (26). These results imply 
that efficient entry may ultimately explain the ability to trigger 
cellular responses. Whether additional signaling mechanisms 
related to particle size also account for the stimulation intensity 
have not been independently investigated.

morphology and Geometry
Shape of solid structures has been implicated in some studies to 
be a critical factor in triggering host cell responses. The differ-
ences in crystalline symmetry, i.e., anatase vs rutile TiO2, could 
result in significantly different outcomes in mouse keratinocytes 
in vitro (27). The sharp and pointy edges of many crystals, i.e., 
asbestos and MSU, are believed to at least partially contribute 
to their pathology via direct injury to mouse mesothelial cell 
membrane in  vitro and in  vivo (28, 29). Using non-opsonized 
hydroxyapatite (HA) as an example, a study was conducted to 
compare four types of geometries: needle, plate, sphere, and rod 
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and tested their ability to induce TNFα/IL-6 and ROS production 
as well as cytotoxicity. It was found that needle and plate shapes 
induced the highest rate of cell death in human bronchial epi-
thelial cells accompanied by high IL-6 production. Interestingly, 
rod-shaped HA induced more ROS production. RAW264.7 cells, 
on the other hand, showed much less selectivity to the shape in 
all the parameters measured (30). A study on carbon nanotubes 
(CNTs) also suggested that long and needle-shaped CNTs and 
asbestos triggered human macrophage IL-1β secretion in  vitro 
while only the former triggered IL-1α production. Carbon black 
and short CNTs failed to induce either (31). Interestingly, in this 
report, it was found that long CNTs induced a typical NACHT, 
LRR, PYD domains-containing protein 3 (NLRP3) inflamma-
some activation event that relied on ROS production, P2X7 
receptor, and lysosomal destabilization. Long silver nanowires 
were also more inflammatory toward human epithelial and liver 
cells in vitro than the short ones (23), and spherical TiO2 was less 
stimulatory than the same material in the shape of nano belts 
in vivo (32). The observations may be associated with higher area/
volume ratio, although a systematic analysis is not yet available. 
In a study comparing crystalline nanocellulose with fibrillary cel-
lulose, it was found in A549 cells fibrillary cellulose was more 
toxic than the crystalline counterpart. This was mainly due to the 
former’s strong ability to induce oxidative stress. On the other 
hand, crystalline cellulose was able to induce a broad range of 
cytokine production including IL-6, IL-8, MCP-1, IL-12p70, and 
G-CSF (33). Therefore, distinct shapes with similar chemistry can 
lead to different profiles of cellular responses. Many crystalline 
structures may also exist in an amorphous state by contrast to 
the better known larger crystals. In a pulmonary inflammation 
mouse model, amorphous/colloidal silica induced only transient 
inflammation while the response triggered by crystals was more 
persistent (34). Indeed, for non-crystalline structures such as SiO2 
from nano to micro μm sizes (mono-disperse and poly-disperse), 
the stimulation for NLRP3 inflammasome activation in mouse 
macrophages was lower than the crystalline. On the other hand, 
the comparison between amorphous and colloidal forms did not 
reveal any difference in stimulation capacity (35).

chemical composition
Chemical properties of solid structures have been directly linked 
to their stimulatory ability. Under this umbrella, one consideration 
is the degree of solubility. It is generally considered that solubility 
is proportionally related to cytotoxicity (36). In several reports, 
slightly soluble zinc and iron oxides were more potent in inducing 
target cell DNA release than almost insoluble CeO2, ZrO2, TiO2, 
and Ca3(PO4)2. In one study, ionic metal was critical to IL-6 and 
IL-8 production by human airway epithelial cells which were 
blocked by metal chelation (37). However, mechanistic insights 
of the observations of this nature are not available (38, 39). In the 
absence of detectable solubility, chemical composition can also 
make a difference in cellular responses. By comparing various 
metal oxides, copper oxide had the highest toxicity toward air-
way epithelial cells (40). In that study, several metal oxides were 
equally potent to induce ROS in the treated cells, however, CuO 
had the ability to suppress the cellular antixidation effects, i.e., the 
activities of catalase and glutathione reductase. It should be noted 

that depending on cell types studied and experimental settings, 
results have not been consistent regarding chemical compositions 
of particles. In some studies, Y2O3 (yttrium oxide) and ZnO were 
found to trigger inflammatory responses (ICAM-1, MCP-1, and 
IL-8 expression) better than Fe2O3 in endothelial cells (41), by 
contrast with the report by Brunner et al. where iron oxides were 
more stimulatory in human mesothelioma and rodent fibroblast 
(36). Surface charge and hydrophobicity may also affect cellular 
responses in  vivo (42–44). This notion was echoed by a study 
where unmodified silica crystals induced strong IL-1β, ROS, 
and NLRP3 inflammasome activation in THP-1 cells. However, 
surface functionalization with –COOH, –NH2, –SO3H, and 
–CHO groups significantly reduced all aspects of inflammatory 
responses (45). In fact, the simple presence of cell culture serum 
can result in significant reduction of toxicity toward fibroblast, 
which presumably was driven by the alteration of particle surface 
chemistry (46). Interestingly, the different surface chemistry can 
also alter their anatomic distributions. For instance, i.p. injected 
polymethyl methacrylate beads tended to deposit in the spleen 
resulting in its enlargement. Polystyrene beads of similar sizes, on 
the other hand, were accumulated in adipose tissues (47). Likely 
the different surface chemistries triggered different migration 
patterns in the phagocytosing macrophages.

It should be noted that the forth mentioned experimental 
results are small samples of the vast literature on chemical/
geometric properties of host-interacting particles. Depending on 
cell types, readouts, and experimental settings, different and even 
contradictory reports are common. Ideally, the desired approach 
is to isolate one particular variable for extensive analysis while 
other parameters are meticulously controlled. Thus far, the bold-
est attempt to extract a set of principles underneath the surface 
chemistry and immune recognition was made by Williams 
et al. (48). In that study, they used “layered double hydroxides” 
(LDH) for analysis, prompted by the effect of alum in immune 
stimulation. The exact chemical compositions are technically 
challenging to understand. We can picture their setup as follows. 
A sheet of metal (M+M2+ and M3+) hydroxides is laid against pair-
ing anions to form a stack. Each stack is laid on top of another 
for a multilayered structure. Because the metal ions can be 
chosen, M+M2+ vs M3+ ratios and anion species can be selected, 
the resulting structures can be tested for their immune regula-
tion solely as a function of various ions used in the experiment. 
Dendritic cell (DC) activation was measured by a set of cytokine 
production. LiAl2-CO3, Mg2Al-NO3, Mg2Fe-Cl, Imject alum, and 
alhydrogel were compared. Surprisingly, this study revealed that 
all in vitro human DC responses were highly correlated with a 
linear combination of three LDH properties: the radius of the 
spherical M+ or M2+ metal cations; the distance between the 
LDH layers (interlayer spacing); and zeta potential that defines 
the magnitude of the electrical charge at the interfacial double 
layer around the LDH particle. Newly synthesized LDHs were 
highly predictable by these variables in their DC stimulatory 
capacity. These properties were directly verified in in vivo mouse 
antibody production. These efforts were aimed to produce a set 
of “chemical–immunology rules”. Clearly, to understand the com-
plex nature of host responses to solid structures, undertakings 
like this point to a possible angle to tackle the vast unknowns of 
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physics and chemistry of particulate substances involved in host 
cell activation.

BiOLOGicaL cRyStaLS

Unlike particles that come with modern manufacturing/process-
ing or exist in our environment, crystalline deposition has long 
been a part of human biology/pathology. Best known among them 
are uric acid, cholesterol, heme, and a list of calcium-containing 
crystals [calcium pyrophosphate dihydrate (CPPD), HA, calcium 
oxalate, and calcium phosphate family in general]. Slightly less 
prevalent diseases can be caused by additional crystals, such as 
xanthine leading to xanthinuria and arthropathy (49) and cystine 
(oxidized cysteine dimer) in kidney stones (50). A rare genetic 
disease, adenine phosphoribosyltransferase deficiency, results in 
the inability to produce adenosine monophosphate from adenine, 
2,8-dihydroxyadenine crystal formation, and kidney failure in 
human and mice (51–54). In this section, we aim to illustrate the 
most common types and their related pathologies.

monosodium Urate crystals
Gout, the deposition of MSU crystals, has been recognized for 
over 4,000 years and extensively described in the ancient literature 
(55). Historically, its occurrence has been associated with exces-
sive dietary and alcohol consumption (56). In the 18th century, 
crystals from a tophaceous joint were isolated and their chemical 
nature was reported (55). It is generally believed that high purine 
metabolism leads to hyperuricemia (>6.8 mg/dl), a precondition 
for gout and tophus. Gout is often induced by metabolic and 
environmental factors, such as increased Ca2+, low pH, and cold 
weather, and occurs only in the distal extremities, never near 
the core of body where the temperature is more consistent (57). 
Interestingly, till date, we still cannot duplicate the in vivo crystal 
formation event in the lab, as at this concentration uric acid does 
not precipitate in standard buffers (58). Additional factors, for 
instance natural MSU antibodies, may be critical for this process 
(58, 59). Mechanistically, in  vivo the initial nucleation of uric 
acid crystals is reversed due to rapid dissolution. The antibodies 
(IgG in human gout patients and IgM in mouse) help stabilize 
the nucleation core whereby the crystal growth is permitted. This 
notion is supported by clinical observations that MSU crystals 
isolated from patients are often coated with a layer of antibodies 
(60), with Fab pointing to the crystalline surface (61). Regarding 
the signaling events leading to the painful inflammatory episode 
of gouty arthritis, many models have been proposed. MSU typi-
cally activates NLRP3 inflammasome and IL-1β production, and 
the proposed signaling events pertinent to NLRP3 regulation, 
such as ROS, K+ efflux, and lysosomal rupture, are all implicated 
in its inflammatory properties (discussion later). Specific to 
MSU, it has been suggested that CD11b and CD16 may directly 
recognize MSU crystals because antibodies for these two surface 
molecules reduced MSU-mediated neutrophil activation (62, 63).  
Interestingly, the antibody blockage also reduced neutrophil 
responses to CPPD, a chemically distinct structure, suggesting 
that these surface molecules may merely participate in the signal-
ing rather than the specificity determinant for these crystalline 
surfaces. Liu-Bryan and Terkeltaub’s group reported that toll-like 

receptor (TLR)2/TLR4 and CD14 were the functional receptors 
of MSU (64–66). The conclusion was mostly drawn from the 
reduced inflammatory responses in mice deficient in these genes. 
Using similar TLR-deficient mouse models as well as in vitro cell 
transfection, Chen et al. failed to see any involvement of TLR2 
or TLR4 (67). While the suggestion of protein-based positive 
signaling receptor for MSU has not been further investigated, one 
paper suggested that Clec12a is an inhibitory receptor for this 
crystal. Binding analysis showed that Clec12a had specific affin-
ity for MSU and mice deficient in this gene mounted increased 
inflammatory responses against MSU challenge (68). Our lab’s 
results have suggested another model. The surface of MSU crystal 
showed substantial binding to cholesterol, a component of lipid 
rafts. The binding event caused the plasma membrane lipid sorting 
and an accumulation of ITAM-containing membrane proteins. 
This accumulation, in turn, recruited Syk to the inner leaflet and 
induced a chain reaction similar to Syk/PI3K-dependent phago-
cytic activation (69). This model describes a lipid-based signaling 
event independent of protein receptors. Whether this signaling 
modality is central to the general sensing of solid structures and 
is being actively investigated.

calcium crystals
While calcium salt crystals mediate inflammatory responses 
similar to MSU (70), the prerequisites for their formation are 
different. First, calcium-containing crystal generation does not 
require elevated levels of Ca2+. Second, these crystals almost 
always develop on matrix surfaces, mostly cartilages (71). 
Inorganic pyrophosphate, produced via ATP metabolism, is 
found to induce CPPD formation. On cartilages, inorganic 
pyrophosphate level is regulated by several enzymatic activities 
including ectonucleotide pyrophosphatase (72, 73). Unlike MSU, 
calcium crystal deposition in joints is common and remains 
asymptomatic in most adults, and it is, therefore, difficult to 
directly link CPPD formation to the symptoms of pseudogout 
(74). In model systems with synthetic crystals, CPPD does 
stimulate strong inflammatory activation. Therefore, the prevail-
ing proposal is that CPPD formation is an essential first step for 
the eventual development of the acute “gout” like symptoms (75). 
Signaling-wise, CPPD and basic calcium phosphate can stimulate 
nitric oxide and collagenase production in chondrocytes in vitro 
(76, 77). Martinon et al. found that CPPD is a strong inducer of 
NLRP3 inflammasome activation in vitro (6). In addition, CPPD 
crystals can inhibit neutrophil apoptosis via Bcl-2 (78). It is very 
likely that all these factors work in sync to generate the inflamma-
tory responses to calcium salt crystals.

cholesterol crystals
Cholesterol clustering in vivo is primarily in two forms. Gallstones 
(cholelithiasis) are large solid structures mostly made of cho-
lesterol in biliary duct and gallbladder. They are results of liver 
cholesterol accumulation, often with a genetic disposition (79). 
The presence of CC in atherosclerotic lesions reflects the imbal-
ance of cholesterol homeostasis and has by far the highest impact 
in human health, being one of the root causes of cardiovascular 
disease (CVD, a third of mortality in the developed countries). 
Via the mevalonate pathway, all mammalian cells are capable of 
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cholesterol synthesis (80). Its metabolism is mainly in the liver in 
the form of biliary secretion of surplus cholesterol and bile acid. 
Therefore, the cholesterol transport becomes the critical regulation 
of its level. For the cardiovascular system, low density lipoprotein 
via its receptor transports esterified cholesterol to artery walls 
while high density lipoprotein mediates the reverse transport 
back to the liver (81). In the periphery, deposited esterified cho-
lesterol can be converted by ester hydrolases into free cholesterol, 
leading to CC formation (82). In advanced CVD, accumulated 
CC in the plaques expand in volume and cause the rupture of the 
fibrous cap, leading to acute thrombosis, embolism, and clinical 
CVD symptoms (83, 84). More in depth analyses indicate that 
CC may be the culprit of the initial atherosclerotic change at the 
very beginning. It was found by some that cholesterol-lowering 
treatment was only beneficial when used early in mouse life (85). 
Because of their small sizes, optical imaging in tissues has not 
been easy. The limitation is being gradually overcome with new 
preparation protocols (86, 87) and imaging tools such as Raman 
scattering microscopy (88). A recent paper reported that endothe-
lial cells produce CC rather quickly under cholesterol overload. 
The crystal deposition under endothelial cells was found as early 
as 1 week after feeding Ldlr−/− mice with high fat diet (89). Those 
improved detections strongly suggest their involvement in much 
of the initial atherosclerotic development. Local accumulation of 
CC has been recognized as an inflammatory event (90). CC can 
activate the complement system in vitro (91, 92) as well as IL-1α 
production in vivo and in vitro (93, 94). The central interest is 
undoubtedly focused on the involvement of NLRP3 inflamma-
some. Some reports suggested that NLRP3 inflammasome and 
its components were essential for the plaque formation (86, 95) 
while others failed to make this observation (93, 96).

Hemozoin
Malaria is a major cause of mortality in developing countries. 
In its life cycle, Plasmodium invades red blood cells and uses 
hemoglobin as its energy source. The product of this diges-
tion, heme, forms hemozoin crystals (97). While Plasmodium 
itself can directly modulate endothelial permeability and cause 
circulation blockage (98, 99), hemozoin is a major activator of 
innate immunity (100), both leading to various degrees of mouse 
hepatocyte dysfunction in vivo (101). The surface of hemozoin 
crystals has been found to be highly active in mediating oxidative 
responses (102). Another property of hemozoin is its extensive 
phagocytosis by phagocytes in the circulation and in vital organs 
(liver, brain, etc.), particularly after RBC rupture (103). This 
phagocytic event is believed to be immune regulatory and the 
intensity of phagocytosis is an indicator of the disease severity 
(104). Macrophages and monocytes stimulated with hemozoin 
produce large amounts of cytokines in  vitro, including TNFα, 
MIP1α, and β (105), chemotactic factors (106), ROS and nitric 
oxide (100, 107). A large panel of signaling molecules, includ-
ing ERK1/2, JAK2/STAT-1, NFkb, and Syk kinases were all 
reportedly involved (108). The exact recognition mechanism is 
not clear, although in one report TLR9 was involved (109). This 
finding is controversial as others have suggested the contamina-
tion of Plasmodium DNA in the isolated hemozoin (110–112).  
By contrast, the activation mediated by NLRP3 is well characterized 

and has been supported by multiple research groups. Shio 
et  al. found that hemozoin-induced NLRP3 inflammation and 
IL-1β production were downstream of Syk kinase. Importantly, 
deficiencies in NLRP3 components protected the host from one 
strain of malaria, Plasmodium chabaudi adami (113). Another 
paper around the same time suggested that hemozoin mediated 
inflammatory responses in vitro and in vivo, particularly NLRP3 
activation, was via induction of uric acid release (110).

PaRticULate aDJUvaNtS

Adjuvants are used to increase host responses to otherwise low 
immunogenic antigens. They can be roughly divided into delivery 
tools and immune potentiators (12, 114). Serving both purposes, 
particulate adjuvants are a subcategory of immune enhancers and 
are the first preparation used in human vaccine. Glenny’s work 
has been sufficiently discussed in vaccine reviews (115). However, 
one particular point worth noting is that while the early workers 
Glenny and Maschmann et  al. used alum in various chemical 
composition to precipitate and stabilize diphtheria toxin, they did 
not recognize the immune stimulatory effects of this crystalline 
structure (116–118). In the last two decades, our understanding 
of particulate adjuvants has seen some dramatic revisions.

Alum usually refers to trivalent inorganic aluminum salts, 
including Al(OH)3 and AlPO4 (119, 120). For decades, it was 
thought that alum served as an in vivo depot for the associated 
antigens, prolonging antigen availability. This notion was proven 
incorrect by several experiments (121–123). In 2004, it was 
reported that injection of alum resulted in the accumulation of 
IL-4-producing monocytic Gr1+ cells in the spleen (124). Till 
date, it is still not clear how this population mediates immune 
response, although it is involved in TH1/TH2 bias (125).  
In 2008, Eisenbarth et al. reported a deficiency in multiple anti-
body subtype production in response to alum in NLRP3−/− mice 
(126) suggesting that alum’s immunogenicity may be related to its 
ability to activate NLRP3 inflammasome. A follow-up paper using 
similar mouse models by Tschopp’s group, however, reported a 
reduction in IgE production only (127). In other reports, includ-
ing from our own group, NLRP3/Caspase-1 axis was not found to 
be essential for alum-mediated antibody production (128–130). 
Later on, two groups reported that DNA release triggered by 
local alum injection might be responsible for its adjuvanticity  
(131, 132). Ishii’s group further suggested that in the process, 
alum triggered activation of TBK1/IRF3, leading to IgE isotype 
switching (132). Whether this signaling event requires STING, 
a sensor for intracellular DNA is still a topic of discussion (131). 
In addition, a recent paper suggested that commercially available 
DNase may have proteolytic activities, which at least partially 
explained the reduced adjuvanticity following DNA removal 
in alum-treated mice (133). Therefore, the role of DNA release 
in alum’s adjuvant effect still requires more carefully controlled 
analyses. Our group proposed an alternative mechanism. Using 
atomic force microscopy, we found that alum crystals bound to 
DC plasma membrane lipids and triggered an abortive phago-
cytic response. DCs thus activated showed enhanced binding to 
CD4+ T cells via ICAM-1 and LFA-1 (128), leading to better T cell 
priming by DCs.
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The notion that uric acid being a particulate immune adjuvant 
was not derived from its ability to trigger gouty inflammation.  
It was found that dead cells had strong adjuvant effect when deliv-
ered with protein antigens; the active fraction was molecularly 
identified by chromatography and mass spec analysis (134). It was 
found that soluble uric acid did not have any adjuvant effect, yet 
it turned stimulatory upon crystallization. It has been difficult 
to visualize MSU deposition in  vivo following immunization 
because the microcrystals were not compatible with imaging 
preparation protocols. Although the ability of uric acid to serve 
as an adjuvant is confirmed (135) in recent years, MSU has 
been gradually recognized as a “cryptic” adjuvant, in that many 
immune responses appear to require background uric acid. We 
have reported that MSU crystallization requires endogenous 
antibodies that stabilized the initial crystal formation. In the 
absence of antibody as in the IgH mice, uric acid did not serve 
as an endogenous adjuvant (58). Several reports have found that 
removal of uric acid in vivo significantly reduced airway inflam-
mation (136) and immune responses to antigens released from 
dead cells (2, 137). In addition, other groups have found that uric 
acid may be the conduit for the immune stimulatory effect of 
hemozoin and alum adjuvant (110, 138).

Virus-like particles (VLPs) are a relatively new technology and 
originated from the vaccine preparation with killed pathogens. 
They are assembled viral proteins with a resulting morphology 
similar to original viruses. These particles are highly stimulatory 
in comparison with their soluble proteins and at the same time 
free from the safety concerns associated with attenuated virions. 
With recombinant technologies, bacterial, viral, mammalian, and 
other expression systems have been used to successfully produce 
VLPs. Although VLPs can be considered adjuvants in compari-
son with free proteins, their efficacy can be further enhanced by 
other adjuvants (139). The mechanistic basis for the enhanced 
immunity is a concept termed geometric pathogen-associated 
structural pattern (140). In general, all VLPs form unique 
repetitive surface structures (140, 141). As these patterns bare 
the signature of invading pathogens, they are potent in activat-
ing antigen presenting cells and mediate efficient migration of 
these cells to draining lymph nodes. They are also able to bind to 
naturally existing antibodies and fix complement (142), further 
enhancing their immune stimulation.

Nanoparticle adjuvants were a product of time that started two 
decades ago. The term defines the size but posits no limitation 
on its chemical/structural details. One of the most frequently 
tested is polylactic-co-glycolic acid and polylactic acid, for their 
biodegradability and easy incorporation of antigens and drugs 
(143). They are known to induce antibody titers similar to those 
adjuvanted regimens. Other popular selections are liposome and 
micelle-based preparations. Overall, nanoparticles can easily enter 
solid tumors (144). This is likely the result of extensive pathways 
used for the uptake of these particles, including pinocytosis, and 
clathrin and caveolin-dependent endocytosis (145). These parti-
cles have been used as an efficient tool for delivery mainly due to 
their protection (146) and controlled release (147, 148) of associ-
ated antigens. Similar to other particulate antigens, nanoparticles 
can trigger cross-presentation and CD8+ T cell responses (149), a 
feature sought in viral vaccine and tumor immune therapy.

SOLiD PaRticLe-iNDUceD HOSt  
ceLL ReSPONSeS

inflammasome
Solid/amorphous/crystalline/fibrous structure-mediated cellular 
responses are a major part of inflammasome research, particu-
larly signaling associated with NLRP3 inflammasome. In 2006, 
Tschopp’s group reported that MSU and CPPD-induced IL-1β 
production was dependent on NLRP3 inflammasome compo-
nents, NLRP3, ASC, and caspase-1 (6). This landmark experi-
ment started the intense pursuit of inflammatory mechanisms 
associated with solid particles. Subsequently, a series of papers 
described the requirement for NLRP3 in IL-1β production in 
response to silica, asbestos, and metal oxides. With limited excep-
tions, it is reasonable to assume that the bulk of inflammation 
associated with solid structures is dependent on NLRP3 inflam-
masome. However, the molecular events that lead to NLRP3 acti-
vation are still being debated. Several intermediate conduits have 
been proposed including ROS production, lysosome rupture, K+ 
efflux, and Ca2+ influx (150, 151).

Reactive Oxygen Species
In the process of ATP production in mitochondria, oxygen 
is ideally reduced to water. However, when this process is not 
complete, O2

− escaped from this pathway becomes the source of 
a series of oxidizing chemicals, including hydrogen peroxide 
and hydroxyl radicals (152), collectively termed as ROS. These 
products become a part of cellular signaling network–redox 
biology. ROS signaling is also essential for both innate and adap-
tive immunity (153, 154). The excess of this production leads to 
oxidative stress, which is at the core of cellular aging and degen-
erative diseases such as sclerosis and neoplasm. ROS production 
can be readily induced by solid structures of various sizes and 
shapes, and to some extent of distinct chemical compositions. 
Many nanoparticles, copper, iron, cerium, zinc, nickel, titanium, 
aluminum oxides, gold, silver (155), silica (156), MSU (157), 
asbestos (158), and alum were found to induce ROS. ROS block-
ade with ROS scavenger or inhibition of nicotinamide adenine 
dinucleotide phosphate oxidase (NADPH) oxidase suppressed 
NLRP3 activation induced by MSU, asbestos (159), silica (158), 
and hemozoin (160). In the process, the conduit was proposed to 
be thioredoxin-interacting protein (TXNIP). TXNIP dissociates 
from thioredoxin in a ROS-sensitive manner and then binds to 
NLRP3 leading to its activation (157) (Figure 1). This proposal 
has not been completely satisfactory. First, a lot of stimuli induce 
ROS production but NLRP3 activation is not common to all 
of them, i.e., cytochrome P-450 oxidase uncoupling, xanthine 
oxidase activation, mitochondrial respiration, and various per-
oxisome oxidase activations (161). Inflammasome activation was 
not increased but suppressed in enhanced production of ROS 
in superoxide dismutase-1-deficient macrophages (162) while 
NADPH oxidase deficiency boosted the activation (163). Second, 
the source of ROS responsible for NLRP3 inflammasome activa-
tion remains unclear. The inhibition of mitochondrial complex I 
and II did not reduce asbestos-induced NLRP3 activation in vitro 
(159), arguing against mitochondria as the origin of ROS.
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FiGURe 1 | Overview of reactive oxygen species (ROS) implicated in solid particle-induced cell death and NACHT, LRR, PYD domains-containing protein 3 (NLRP3) 
inflammasome activation. Solid particle treatment causes mitochondrial stress and ROS production. The oxidative stress mediates the damage of DNA, proteins, 
and lipids, which may be an important cause of cytotoxicity. ROS production also induces NLRP3 inflammasome activation by dissociating thioredoxin-interacting 
protein (TXNIP) from thioredoxin then allows its binding to NLRP3, which leads to NLRP3 activation.
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Lysosomal Rupture
Another leading proposal for crystal-mediated NLRP3 inflam-
masome activation is via lysosome rupture. In this model, phago-
cytosis of solid particles triggers lysosome destabilization and 
release of cathepsin B, which activates NLRP3. Lysosome rupture 
blockage and cathepsin B inhibitor reduced NLRP3 activation in 
mouse macrophages in  vitro induced by alum (164) and silica 
(165). Artificial induction of lysosome rupture with L-leucyl-
L-leucine methyl ester (LLOMe) also led to NLRP3 activation 
that was blocked by cathepsin B inhibitor (166). However, this 
notion is controversial. In some reports, cathepsin B deficiency 
failed to reduce IL-1β production in  vitro stimulated by MSU 
and silica (151, 167) or hemozoin (160). A possible explana-
tion for this contradiction is the off-target effect of cathepsin B 
inhibitor as it was found to block NLRP1b inflammasome (168). 
Another explanation is that multiple cathepsins are involved in 
NLRP3 activation as the cathepsin family is highly conserved 
and cathepsin B inhibitor, Ca074Me, was found active toward 
other members (169). Furthermore, the authors found that not 
only NLRP3 activation but also particle-induced cell death was 
dependent on multiple redundant cathepsins (169, 170).

K+ efflux
In recent years, the role of K+ efflux in NLRP3 activation has 
become the center of attention. High extracellular K+ was reported 
to inhibit almost all known NLRP3 agonists in vitro, including 
hemozoin (160), silica and asbestos (159), MSU, Nigericin, and 
ATP (171), and bacterial pore-forming toxin, alum, CPPD, and 
LLOMe (151). Glyburide, a K+ channel blocker, also inhibited 
NLRP3 inflammasome in vitro (172), which appears to confirm 
the role of K+ efflux. The intracellular sensor for the reduced 
K+ and how it is linked to NLRP3 activation are not clear. The 
idea of K+ efflux as the upstream signal of NLRP3 came from 
the understanding that extracellular K+ blocks intracellular K+ 
outward motion during a typical cycle of eukaryotic membrane 
depolarization/repolarization (171) and assumed that particulate 
substances triggered a sustained drop of intracellular K+. However, 

experimental high K+ depolarizes the membrane and reduces the 
membrane potential (typical −40 to −80 mV) to near neutrality, 
and the membrane potential is a critical parameter for much of 
the eukaryotic biology (173–177). We recently found that both 
membrane depolarization and hyperpolarization were sufficient 
to block NLRP3 inflammasome activation without involving 
large amounts of K+ moving across the plasma membrane (our 
own observations). Therefore, molecular details of K+ efflux and 
NLRP3 inflammasome activation need to be further scrutinized. 
In addition to K+, Ca2+ influx is induced by numerous NLRP3 
activators (178). Ca2+ influx was suggested to be important for 
NLRP3 activation since thapsigargin, an inhibitor of the sarco-
plasmic/ER Ca2+-ATPase, incubation in Ca2+ free media (179), 
or BAPTA-AM (intracellular Ca2+ chelator) (180) significantly 
suppressed NLRP3 inflammasome activation in ATP-stimulated 
BMDM. Another piece of evidence was the calcium-sensing 
receptor activation stimulated NLRP3 inflammasome and knock-
down of the receptor had the opposite effect (180). However, 
there are reports arguing against the Ca2+ influx model. One 
group found that extracellular Ca2+ activated NLRP3 through K+ 
efflux (151). Another group, on the other hand, suggested that 
Ca2+ influx was neither necessary nor sufficient for NLRP3 activa-
tion during ATP, Nigericin, and LLOMe stimulation (181). In a 
report aiming to bridge the two ion-dependent models, K+ and 
Ca2+ visualization sensors were used and the results suggested 
that K+ efflux was necessary for sustained Ca2+ influx while K+ 
efflux was independent of Ca2+ influx (182).

cell Death
Many particles with different chemical composition, morphology, 
size, hydrophobicity, and ionic charge were proved to be cyto-
toxic. Thus a lot of efforts were made to found a common path-
way. Generally, solid particle-induced cell death relies on cellular 
uptake, indicating that phagosome or lysosome may be important 
in this type of cell death (165, 183, 184). Downstream of particle 
phagocytosis is the lysosome rupture and ROS production, which 
gives rise to oxidative stress (185–187). Following oxidative stress 
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FiGURe 2 | Overview of three major hypotheses of solid particle-induced cell death. In addition to cell death related to reactive oxygen species production,  
there are three major proposals on solid particle-induced cell death. The first is through receptor-interacting serine/threonine-protein kinase 1/3 (RIPK1/RIPK3)-
mixed lineage kinase domain-like (MLKL)-driven necroptosis, which was found in calcium oxalate, monosodium urate (MSU), calcium pyrophosphate dihydrate 
(CPPD), cystine, TiO2, and calcium phosphate-treated epithelial cells and neutrophils. The second is through K+ efflux-activated NACHT, LRR, PYD domains-
containing protein 3 (NLRP3)-dependent pyroptosis, which was found in silica, asbestos, carbon nanoparticles-treated macrophages and dendritic cells (DCs).  
The third is through lysosome rupture-released multiple redundant cathepsins after Syk-dependent phagocytosis, which was found in silica, alum, MSU, and 
nanoparticle-treated neutrophils, basophils, eosinophils, macrophages, and mast cells. GSDMD, gasdermin D.
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are mitochondrial dysfunction, DNA damage, and protein/lipid 
oxidation (185, 188). These factors work together to induce the 
eventual cytotoxicity (155). Several additional pathways have 
been proposed in the literature (Figure 2).

Silica-containing particles are ubiquitous, found in volcanic 
ashes (189), materials made from quartz and kaolin (190), and 
dusts (34). Silica dust (nano and crystalline particles) is an envi-
ronmental and occupational hazard, as observed in construction, 
mining, ceramics, and foundries industry. This topic has been 
discussed in several reviews and very well documented clinically 
(191, 192). Silica has been found to be cytotoxic for a long time and 
believed to be responsible for silicosis (158, 159), and contribute 
to several types of cancer, infection (such as TB and Salmonella) 
(193–195) and autoimmune diseases (196). As we discussed 
earlier, crystalline silica is more potent in inducing alveolar mac-
rophage death than colloidal and amorphous counterparts (34). 
Signaling-wise silica induced NLRP3 activation in LPS-primed 
macrophages in vitro (159). Some reports supported the notion 
that silica induced NLRP3-dependent pyroptosis, which relied on 
K+ efflux and caspase-1 activation. However, others argued against 
the dependence on NLRP3 (151, 158, 170). A report found the 
reliance on receptor-interacting serine/threonine-protein kinase 
3 (RIPK3)-mixed lineage kinase domain-like (MLKL)-driven 
necroptosis (9) while another group suggested the importance 

of redundant cathepsins (170). Furthermore, some groups 
reported that silica promoted cell death via apoptosis through 
mitochondria damage pathway initiated by oxidative stress  
(156, 197). A slight variation was the proposal suggesting that 
silica induced both apoptosis and necrosis that depended on 
the transmembrane potential change of mitochondria. Hyper-
polarization induced caspase-3 and 9-mediated apoptosis while 
depolarization induced no caspase activation during necrosis 
(198). In addition, using ATP synthesis inhibitors, oligomycin 
and 2-deoxyglucose, it was observed that decreased ATP level 
induced NLRP3 activation and necrosis while increased ATP led 
to apoptosis (199, 200). Therefore, crystal-induced cell death may 
be also under the control of ATP levels. The extreme redundancy 
in the types of cell death is difficult to comprehend, likely result-
ing from the different system setups.

Similar to silica, alum has been reported to induce lysosome 
rupture thus activating NLRP3 inflammasome (126, 127, 165, 
201, 202). Cell death, however, was not determined in the major-
ity of those papers except two reported that NLRP3 and caspase-1 
deficiencies did not affect alum-induced macrophage cell death 
(126, 151). On the other hand, aluminum oxide nanoparticles 
were reported to depolarize cell membrane and lead to significant 
cell death in epithelial cells (203). Lima et al. reported that alum-
induced macrophage cell death in vitro was a direct consequence of 
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lysosomal membrane rupture without involving NLRP3 signaling 
cascade (166). Although MSU has been used as a model system 
for NLRP3 inflammation activation, much less is known about 
its ability to induce cell death although there is one group found 
that RIPK1-RIPK3-MLKL signaling pathway may be critical for 
MSU and other crystals-induced neutrophil extracellular DNA 
release and cell death (7). MSU was found to induce neutrophil 
PI3K activation, downstream of Syk and Src family kinases. PI3K 
is a critical element regulating the degranulation of neutrophils, 
a mechanism contributing to the pathogenesis of gout (204).  
As direct membrane binding was believed to be important for 
MSU-induced Syk activation (69) and NLRP3 inflammasome 
(167), we made a Syk conditional knock out mouse model and 
found that Syk deficiency indeed reduced MSU-induced cell death 
(our own observations). The exact mechanism of how MSU acti-
vates Syk and Src pathways thus induces cell death remains unclear.

A lot of metal oxide nanoparticles exhibited cytotoxicity  
(40, 205, 206), as did other common nanoparticles, including CNT, 
Fullerene (207), dental calculus (208), asbestos (36), carbon black 
nanoparticles (209), and quantum dots (210). The mechanisms 
of cytotoxicity, however, can be quite different. Most of them 
were found to induce ROS production that was associated with 
mitochondrial dysfunction (155). Unlike other particles, quantum 
dot treatment increased FAS expression and membrane lipid per-
oxidation that led to the impairment of mitochondria in human 
neuroblastoma cells (210). In addition, RIPK1-RIPK3-MLKL axis 
was proven important in human and murine renal tubular cell 
death induced by TiO2 and calcium oxalate (8). Anders’s group 
reported that MSU, calcium oxalate, CPPD, and cystine crystals 
mediated cell death of kidney epithelial cells (9) that were blocked 
by necrostatin-1 (inhibitor of necroptosis). This type of cell death 
was independent of caspase activation, suggesting that NLRP3 
inflammasome activation associated with those crystals was 
not responsible for their cell death (211). As the most abundant 
innate immune cells, neutrophils phagocytose large amounts of 
crystals (212). In doing so, they process a special type of cell death 
by releasing their own DNA to trap those particles, a program 
called neutrophil extracellular traps (NET), including MSU, Silica, 
calcium oxalate, calcium phosphate, and asbestos (7). RIPK1-
RIPK3-MLKL signaling pathway was found to be critical for this 
programmed cell death (NETosis) (7, 213). NETosis was also 
observed in eosinophils and basophils upon particle contact (212).

cONcLUDiNG RemaRKS

Solid particle-mediated cellular responses are an old topic of 
medicine and becoming more diverse in modern life style. 
Particulate matters impact us in multiple ways. They represent 
the latest technologies in vaccine design and cancer therapy. 

However, the limitations and disadvantages of using these par-
ticles and salt crystals in the development of pharmaceuticals, 
drugs, bio-therapeutics have not been systematically studied. 
In environmental exposure studies and some bacterial and viral 
material-based therapeutic regimens, solid particles are seldom 
pure, with frequent contamination of endotoxins and microbial 
nucleic acids. These factors must be carefully investigated. At the 
other end, crystalline arthropathies remain as much as a health 
threat as they have throughout the time. While the research 
on this subject has been multifaceted and increasingly intense, 
particularly with regard to their signaling pathways, we are far 
from establishing a framework of understanding how these solid 
structures are perceived by our cells and whether there are a 
set of critical events governing their cellular activation. As the 
variations in the types of particles and host cells involved can be 
extremely diverse, much work is still ahead. Several issues should 
be considered with higher priority. One is the signaling events in 
particulate adjuvants that lead to enhanced immune activation. 
This is critical because these adjuvants are used in population-
based vaccination and new varieties are coming into clinical tests. 
New mechanistic insights will certainly benefit the better designs 
of vaccines. Another important topic is to develop a systematic 
approach to study the host responses toward nano- and micro-
particles. The chemical and geometrical properties of those 
substances have been studied for decades and their signaling 
events have been one of the leading topics in immunology for 
20 years. Thus far, we are in possession of very few consensuses 
and are often puzzled by conflicting data. One possible approach 
is to establish a model system with definable variables, such as 
the work on LDH by Williams et al. (48). This type of work will 
gradually lead to more mechanistic insights that enable us to bet-
ter harness the particles that are in contact with our cells.
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