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Abstract

We investigated whether low-dose radiation (LDR) can prevent late-stage diabetic cardiomyopathy and whether this protection is because of
the induction of anti-apoptotic and anti-oxidant pathways. Streptozotocin-induced diabetic C57BL/6J mice were treated with/without whole-body
LDR (12.5, 25, or 50 mGy) every 2 days. Twelve weeks after onset of diabetes, cardiomyopathy was diagnosed characterized by significant car-
diac dysfunction, hypertrophy and histopathological abnormalities associated with increased oxidative stress and apoptosis, which was pre-
vented by LDR (25 or 50 mGy only). Low-dose radiation-induced cardiac protection also associated with P53 inactivation, enhanced Nrf2
function and improved Akt activation. Next, for the mechanistic study, mouse primary cardiomyocytes were treated with high glucose
(33 mmol/l) for 24 hrs and during the last 15 hrs bovine serum albumin-conjugated palmitate (62.5 umol/l) was added into the medium to
mimic diabetes, and cells were treated with LDR (25 mGy) every 6 hrs during the whole process of HG/Pal treatment. Data show that blocking
Akt/MDM2/P53 or Akt/Nrf2 pathways with small interfering RNA of akt, mdm2 and nrf2 not only prevented LDR-induced anti-apoptotic and
anti-oxidant effects but also prevented LDR-induced suppression on cardiomyocyte hypertrophy and fibrosis against HG/Pal. Low-dose radia-
tion prevented diabetic cardiomyopathy by improving cardiac function and hypertrophic remodelling attributed to Akt/MDM2/P53-mediated
anti-apoptotic and Akt/Nrf2-mediated anti-oxidant pathways simultaneously.
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Introduction

Diabetic cardiomyopathy is one of the most severe complications of
diabetes and is characterized by cardiac remodelling including cardiac
hypertrophy (CH) and pro-fibrotic changes associated with cardiac dys-
function [1-3]. The pathogenesis of diabetic cardiomyopathy is com-
plex and is chiefly thought to arise from diabetes-induced apoptosis
and oxidative stress. Dead cardiac cells are replaced by an extracellular
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matrix which impairs myocardial contractility, increases interstitial
fibrosis, and leads to cardiac remodelling and dysfunction [4-6]. Also,
oxidative stress as a result of the induction of mitochondrial-derived
reactive oxygen species (ROS), activates diverse hypertrophic sig-
nalling kinases and transcription factors to trigger cardiomyocyte dys-
function, DNA mutation and irreversible cell damage that enhances
apoptosis [7]. Therefore, to prevent diabetic cardiomyopathy, an ideal
therapy may simultaneously suppress oxidative stress and apoptosis.
Most of the currently used drugs against diabetic cardiomyopathy
in the clinics need to be metabolized and excreted from the liver and
kidney, which will increase their load. Growing evidence demonstrate
that low dose radiation (LDR), less than 100 mGy for low linear
energy transfer, as an invasive approach induces hormesis effect
including suppressing gene mutations, enhancing immunity and
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prolonging the life span [8, 9]. Furthermore, previous studies indicate
that LDR prevents diabetic nephropathy by suppressing dyslipidaemia,
inflammation and oxidative stress [10-13]. Reports also confirm that
LDR has anti-apoptotic effects in testis and hippocampal neuronal
cells in diabetic rodents. How does the effect of LDR on diabetic car-
diomyopathy is still unclear. Our preliminary work indicates that LDR
can prevent cardiac damage via suppressing inflammation during early
stages of diabetes [14]. But other studies also demonstrated that
significant inflammation was normally observed in the short-term
rather than long-term diabetes [15-18]. Therefore, if LDR induces
cardiac protection in long-term diabetic mice, other protective
mechanisms must exist instead of anti-inflammation.

The protein kinase B/Akt is a family of serine/threonine protein
kinase. Strong evidence demonstrated that activation (phosphoryla-
tion) of Akt positively mediated both cellular anti-apoptotic and anti-
oxidative functions in the heart simultaneously through MDM2/P53
and GSK3p-Fyn-Nrf2 pathways respectively [19-23]. Under diabetic
condition Akt activation and Nrf2 expression was decrease which
associated with cardiac damage [24-26]. Our previous study indi-
cated that exposure to LDR significantly prevented diabetes-induced
inhibition of renal Akt actication and Nrf2 expression. Whether Akt-
mediated MDM2/P53 and GSK3pB-Fyn-Nrf2 pathways were also
involved in LDR-induced cardiac protection is still unclear.

To study this mechanism, we established type 1 diabetic mice
models via multiple treatments with low-dose streptozotocin (STZ, ip)
[27]. We then treated animals with whole-body LDR and measured
cardiac effects, specifically, CH, fibrosis and cardiac dysfunction,
apoptosis and oxidative stress.

Materials and methods

Ethics statement

The animal experiments were performed conform the NIH guidelines (Guide
for the care and use of laboratory animals). The protocol was approved by
the Committee on the Ethics of Animal Experiments of the Wenzhou Medical
University, Zhejiang, China. All surgery was performed under anaesthesia
induced by intraperitoneal injection of 1.2% 2,2,2-Tribromoethanol (Avertin;
Sigma-Aldrich, St. Louis, MO, USA) at the dose of 0.2 ml/10 g bw and all
efforts were made to minimize suffering of the experimental animals.

Establishment of type 1 diabetic mouse model

Eight weeks old, male C57BL/6J mice, were purchased from the Experi-
mental Animal Center of Beijing University (Beijing, China). Mice received
i.p. injection of multiple low-dose STZ (Sigma-Aldrich) at 50 mg/kg/day
for five consecutive days to induced the type 1 diabetes (see Data S1).

Whole-hody low dose rate X-ray radiation on
mice

Diabetic and non-diabetic mice were received whole-body LDR at 12.5,
25 or 50 mGy every 2 days for 12 weeks respectively (see Data S1).
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Cardiomyocytes isolation, culture and LDR
treatments and siRNA

Adult mouse cardiomyocytes were isolated as described previously
[28]. cardiomyocytes were treated with specific siRNAs against akt7,
nrf2 and p53 with or without LDR (25 mGy), followed by high glucose
(33 mmol/l) treatment for 24 hrs and the addition of palmitate
(62.5 umol/l) during the last 15 hrs (see Data S1).

Echocardiography

Cardiac function and BP were measured by echocardiography and tail-
cuff manometry respectively [27, 29] (see Data S1).

Morphological examination of cardiac
myocardium

Paraffin sections of myocardium from the mice in each group were
stained with haematoxylin and eosin and Sirius-red for the detection of
morphological changes or collagen accumulation (fibrosis), respectively,
as described previously [14, 27] (see Data S1).

Terminal deoxynucleotidyl transferase-mediated
dUTP nick end labelling staining

For terminal deoxynucleotidyl transferase-mediated dUTP nick end label-
ling (TUNEL) staining, slides were stained with the ApopTag Peroxidase
in situ Apoptosis Detection Kit (Chemicon, Temecula, CA, USA) [30]
(see Data S1).

Detection of caspase-3 activity

Caspase-3 activation was evaluated by detecting caspase-3 activity as
described before [31] (see Data S1).

Assaying lipid oxidation

A thiobarbituric acid assay was used to measure relative malondialde-
hyde (MDA) production as an index of lipid peroxidation, as described
previously [32] (see Data S1).

Measurement of ROS generation

Reactive oxygen species generation of cardiomyocyte was examined
using the intracellular ROS assay kit (see Data S1).

Nuclei isolation

Nuclei of the cardiomyocytes from both in vivo and in vitro studies
were isolated using nuclei isolation kit (NUC- 201; Sigma-Aldrich) as
previously [23] (see Data S1).
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Western blotting assay

Western blot was performed as described in our previous studies
[10, 11] (see Data S1).

RNA isolation and real-time quantitative
polymerase chain reaction

RNA isolation and real-time quantitative PCR was performed as
described in our previous studies [10, 11] (see Data S1).

Statistical analysis

Data were collected from eight mice per group, or three replicates of
cell-culture experiments, which presented as mean 4 S.D. One-way
ANovA was used to determine general differences, followed by a post-
hoc Tukey’s test for the difference between groups, using Origin 7.5
software for laboratory data analysis and graphing. Statistical signifi-
cance was considered P < 0.05.

Results

Effect of LDR on hyperglycaemia in type 1
diabetic mice

The blood glucose levels were similar among groups before induction

of diabetes by STZ. Five days after the last dose of STZ, the blood glu-
cose levels were measured. Once hyperglycaemia was diagnosed,

Table 1 Effect of LDRs on cardiac function in type 1 diabetic mice

diabetic mice and age-matched control mice were exposed or shamed
to LDR either at 12.5 mGy, single 25 mGy or 50 mGy. Figure S1
showed that 5 days after the last STZ injection, the blood glucose
level was significantly elevated in the mice of diabetic group
(>12 mmol/l, around 17 mmol/l), indicating that the type 1 diabetic
mice models were successfully established. Addtionally, the blood
glucose levels of diabetic mice were further elevated 12 weeks later
(around 25 mmol/l). However, Blood glucose levels in DM/25 mGy
and DM/50 mGy group were kept at plateau levels (around 16 mmol/
) after 12 weeks exposure to LDR and showed a statistical difference
from those in the DM groups (Fig. S1).

Exposure to LDR prevented type 1 diabetes-
induced cardiac dysfunction

Using Echo examination (Table 1), we measured diabetic mouse car-
diac function and noted progressive increase in LVID;s, IVS;d and
LVPW;d and progressive decrease in LVPW:;s, EF% and FS%. Expo-
sure to LDR at 25 or 50 mGy was cardioprotective but neither radia-
tion dose was statistically significantly different between the two
groups. However, similar protective effect was not found in diabetic
mice exposed to 12.5 mGy.

LDR protected the heart from diabetes-induced
hypertrophic remodelling, morphological
abnormalities and fibrosis

A significant increase in the size of heart (Fig. 1A), as well as the
ratio of heart weight to tibia length was observed in non-treated

Con 25 mGy DM DM/12.5 mGy DM/25 mGy DM/50 mGy
LVID;d (mm) 3.61 £+ 0.05 3.63 £ 0.1 3.98 + 0.04* 3.93 £ 0.1 3.75 + 0.04*F 3.73 + 0.06*
LVID;s (mm) 1.69 + 0.16 1.56 + 0.13 2.27 £ 0.15* 219 £ 0.13 1.81 £ 0.11*F 1.75 4+ 0.13F
IVS;d (mm) 0.73 £ 0.03 0.76 £ 0.01 0.81 £ 0.01* 0.79 £ 0.02 0.74 + 0.02%F 0.72 + 0.017
IVS;s (mm) 1.14 + 0.02 1.11 £+ 0.04 0.89 £ 0.05 0.94 £+ 0.02 1.01 + 0.04 1.11 £ 0.02
LVPW;d (mm) 0.82 + 0.01 0.84 + 0.03 1.21 £ 0.03* 1.14 £ 0.05 1.01 £ 0.01*F 0.94 + 0.03*"
LVPW;s (mm) 1.82 + 0.13 1.82 + 0.09 131 £ 0.1 14 £02 1.59 + 0.14*7 1.74 £ 0.11+7
%EF (%) 89.11 £ 1.32 88.35 + 1.09 63.89 + 2.02* 68.43 + 3.59 76.35 + 3.31*T 80.89 + 2.02*
%FS (%) 61.22 £ 1.16 60.68 + 1.21 39.48 + 1.07~ 44.22 + 5.16 52.68 + 4.21* T 55.93 + 1.07*"
LV mass (mg) 92.23 + 4.12 89.68 + 3.69 110.58 + 6.46* 107.43 + 4.97 103.44 + 2.85% " 98.49 + 6.32*"
LV mass-C (mg) 7343 £ 2.1 75.37 £ 2.74 88.47 + 3.56* 82.75 £ 1.13 78.69 + 1.02*F 76.45 + 2.22*7

P < 0.05 versus the control group.
TP < 0.05 versus the DM group.
Data were presented as means 4 S.E.M. n = 8 in each group.
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Fig. 1 Effect of LDR on diabetes-induced CH, and fibrosis. Diabetic and age-matched mice were exposed to LDR at 12.5, 25 or 50 mGy every
2 days for 12 weeks. CH was evaluated by examining the heart size (A), the ratio of heart weight to tibia length (HW/BW (B), the cross-section of
cardiac chambers (C), the LV mass (D) and cardiomyocyte size (E), as well as the expression of hypertrophic markers including cardiac ANP (F),
BNP (G) and B-MHC (H). Fibrosis was evaluated by measuring collagen content (I), expression of fibrotic markers such as CTGF (J) and TGF-B (K)
in diabetic hearts with Western blot. Data are presented as means + S.D., n = 8/group. *P < 0.05 versus the control (Con) group; *P < 0.05 ver-

sus diabetic (DM) group.

diabetic mice, suggesting possible induction of CH (Fig. 1B). The
CH was further confirmed by the size increase in cardiac chamber
of diabetic mice (Fig. 1C). Additionally, we also observed increased
LV mass (Fig. 1D) and cardiomyocyte size (Fig. 1E, Fig. S2A) in
diabetic hearts. Consistently, expression of hypertrophic markers
including ANP (Fig. 1F), BNP (Fig. 1G) and B-MHC (Fig. 1H) were
strongly increased in diabetic hearts. However, exposure to LDR at
25 or 50 mGy (not 12.5 mGy), prevented these increased hyper-
trophic parameters (Fig. TA-H and Fig. S2A). Moreover, in diabetic
hearts, morphological abnormalities including focal cell necrosis,
disorganized array of myocardial structure and myofibrillar discon-
tinuation were observed under haematoxylin and eosin staining
(Fig. S2A). Meanwhile, Sirius-red staining for fibrosis confirmed
that diabetes caused significant collagen accumulation in both the
perivascular and the interstitial tissues (Fig. S2B, Fig 2I). Consis-
tent with Sirius-red staining, expressions of fibrotic markers at the
molecular level including connective tissue growth factor (CTGF)
(Fig. 2J) and transforming growth factor (TGF)-B (Fig. 2K) were
significantly up-regulated in diabetic hearts. However, all the fibro-
tic effects induced by diabetes were remarkably prevented by expo-
sure to LDR at 25 or 50 mGy, but not at 12.5 mGy.

LDR induced anti-apoptotic effect in diabetic
hearts

TUNEL assay was performed on cardiac tissues to measure apopto-
sis. Increased apoptosis (i.e. TUNEL-positive cells; Fig. 2A and B) in
diabetic hearts was observed compared to non-diabetic hearts. How-
ever, the increased apoptosis was significantly suppressed by expo-
sure to LDR at 25 or 50 mGy. To confirm the inhibitory effect of LDR
on diabetes-induced cardiac apoptosis, caspase-3 activation and
active or cleaved product were measured by enzymatic assay
and Western blot. Data show that both cleaved caspase-3 content
and caspase-3 activity strongly increased in the diabetic hearts
(Fig. 2C-E). In contrast, exposure to LDR at 25 or 50 mGy, but not
12.5 mGy, significantly prevented cardiac apoptosis (Fig. 2A-E).
Meanwhile analysis of the Bax/Bcl-2 ratio as a mitochondrial cell
death pathway revealed a synergistic increase in Bax/Bcl-2 ratios in
diabetic hearts (Fig. 2F). Additionally, we also investigated the activity
of cardiac P53 (Fig. 2G), which is an upstream inducer of the mito-
chondrial death pathway. The activity (phosphorylation) of cardiac
P53 was significantly enhanced in the diabetic hearts and this was
accompanied by a significant decrease in cardiac expression of
MDM2 (Fig. 2G and H), a negative regulator of P53. After exposure to
LDR at 25 or 50 mGy, cardiac P53 activation was strongly inhibited
and this was a consistent finding with regard to increased expression
of cardiac MDM2 (Fig. 2G and H).
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LDR prevented diabetes-induced oxidative stress
in hearts associated with enhanced Nrf2
expression and function

We investigated the effect of LDR on oxidative stress in the diabetic
hearts as measured by 3-NT as an index of nitrosative damage
(Fig. 3A), and 4-HNE (Fig. 3B) and MDA (Fig. 3C) as a classic oxida-
tive damage markers. These were significantly increased in the diabetic
hearts. Exposure to LDR at 25 or 50 mGy significantly decreased the
contents of the above oxidative markers in the diabetic hearts. Because
oxidative stress is because of the imbalance between ROS production
and scavenging, we measured cardiac ROS in each treatment group
and found that LDR at 25 or 50 mGy strongly inhibited ROS produc-
tion in the diabetic hearts (Fig. 3D). Nrf2 is an important cellular
defence mechanism against oxidative stress, which can translocate to
the nucleus from the cytosol and induce transcription of genes encod-
ing various anti-oxidants. Diabetes inhibited Nrf2 nuclear translocation
(Fig. 3D and E), and this was associated with opposing translocation
of Fyn, a negative regulator of Nrf2 (Fig. 3F and G). However, the
impaired nuclear translocation of Nrf2 was remarkably reversed after
exposure to LDR at 25 or 50 mGy. Next, we further studied the tran-
scriptional function of Nrf2 by measuring its downstream anti-oxidant
expression including HO-1 (Fig. 3H, Fig. S3A), NQO1 (Fig. 3I,
Fig. S3B), CAT (Fig. 3J, Fig. S3C), SOD-1 (Fig. 3K, Fig. S3D) at the
mRNA and protein levels. These anti-oxidants were strongly sup-
pressed in the diabetic hearts. However, exposure to LDR at 25 or
50 mGy reversed mRNA and protein expression of these markers.

LDR prevented inactivation of the PI3K-AKT-
GSK3p signalling pathway in the diabetic hearts

Diabetes-induced cardiac apoptosis and oxidative stress are consid-
ered to be associated with inactivation of the PI3K-AKT-GSK-3p path-
way [24, 33, 34], which was confirmed here, as demonstrated by a
significant decrease in the expression of PI3K (Fig. S4A) and the
phosphorylation of AKT (Fig. S4B) and its downstream target GSK-38
(Fig. S4C) in the diabetic hearts. These expression patterns were sig-
nificantly reversed by LDR at 25 or 50 mGy.

LDR prevented HG/Pal-induced hypertrophic and
fibrotic effects in primary cardiomyocytes
associated with suppression of oxidative stress
and apoptosis

In vivo data suggest that LDR was protective against diabetic car-
diomyopathy but how this occurs is unclear. Thus, primary cultured

© 2016 The Authors.
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Fig. 2 Effect of LDR on mitochondrial pathway-mediated apoptosis in diabetic hearts. Apoptosis was measured by TUNEL staining (A), followed
by quantitative analysis of TUNEL-positive cells (B). Cardiac apoptosis was confirmed by measuring cleaved-caspase-3 expression (C and D)
and caspase-3 activity (E) with Western blot and ELISA. Expression of Bax and Bcl-2, markers of the mitochondrial death pathway, were mea-
sured and the ratio of Bax/Bcl-2 is given (F). P53 activity (G), an inducer of the mitochondrial death pathway, and expression of its negative
regulator, MDM2 (H) were measured. Data are presented as means =+ S.D., n = 8/group. *P < 0.05 versus the Con group; *P < 0.05 versus
the DM group.

mouse cardiomyocytes were treated with HG (33 mmol/l) and Pal  Real-time PCR. Data show that HG/Pal induced cardiomyocyte hyper-
(62.5 pmol/l). Markers of cardiomyocyte hypertrophy, fibrosis,  trophy by up-regulating ANP (Fig. 4A) and BNP (Fig. 4B) expression;
oxidative stress and apoptosis were measured with Western blot or  induced fibrosis by increasing CTGF (Fig. 4C) and TGF-B expression
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Fig. 3 Effect of LDR on diabetes-induced oxidative stress in the diabetic hearts. Cardiac tissues from all four groups were collected to measure car-
diac oxidative stress. Expression of the nitrosative damage marker 3-NT (A) and the oxidative marker (B) were measured with Western blot. MDA
(C) and cardiac ROS was measured (D) with ELISA. The translocation between the nuclei and cytosol of Nrf2 (D and E) or Fyn (F and G) was evalu-
ated by measuring protein of each in the nuclei and cytosol respectively. Nrf2 function was measured by quantifying expression of Nrf2 downstream
genes at the mRNA level including HO-1 (H), NQO1 (I), CAT (J), SOD-1 (K) with real-time PCR. Data are presented as means + S.D., n = 8/group.

*P < 0.05 versus the Con group; *P < 0.05 versus the DM group.

(Fig. 4D); induced oxidative stress by increasing expression of 3-NT
(Fig. 4E and F) and 4-HNE (Fig. 4G and H) as well as decreasing
HO-1 (Fig. 41) and NQO-1 mRNA (Fig. 4J). Cardiomyocyte apoptosis
was induced by increased cleaved-caspase-3 expression (Fig. 4K)
and DNA fragmentation (Fig. 4L). In contrast, these abnormalities
were remarkably inhibited by LDR at 25 mGy. Additionally, we also
confirmed that LDR-induced anti-oxidant effects were associated with
improving Nrf2 nuclear translocation (Fig. S5A and B), as well oppos-
ing translocation of Fyn (Fig. S5C and D). LDR-induced anti-apoptotic
effects in HG/Pal-treated primary cardiomyocytes were associated
with inactivation of P53 (Fig. S5E), as well as increased MDM2
expression (Fig. S5F). Furthermore, we also found that HG/Pal treat-
ment significantly inhibited the phosphorylation of Akt (Fig. S5G) and
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GSK-3B (Fig. S5H) in cardiomyocytes, and this was reversed by
exposure to LDR at 25 mGy.

Akt-mediated LDR-induced protection in HG/Pal-
treated cardiomyocytes

Although we found that LDR at 25 mGy-induced cardiac protection
in vitro was associated with activation of Akt, whether this protection
is mediated by Akt remains unclear. Therefore, the direct role of Akt
in the LDR-induced therapeutic response was tested by knocking
down Akt expression with its siRNA. We noted that Akt siRNA effec-
tively reduced Akt phosphorylation (Fig. 5A and B) and expression

© 2016 The Authors.
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Fig. 4LDR prevented hypertrophy, fibrosis, oxidative stress and apoptosis in HG/Pal-treated primary cardiomyocytes. Primary cardiomyocytes from
adult mice were isolated and treated with high glucose (33 mmol/l) for 24 hrs associated with palmitate (62.5 pmol/l) during the last 15 hrs. Cells
were exposed to LDR at 25 mGy every 6 hrs initiated just before high-glucose treatment. Western blot assay was applied to identify cardiomyocyte
hypertrophy by measuring expressions of ANP (A) and BNP (B); fibrosis in cardiomyocytes by measuring expressions of CTGF (C) and TGF-B (D);
oxidative stress in cardiomyocytes by examining the expression 3-NT (E and F), 4-HNE (G and H), HO-1 mRNA (I) and NOQ-1 mRNA (J); and cell
apoptosis by quantifying expression of cleaved-caspase-3 (K) and DNA fragmentation (L). Data are presented as means + S.D., n = 8/group.

#P < 0.05 versus the Con group; *P < 0.05 versus the DM group.

(Fig. 5A and C) in HG/Pal-treated cardiomyocytes with/without expo-
sure to LDR at 25 mGy. Next, we confirmed that exposure to LDR at
25 mGy significantly prevented HG/Pal-induced hypertrophy and
fibrosis characterized by down-regulation of ANP (Fig. 5D), BNP
(Fig. 5E), GTGF (Fig. 5F) and TGF-p expression (Fig. 5G) in con-
siRNA-treated cells, but not in Akt-siRNA-treated cells. Similarly,
knockdown of Akt suppressed LDR-induced down-regulation of the
apoptotic marker, cleaved-caspase-3 (Fig. 5H) and the oxidative mar-
ker, 3-NT (Fig. 5I) and 4-HNE expression (Fig. 5J). Furthermore, Akt
knockdown also suppressed LDR-induced inactivation of P53
(Fig. 5K), and Nrf2 nuclear translocation (Fig. 5L and M) and its tran-
scriptional function (Fig. 5N and 0). Therefore, we confirmed that
LDR at 25 mGy prevented diabetes-induced hypertrophy and fibrosis
in HG/Pal-treated cardiomyocytes attributed to Akt-mediated anti-
apoptotic and anti-oxidant pathways.

© 2016 The Authors.

LDR protected cardiomyocytes against HG/Pal
treatment partially by suppression of the MDM2-
P53-mediated apoptotic signalling pathway

Whether Akt-mediated inactivation of the MDM2-P53 signalling path-
way participated in this protection was tested by knocking down
MDM2 expression with its siRNA. We first demonstrated that MDM2
SiRNA effectively reduced MDM2 expression in cardiomyocytes
(Fig. 6A), which also completely abolished LDR-induced inhibition of
P53 phosphorylation (Fig. 6B) and the following cleaved-caspase-3
expression and DNA fragmentation (Fig. 6C and D). Further study
demonstrated that MDM2 knockdown reduced the ability of LDR to
reduce ANP, BNP, CTGF and TGF-p expression in HG/Pal-treated car-
diomyocytes (Fig. 6E-H).
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Fig. 5 Akt mediates LDR-induced antihypertrophic and antifibrotic effects against HG/Pal associated with suppression of P53-induced apoptosis
and improvement of Nrf2 translocation and transcriptional function. Primary cardiomyocytes were transfected with either negative control sense
SiRNA or mouse Akt antisense siRNA. Western blot was used to measure Akt phosphorylation (A and B) and expression (A and C). Expression
of ANP (D) and BNP (E) as markers of hypertrophy; CTGF (F) and TGF-B (G) as markers of fibrosis were measured by Western blot assay.
Expression of cleaved-caspase3 (H) and 3-NT (I), 4-HNE (J) reflecting apoptosis or oxidative stress were quantified. To measure mediators of
both apoptotic and oxidative pathways induced by HG/Pal treatment, P53 activity (K) and Nrf2 translocation (L and M) and transcriptional func-
tion (N and 0) were evaluated by Western blot. Data are presented as means + S.D., n= 8/group. *P < 0.05 versus the Con group;

#P < 0.05 versus the DM group.
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Fig. 6 MDM2/P53-mediated anti-apoptotic pathway is involved in LDR-induced cardiac protection in vitro. TO evaluate the relationship between
MDM2/P53-mediated anti-apoptotic effects and LDR-induced cardiac protection in vitro against HG/Pal. Primary cardiomyocytes were transfected
with either negative control sense SiRNA or mouse MDM2 antisense siRNA using Lipofectamine TM 2000 transfection reagent for 48 hrs. Transfec-
tion was followed by treatment with HG/Pal with/without exposure to LDR at 25 mGy. Western blot was used quantify P53-mediated apoptosis by
measuring MDM2 expression (A) P53 phosphorylation and cleaved-caspase3 expression (B and C). Meanwhile another apoptotic marker, DNA frag-
mentation, was measured by ELISA (D). Additionally, expression of hypetrophic markers, ANP (E) and BNP (F) and fibrotic markers, CTGF (G) and
TGF-B (H) were measured by Western blot. Data are presented as means + S.D., n = 8/group. *P < 0.05 versus the Con group; *P < 0.05 versus

the DM group.

LDR-induced cardiac protection against HG/Pal
treatment in vitro partially by improving the
Nrf2-mediated anti-oxidant signalling pathway

Whether Nrf2 is essential for cardiac protection provided by LDR
was investigated by knocking down Nrf2 expression with its
siRNA, which also can attenuate the nuclear translocation of Nrf2.
We found Nrf2 siRNA effectively reduced the expressions of Nrf2
(Fig. 7A and B) and completely inhibited LDR-induced up-regula-
tion of HO-1 and NQO-1 mRNA in cardiomyocytes (Fig. 7C and
D). Meanwhile, knockdown of Nrf2 also remarkably suppressed
LDR-induced inhibition of 3-NT (Fig. 7E and F), 4-HNE expression
(Fig. 7E and G) and reduced MDA (Fig. 7H). Nrf2 knockdown
partially reduced LDR’s ability to reduce hypertrophic markers
(ANP and BNP expression) (Fig. 71 and J), and fibrotic markers
(CTGF and TGF-B expression) in HG/Pal-treated cardiomyocytes
(Fig. 7K and L).

© 2016 The Authors.

The effect of LDR on plasmatic cancer markers
level

The oncogenicity is the major concern of LDR’s safety during applied
in the clinics. Therefore, we measured a range of plasmatic cancer
markers in mice among groups. The results was shown in Table 2
that all the cancer markers maintained at low levels in the plasma of
healthy mice. Similarly, the above cancer markers in the plasma of
either diabetic or LDR-treated mice also maintained at similarly low
levels, which means LDR did not have tumorgenesis ability at the
doses of 12.5, 25 or 50 mGy.

Discussion

Diabetic cardiomyopathy has been defined as CH, fibrosis and
ventricular dysfunction that occur independently of coronary artery
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Fig. 7 Nrf2-mediated anti-apoptotic pathway is involved in LDR-induced cardiac protection in vitro. To understand the relationship between Nrf2-
mediated anti-oxidant effect and LDR-induced cardiac protection in against HG/Pal in vitro. Primary cardiomyocytes were transfected with either
negative control sense SiRNA or mouse MDM2 antisense siRNA using Lipofectamine TM 2000 transfection reagent for 48 hrs. Transfection was fol-
lowed by treatment with HG/Pal with and without exposure to LDR at 25 mGy. Firstly, the effect of nrf2 silencing was evaluated by comparing Nrf2
expression (A and B) and its transcriptional function (C and D). Meanwhile expressions of oxidative markers including 3-NT (E and F), 4-HNE (E
and G) and MDA (H) were also measured by Western blot or ELISA. Additionally, expression of hypetrophic markers, ANP (E) and BNP (F) and
expression of fibrotic markers, CTGF (G) and TGF-B (H) were quantified. Data are presented as means & S.D., n = 8/group. *P < 0.05 versus the

Con group; *P < 0.05 versus the DM group.

disease and hypertension [35]. Oxidative stress, apoptosis are
regarded as main features of diabetic cardiomyopathy [29, 36, 37].
Therefore, an ideal drug to prevent diabetes-induced cardiomyopathy
may need to inhibit oxidative stress and apoptosis simultaneously.

Effects of LDR are distinct from those of moderate- or high-level
radiation, which stimulate beneficial effects including cell prolifera-
tion, metabolic activity and anti-inflammatory and anti-oxidant effects
[38-42]. Our previous work suggests that exposure to repetitive LDR
(25 mGy/day) induces anti-inflammatory effects in the hearts at the
early stage of diabetes [14]. However, whether LDR also induces ben-
eficial effects in cardiomyopathy at the late stage of diabetes remains
unclear. If so, whether LDR also induces preventive effects in other
key pathogenic events including apoptosis and oxidative stress of dia-
betic cardiomyopathy apart from inflammation still needs to be inves-
tigated.

To confirm that LDR is protective against diabetic cardiomyopa-
thy, a type 1 diabetic mice model was established and mice received
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LDR exposure at 12.5, 25, 50 mGy, respectively, for 12 weeks. We
observed significant cardiac dysfunction and cardiac remodelling
including CH and fibrosis in diabetic mice, accompanied by myocar-
dial morphological abnormalities. Accordingly, the mice models of
diabetic cardiomyopathy were regarded as successfully established.
Interestingly, in the myocardium the symptoms of diabetic cardiomy-
opathy were significantly prevented by exposure to LDR at medium
and high doses (25, 50 mGy) but not at low doses (12.5 mGy) and
there were no statistically significant differences between the upper
doses of LDR, although visually, there appeared to be more cardiac
protective effects offered by 50 mGy.

So, what is the mechanism behind LDR-protection of the heart
from diabetes? As we know, inflammation, apoptosis and oxidative
stress are the key pathogeneses of diabetic cardiomyopathy. In the
previous study, we have already established that LDR at 25 mGy
significantly prevented inflammatory effects in the diabetic heart [14].
However, strong evidence demonstrated that the evident

© 2016 The Authors.
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Table 2 Effect of LDRs on plasma cancer markers in type 1 diabetic mice

Con 25 mGy DM DM/12.5 mGy DM/25 mGy DM/50 mGy
AFP (U/1) 8.00 £+ 0.67 8.02 £ 0.78 8.10 £+ 0.54 8.10 £ 0.83 8.03 + 0.64 8.06 + 0.58
CEA (ng/ml) 0.58 + 0.16 0.57 £ 0.11 0.60 + 0.15 0.60 & 0.13 0.58 + 0.15 0.60 + 0.13
CA-125 (U/ml) 3.22 + 0.56 3.12 + 0.65 3.30 + 0.35 3.14 £ 0.68 3.20 + 0.52 3.16 £+ 0.41
CA-153 (U/ml) 2.54 £ 0.22 2.46 + 0.24 2.60 + 0.25 2.56 £+ 0.22 2.48 + 0.24 2.49 + 0.22
CA-199 (U/ml) 8.56 + 2.11 8.32 + 1.86 8.48 + 1.95 8.44 + 1.57 8.33 + 1.28 8.46 + 1.60
CA-724 (U/ml) 1.00 + 0.13 1.04 + 0.09 0.97 + 0.1 1.02 + 0.12 0.95 + 0.14 1.06 + 0.11
NSE (ng/ml) 41.65 + 5.33 40.12 £ 4.38 43.00 £ 6.28 41.99 + 5.54 42.64 + 6.38 41.53 + 4.68
PSA (ng/ml) 6.65 + 1.13 6.42 + 1.21 6.5 + 1.07 6.32 £ 5.16 6.36 + 4.21 6.35 + 1.07
SCCA (pg/l) 0.32 + 0.08 0.35 + 0.04 0.34 + 0.05 0.34 £+ 0.03 0.36 + 0.05 0.33 + 0.03
Ferritin (ng/ml) 45.56 + 5.55 46.35 £ 4.73 43.43 £ 5.54 47.26 + 6.47 46.53 £ 6.30 45.65 + 3.34

Data were presented as means & S.E.M. n = 8 in each group.

AFP: Alpha foetal protein; CEA: Cancer embryo antigen; CA-125: Cancer antigen-125; CA-153: Cancer antigen-153; CA-724: Cancer antigen-724;
NSE: neuron-specific enolase; PSA: Prostate-specific antigen; SCCA: Squamous cell carcinoma antigen.

inflammation was only observed in short-term type 1 diabetes rather
than in long-term type 1 diabetes [15-18], which implied that
enhanced enhance inflammation is impossible to be the key
pathogengesis of diabetic cardiomyopathy at the late-stage of type 1
diabetes. Therefore, If LDR can induce preventive effect on diabetic
cardiomyopathy, other protective mechanisms rather than anti-
inflammation must exist. Therefore, in the present study, we mainly
focused on evaluating the effect of LDR on the other pathogeneses of
diabetic cardiomyopathy including apoptosis and oxidative stress.
Cardiac apoptosis, examined by TUNEL staining as well as detection
of caspase-3 activation, was significantly induced in the diabetic
hearts. However, exposure to LDR prevented diabetes-induced apop-
tosis in a dose-dependent manner as demonstrated by reduction in
positive apoptotic cells and caspase-3 activation. Caspase-3 is the
end-point apoptotic marker activated by the mitochondrial, endoplas-
mic reticular or death receptor pathway. Here, increased ratio of Bax
to Bcl was strongly, but not completely suppressed, suggesting that
LDR prevented diabetes-induced cardiac cell apoptosis partially
because of the inhibition of the mitochondrial pathway. Whether other
two apoptotic pathways are also prevented by LDR is unclear. LDR at
25 or 50 mGy, but not 12.5 mGy, significantly prevented oxidative
stress in the diabetic hearts, characterized by less ROS production
and reduced biomarkers of oxidation, including 3-NT, 4-HNE and
MDA which are associated with anti-oxidants including HO-1, NQO-1,
CAT and SOD-1. Thus, based on the above evidence, we revealed that
anti-apoptotic and anti-oxidant stress properties were involved in
LDR-induced cardiac protection against diabetes.

Next, we further explored more mechanisms behind LDR-induced
protective effects in the diabetic hearts. Akt, an effector of PI3K, is a
serine/threonine protein kinase that regulates a variety of cellular
functions in different tissues [43-45]. The PI3K/Akt signalling
pathway is known to mediate beneficial cardiac effects including

© 2016 The Authors.

improvement of cardiac growth, myocardial angiogenesis and glu-
cose metabolism [43-45]. Mechanistic studies revealed that Akt-
mediated cardiac protection is mainly attributed to the prevention of
apoptosis and oxidative damage [24, 46-48]. Matsui’s group reported
that up-regulation of Akt activity significantly protected cardiomy-
ocytes from apoptosis in response to hypoxia in vitro [49]. Moreover,
improvement of Akt activity significantly limited infarct size after
ischemia/reperfusion injury and ameliorated doxorubicin-induced car-
diac dysfunction as a result of the inhibition of apoptosis [50, 51].
Also, garlic is reported to lower cardiac oxidative stress via activation
of the PISK/AKT/Nrf2 pathway in diabetic rats [24]. Additionally,
hemin decreases cardiac oxidative stress in a rat model of systemic
hypertension via PI3K/Akt signalling [52]. We noted that activation of
the PI3K/Akt/GSK3p signalling pathway induced by LDR in the dia-
betic hearts occurred in a dose-dependent manner, so whether activa-
tion of Akt signalling itself was a component of LDR-induced cardiac
protection against diabetic cardiomyopathy was investigated in vitro.
Primary cardiomyocytes were treated with HG/Pal to mimic type 1
diabetes in vitro and these cells were then treated with/without Akt
siRNA followed by exposure to LDR. Both 25 and 50 mGy of LDR
equally induced protection against diabetic cardiomyopathy. Thus,
25 mGy was chosen as a minimum effective, but more safer dose in
the in vitro study. Data show that Akt knockdown strongly suppressed
LDR-induced prevention of cardiomyocyte hypertrophy and fibrosis
associated with suppression of LDR-induced anti-apoptotic and anti-
oxidant effects in HG/Pal-treated cardiomyocytes. Therefore, we
demonstrated for the first time that the activation of Akt-mediated
anti-apoptotic and anti-oxidant functions contributes to LDR-induced
cardiac protection against diabetes.

How Akt mediates LDR’s cardiac protection was not certain, so
we approached the next studies with the understanding that activation
of Akt/MDM2/P53 signalling always leads to anti-apoptotic effects
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and that activation of Akt/nrf2 signalling always leads to anti-oxidant
effects [19, 53]. Our in vivo study confirmed that LDR at medium or
high dose significantly reduced activation of P53, an upstream indu-
cer of apoptosis associated with increased expression of cardiac
MDM2, a negative regulator of P53. Meanwhile enhanced Nrf2
nuclear translocation in LDR-treated diabetic hearts was also
observed associated with the increase in the expressions of multiple
anti-oxidants. Whether the above signallings mediate LDR-induced
cardiac protection against diabetes was also investigated in the cur-
rent study by knockdown of MDM2 and Nrf2 respectively. Data show
that the knockdown of MDM2 significantly enhanced P53 activity and
subsequent apoptosis which impaired LDR-induced prevention of cell
hypertrophy and fibrosis in HG/Pal-treated cardiomyocytes. Similarly,
knockdown of Nrf2 also suppressed LDR-induced anti-oxidant effects
and cardioprotection. Therefore, we concluded that LDR prevented
diabetic cardiomyopathy likely because of the inhibition of apoptosis
via the activation of the Akt/MDMZ2/P53 and inhibition of oxidative
stress via Akt/nrf2 signalling pathways. Additionally, we also con-
firmed that LDR at the dose of 25 and 50 mGy remarkably lowered
the blood glucose levels of diabetic mice. Whether the hypoglycaemic
effect of LDR indirectly contributed to LDR-induced prevention on
diabetic cardiomyopathy still needs further investigation.

lonic radiation at high dose is considered harmful, leading to DNA
damage, cytotoxicity and tumorigenesis [11, 54-56]. Although evi-
dence suggests that exposure to LDR induced multiple beneficial
effects, especially in diabetes [10, 12-14], whether there is a potential
risk of fatal malignancy related to LDR has been frequently discussed
but no conclusion is available at this time. Epidemiological surveys
indicate that individuals exposed to less than 100 mGy had no
increase or reduced risk of solid-cancer incidence; no increase in leu-
kaemia; no increase in cardiovascular diseases and perhaps had
increased longevity. Also, no medications used in clinical practice are
absolutely nontoxic. In the present study, we investigated a series of
classic cancer markers levels in the plasma of mice among groups,
the results showed that the plasmatic levels of all these markers of
LDR-treated mice were comparable to either healthy or diabetic mice,
indicating the dose of LDR selected in this study were safe. Therefore,
there is a need to evaluate the application of LDR to be realistic about
its use and to understand whether it has a critical role in the preven-
tion of diabetic complications.

In summary, diabetic cardiomyopathy is often an eventually fatal
complication for diabetic patients who have cardiac fibrosis, hypertro-
phy and cardiac dysfunction followed by severe heart failure. Dia-
betes-induced apoptosis, and oxidative stress are thought to be
mediators of this pathology so a strategy that simultaneously sup-
presses these events may be ideal for prevention of diabetic car-
diomyopathy. Our previous work indicates that LDR prevented
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