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Ulcerative colitis (UC) is one of the inflammatory bowel diseases (IBD) characterized by occurrence in the rectum and sigmoid
colon of young adults. However, the functional roles of transcription factors (TFs) and their regulating target genes and
pathways are not fully known in ulcerative colitis (UC). In this study, we collected gene expression data to identify differentially
expressed TFs (DETFs). We found that differentially expressed genes (DEGs) were significantly enriched in the target genes of
HOXA2, IKZF1, KLF2, XBP1, EGR2, ETV7, BACH2, CBFA2T3, HLF, and NFE2. TFs including BACH2, CBFA2T3, EGR2, ETV7,
NFE2, and XBP1, and their target genes were significantly enriched in signaling by interleukins. BACH2 target genes were
enriched in estrogen receptor- (ESR-) mediated signaling and nongenomic estrogen signaling. Furthermore, to clarify the
functional roles of immune cells on the UC pathogenesis, we estimated the immune cell proportions in all the samples. The
accumulated effector CD8 and reduced proportion of naïve CD4 might be responsible for the adaptive immune response in UC.
The accumulation of plasma in UC might be associated with increased gut permeability. In summary, we present a systematic
study of the TFs by analyzing the DETFs, their regulating target genes and pathways, and immune cells. These findings might
improve our understanding of the TFs in the pathogenesis of UC.

1. Introduction

Ulcerative colitis (UC) is one of the inflammatory bowel dis-
eases (IBD) with symptoms such as abdominal pain, fever,
malnourishment, fatigue, and weight loss [1]. UC is charac-
terized by occurrence in the rectum and sigmoid colon of
young adults aged 20-40 [2]. Currently, UC is recognized to
be caused by the damages of the intestinal mucosal barrier
and neuroendocrine and immune dysfunction due to the
interplay of genetics, environment, and psychology [3], but
its specific etiology and pathogenesis are still unclear.

With the advances in high-throughput technologies, a
growing number of studies have been carried out to investi-
gate the expression of some genes and proteins in the patho-
genesis and molecular mechanism of UC. Specifically, the
copy number variations (CNVs) in mitochondrial DNA have
been identified as the predictor of UC-associated colorectal

x`cancer by CNV arrays [4]. Moreover, FAM217B,
KIAA1614, and RIBC2 were found to be hypermethylated
in UC and could be used for the diagnosis and therapeutic
treatment of UC based on genome-wide DNA methylation
approach [5]. Furthermore, transcriptome-based system
biology approach identifies ANP32E, a protein involved in
steroid-refractoriness, indicating the key role of steroid-
induced transcriptional changes and the implication of
ANP32E in UC [6]. In addition to these genes or proteins,
miRNAs have been found to be implicated in UC. Particu-
larly, IL-33 expression was exerted by miR-378a-3p in an
inflammatory environment, and downregulation of miR-
378a-3p could result in IL-33 overexpression in UC [7].
These studies greatly improved our understanding of the
underlying mechanism of UC pathogenesis.

In addition, the transcription factors (TFs), a series of
molecules involved in regulating gene expression, have been
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emerged as key regulators in several diseases [8, 9]. Heat
shock transcription factor 2 could predict mucosal healing
and promote mucosal repair by suppressing MAPK signaling
and inhibit intestinal epithelial cell apoptosis in UC through
the mitochondrial pathway [10, 11]. Moreover, RUNX3 is
also associated with UC by regulating the immune-related
target genes and pathways [12, 13]. However, there is a lack
of systematic study analyzing the functional roles of TFs in
the pathogenesis of UC. Therefore, we carried out the present
study, aiming at identifying the critical TFs, their down-
stream target genes, and pathways involved in UC
pathogenesis.

2. Materials and Methods

2.1. Datasets. The gene expression data were collected from
the Gene Expression Omnibus (GEO) database with acces-
sion GSE128682, and the sample collection was described
in an earlier study [14]. The counts for each sample were nor-
malized by DESeq2 [15]. The pairs of transcription factor
(TF) target genes were downloaded from three public data-
bases including JASPAR [16], TRANSFAC [17], and CHEA
[18].

2.2. Differential Expression Analysis. The count-based expres-
sion data was used for the differential expression analysis
(DEA). R/Bioconductor DESeq2 [15] was employed to iden-
tify the differentially expressed genes (DEGs). The two-fold
change and adjusted p value of 0.05 were used to determine
the DEGs for each comparison.

2.3. Transcription Factor Target Genes and Pathway
Enrichment Analysis. The Fisher’s exact test was used to iden-
tify the transcription factors (TFs) and pathways enriched by
the DEGs. The DEGs with a significant correlation with their
TFs were selected for this analysis and TFs with a large num-
ber of target genes (n > 2000) were excluded in the enrich-
ment analysis. The enrichment analysis was implemented
in the R clusterProfiler package with enricher function [19].

2.4. Immune Cell Proportion Estimation. The immune cell
proportion was estimated by CIBERSORT, which used the
gene expression profiles and immune cell-specific genes to
characterize the cell composition of complex tissues [20].
The count-based expression data was normalized to Tran-
script Per Million (TPM) by R scater package (https://
bioconductor.riken.jp/packages/3.4/bioc/html/scater.html),
which was used for the CIBERSORT analysis.

2.5. Statistical Analysis. The two-sample comparison was
tested by Wilcoxon rank-sum test or t test, and multiple-
sample comparison was tested by analysis of variance
(ANOVA). The Spearman correlation analysis was used to
evaluate the correlation of two variables. Symbols of ∗, ∗∗,
∗∗∗, and ∗∗∗∗ indicate the statistical significances of 0.05,
0.01, 0.001, and 0.0001, respectively.

3. Results

3.1. Identification of Differentially Expressed Transcription
Factors. The mucosal biopsies had 14 ulcerative colitis
(UC), 14 remission (R), and 16 healthy controls (N). With
the three groups of mucosal biopsies, we compared one with
the other two groups, respectively. UC had significantly dif-
ferent expression profiles as compared with R and N groups,
with 3,202 and 2,517 differentially expressed genes (DEGs) in
UC vs. N and UC vs. R (Supplementary Table S1),
respectively. The comparison of R vs. N only identified
1,133 DEGs. Consistently, the comparisons of UC vs. N
(n = 56) and UC vs. R (n = 46) had greater numbers of
differentially expressed transcription factors (TFs) than that
of R vs. N (n = 6) (Figure 1(a)). These results indicated that
the transcriptomic profiles were significantly altered in UC
samples as compared with samples of remission and
healthy controls.

Totally, we identified 72 TFs significantly differentially
expressed between the three groups (Supplementary
Table S2). The hierarchical clustering analysis revealed that
the UC samples could be clearly differentiated from the N
and R samples by the TFs specifically upregulated in UC
(Figure 1(b)). The TFs specifically upregulated in R and N
samples also had the capability of classifying the two
groups to some extent (Figure 1(b)). These results indicated
that the TFs might be implicated in UC pathogenesis.

3.2. Expression Patterns of the Differentially Expressed
Transcription Factors. To reveal the expression patterns of
the differentially expressed transcription factors (DETFs),
we conducted coexpression analysis of the 72 DETFs. Nota-
bly, four categories of DETFs (A, B, C, and D) could be iden-
tified by the coexpression analysis (Figure 2(a)). Further
analysis of the expression patterns revealed that upregulated
TFs in UC (N = R <UC) were highly enriched in groups A
and C, upregulated TFs in R (N < R > UC) had higher pro-
portion in group B, and downregulated TFs in UC
(N = R > UC) were more frequently observed in group D
(Figure 2(b)). These results indicated that three categories
were observed in these DETFs.

3.3. Target Genes of the DETFs. As the TFs could promote or
suppress the transcription of their target genes, we then
investigated whether the target genes were also differentially
expressed. Specifically, DEGs were significantly enriched in
the target genes of HOXA2, IKZF1, KLF2, XBP1, EGR2,
ETV7, BACH2, CBFA2T3, HLF, and NFE2 (Figure 3(a), Sup-
plementary Table S3). Remarkably, BACH2, NFE2, IKZF1,
EGR2, XBP1, CBFA2T3, and ETV7 were upregulated in UC
(N = R < UC or N < R <UC), and HLF and HOXA2 were
downregulated in UC (N = R >UC or N > R >UC)
(Figure 3(b)). It should be noted that BACH2 and NFE2
were upregulated in UC (Figure 3(c)), and they had
significantly more shared target genes (Figure 3(d)),
suggesting that the two TFs might cooperate with each
other to regulate their target genes.

3.4. Signaling Pathways That the DETFs and Target Genes
May Participate in. To further identify the signaling
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Figure 1: Differentially expressed transcription factors (DETFs). (a) The differential expression levels of the TFs. The X and Y axes represent
the log2 fold change and -log10 (adjusted p value), respectively. (b) The gene expression profiles of the DETFs in UC, R, and N groups. The
red and blue colors represent the high and low expression.
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pathways regulated by the DETFs and target genes, we con-
ducted a gene set enrichment analysis of the differentially
expressed target genes of DETFs. We found that target genes
of BACH2, CBFA2T3, EGR2, ETV7, IKZF1, NFE2, and XBP1

were significantly enriched in the pathways (Figure 4(a)).
The virus infection pathways including human papillomavi-
rus infection, Epstein-Barr virus infection, Hepatitis B,
Kaposi sarcoma-associated herpesvirus infection, human
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Figure 2: Gene expression patterns of the DETFs. (a) The coexpression modules of the DETFs. The modules were identified by the
hierarchical clustering analysis with four clusters. (b) The proportion of DETFs in the eight gene expression patterns.
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immunodeficiency virus 1 infection, and immune-related
pathways such as downstream signaling in naïve CD8+ T
cells and signaling by interleukins were significantly enriched
by these target genes (Figure 4(a)).

Particularly, TFs including BACH2, CBFA2T3, EGR2,
ETV7, NFE2, and XBP1, and their target genes were signifi-
cantly enriched in signaling by interleukins. The inflamma-
tory factors such as IL6, IL18RAP, IL11, STAT5B, and CSF3
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Figure 3: The DETFs with significant consequences of their target genes. (a) The DETFs significantly enriched by the DEGs. The node color
represents the statistical significance calculated by Fisher’s exact test. The node size represents the number of target genes with differential
expression. (b) The expression patterns of nine DETFs significantly enriched by the DEGs. (c) The expression levels of BACH2 and NFE2
in the three groups. (d) The shared target genes between BACH2 and NFE2.
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were involved in the signaling by interleukins (Figure 4(b)).
Furthermore, target genes of BACH2, including AKT3,
GNGT2, MMP7, and MMP9, were involved in ESR-
mediated signaling and nongenomic estrogen signaling.
These results indicated that estrogen signaling and signaling
by interleukins might be closely associated with the UC
pathogenesis.

3.5. Immune Cells and Their Association with DETFs. As the
inflammatory factors and pathways were potentially involved
in UC pathogenesis, we investigated the relative abundance
of immune cells in mucosal biopsies and their association
with DETFs. The proportion of immune cells was estimated
by CIBERSORT based on the gene expression profiles. Spe-
cifically, proportions of naïve CD4, regulatory T cells (Tregs),
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Figure 4: The signaling pathways enriched by the target genes of DETFs with differential expression. (a) The DETFs and their regulating
signaling pathways. (b) The DETF-target pairs in signaling by interleukins, ESR-mediated signaling, and nongenomic estrogen signaling.
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Figure 5: The association of transcription factors (TFs) with immune cell proportions. (a) The proportion of immune cells that were
significantly accumulated or reduced in UC. (b) The Spearman correlation of TFs and immune cell proportions. The red and blue colors
represent the positive and negative correlation.
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and plasmacytoid dendritic cells (pDC) were decreased in
UC, while effector CD8 and plasma were increased in UC
compared with R and N groups (Figure 5(a)). Particularly,
DC was found to be reduced in the R group (Figure 5(a)).
The correlation analysis revealed that the nine DETFs with
functional enrichment of pathways including BACH2,
CBFA2T3, EGR2, ETV7, NFE2, and XBP1 were highly corre-
lated with effector CD8 and plasma (Figure 5(b)), indicating
that these TFs might promote the infiltration of effector CD8
and plasma into the intestinal mucosal tissues.

4. Discussion

Transcription factors (TFs) are key proteins involved in reg-
ulating gene transcription in cells. However, the functional
roles of TFs and their regulating target genes and pathways
are still little known in ulcerative colitis (UC).

In the present study, we collected gene expression data of
mucosal biopsies from 14 UC, 14 remission (R), and 16
healthy controls (N), and identified DEGs in the three
groups, of which, 72 were identified as differentially
expressed TFs (DETFs). Furthermore, the coexpression anal-
ysis of the DETFs revealed three categories of TFs, which
were upregulated in UC (N = R <UC), upregulated in R
(N< R >UC), and downregulated in UC (N = R >UC).

As the function of DETFs could result in dysregulation of
their target genes, we found that DEGs were significantly
enriched in the target genes of HOXA2, IKZF1, KLF2,
XBP1, EGR2, ETV7, BACH2, CBFA2T3, HLF, and NFE2. As
BACH2 and NFE2 proteins had similar protein structure
[21], they had a greater number of shared target genes.
BACH2 has interactions with NFE2L1 and NFE2L3 based
on BIOGRID [22] protein-protein interaction (PPI), indicat-
ing that BACH2might also have the potential to interact with
NFE2. Both BACH2 and NFE2 were implicated in UC via
regulating inflammation-related pathways [23, 24].

Among the TF target genes, inflammatory factors such as
IL6, IL18RAP, IL11, STAT5B, and CSF3 were involved in the
signaling by interleukins. The interleukins and receptors
were frequently reported to promote the inflammatory phe-
notype in UC [25–28]. Notably, IL11 and IL18RAP were
identified as susceptibility loci in UC [29, 30]. Furthermore,
target genes of BACH2, including AKT3, GNGT2, MMP7,
and MMP9, were involved in ESR-mediated signaling and
nongenomic estrogen signaling. As patients with UC have a
higher risk for colorectal carcinoma (CRC) development
[31] and the estrogen receptors (ER) alpha/beta balance has
a relevant influence on colorectal carcinogenesis [32], we
then speculated that the dysregulation of estrogen signaling
might be associated with the risk of colorectal carcinogenesis.

Furthermore, to clarify the functional roles of immune
cells on the UC pathogenesis, we estimated the immune cell
proportions in all the samples. The accumulated effector
CD8 and reduced proportion of naïve CD4 might be respon-
sible for the adaptive immune response in UC, showing con-
sistency with the previous study [33]. Notably, BACH2 and
EGR2 could regulate CD8 cell differentiation, indicating that
the high proportion of CD8+ might be associated with the
upregulation of BACH2 and EGR2 [34, 35]. The accumula-

tion of plasma in UC might be associated with increased
gut permeability [36].

In summary, we present a systematic study of the TFs by
analyzing the DETFs, their regulating target genes and path-
ways, and immune cells. These findings might improve our
understanding of the TFs in the pathogenesis of UC.
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