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Background. Liver hepatocellular carcinoma (LIHC) is a malignance with high incidence and recurrence. Pyroptosis is a
programed cell death pattern which both activates the effective immune response and causes cell damage. However, their
potential applications of pyroptosis-related genes (PRGs) in the prognostic evaluation and immunotherapy of LIHC are still
rarely discussed. Methods. Comprehensive bioinformatics analyses based on TCGA-LIHC dataset were performed in the
current study. Results. A total of 33 PRGs were selected to perform the current study. Of these 33 PRGs, 26 PRGs with
upregulation or downregulation in LIHC tissues were identified. We also summarized the related genetic mutation variation
landscape. GO and KEGG pathway analysis demonstrated that these 26 PRGs were primarily associated with pyroptosis,
positive regulation of interleukin-1 beta production, and NOD-like receptor signaling pathway. An unfavorable OS appeared in
LIHC patients with high CASP3, CASP4, CASP6, CASP8, GPX4, GSDMA, GSDME, NLRP3, NLRP7, NOD1, NOD2, PLCG1,
and SCAF11 expression and low NLRP6 expression. A prognostic signature constructed by the above 14 prognostic PRGs had
moderate to high accuracy to predict LIHC patients’ prognosis. And risk score was correlated with the expression of CASP6,
CASP8, GPX4, GSDMA, GSDME, NLRP6, and NOD2. Of these 7 genes, CASP8 was identified as the core gene in PPI
network. Moreover, lncRNA MIR17HG/hsa-miRNA-130b-3p/CASP8 regulatory axis in LIHC was also detected. Conclusions.
The current study indicated the crucial role of PRGs in the prognostic evaluation of LIHC patients and their correlations with
tumor microenvironment in LIHC.

1. Introduction

Globally, liver cancer accounted for over 800000 new cases
and caused over 700000 cancer-related death in 2018. Of
these new cases, 85% were diagnosed as liver hepatocellular
carcinoma (LIHC), and over 40% were diagnosed at
advanced stage [1]. LIHC is the most common subtype of
liver cancer. Although some risk factors have been identified,
including hepatitis B infection, liver cirrhosis, and alcoholic
and nonalcoholic fatty liver diseases, and many approaches
have been utilized in clinical practice, mainly including sur-
gical resection, liver transplantation, chemotherapy, targeted
drug treatment, and immunotherapy, the 5-year survival

rate of LIHC in some developing countries is still only 18%
[2–4]. And the minority of LIHC patients are eligible for
these approaches due to high costs of treatment, serious drug
adverse reactions, and multidrug resistance of tumor [5]. In
a word, the current developments in the diagnosis, treat-
ment, and prognostic evaluation of LIHC cannot meet the
demand of patients. In the past 30 years, aberrant expression
of genes in tumor tissues and their potential applications in
clinical practice have been focused by clinicians. Thus,
exploring potential gene signatures for therapeutic and prog-
nostic assessment of LIHC is significant clinically.

Pyroptosis is one of programmed cell death patterns and
both stimulates effective immune responses and causes
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tissue damage [6]. The process of pyroptosis was firstly
described by Zychlinsky et al. in 1992; they revealed that
death of macrophages infected by Shigella flexneri was
dependent on CASP1 [7]. With the in-depth studies on the
mechanisms of pyroptosis, increasing genes that regulate
pyroptosis are identified, which mainly include AIM2,
CASP1, CASP3, CASP4, CASP5, CASP6, CASP8, CASP9,
ELANE, GPX4, GSDMA, GSDMB, GSDMC, GSDMD,
GSDME, IL-18, IL-1B, IL-6, NLRC4, NLRP1, NLRP2,
NLRP3, NLRP6, NLRP7, NOD1, NOD2, PJVK, PLCG1,
PRKACA, PYCARD, SCAF11, TIRAP, and TNF [8–11].
And some studies had found that pyroptosis could influence
the prognosis of cancer patients through controlling cancer
cell proliferation, invasion, and metastasis [12, 13]. With
the development of machine learning and big data tech-
nique, gene signature had been used to guide clinical evalu-
ation of cancer patients. Previously, pyroptosis-related gene
(PRG) signatures concerning lung adenocarcinoma, skin
cutaneous melanoma, and glioblastoma had been established
[14–16]. However, the potential clinical applications of
pyroptosis-related gene signature in LIHC are still unclear.

With the rapid development of molecular biology and
the enrichment of genomic data, comprehensive analysis
on PRG signatures becomes feasible. In the present study,
bioinformatic data was utilized to explore the expression
profiles, prognostic performance, and related regulation axis
of PRG signatures in LIHC. Moreover, we also explored the
association between immune cell infiltration and PRG signa-
tures in LIHC. The above findings may offer novel insights
on the prognostic evaluation and therapy of LIHC.

2. Materials and Methods

2.1. Datasets. The genomic data of LIHC patients and related
clinical data of these patients, including gender, age, tumor
grade, and survival outcome, were downloaded from the
Cancer Genome Atlas (TCGA) database on August 1,
2021. The TCGA-LIHC dataset (N = 374) was selected to
perform the analyses. The data of copy number variation
(CNV) and somatic mutation in LIHC were also extracted
from TCGA database and UCSC Xena, respectively. Using
R software V4.0.3, statistical analyses were performed. In
addition, the P value cutoff was set as 0.05.

2.2. Identification of Differently Expressed PRGs. Based on
previous studies [8–11], a total of 33 PRGs were summarized
to perform our study, including AIM2, CASP1, CASP3,
CASP4, CASP5, CASP6, CASP8, CASP9, ELANE, GPX4,
GSDMA, GSDMB, GSDMC, GSDMD, GSDME, IL-18, IL-
1B, IL-6, NLRC4, NLRP1, NLRP2, NLRP3, NLRP6, NLRP7,
NOD1, NOD2, PJVK, PLCG1, PRKACA, PYCARD,
SCAF11, TIRAP, and TNF. The list of these genes and cor-
responding full name is shown in Supplementary Table 1.
The transcriptional levels of these 33 PRGs in LIHC tissues
and normal liver tissues were visualized using TCGA-LIHC
dataset by “reshape2” and “limma” packages in R software.
Student’s t-test was utilized in this analysis, and the
expression data were standardized to transcripts per
kilobase million (TPM) values before subsequent process.

2.3. Mutation Analysis and Functional Enrichment Analysis
of PRGs. Mutation categories and mutation frequency of
the 33 PRGs as well as their waterfall plots were constructed
by “maftools” package in R. And the location of variation of
these genes on 23 chromosomes was shown by “RCircos”
package. Functional enrichment analysis, including Gene
Ontology (GO) analysis and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis, was performed to
explore the potential molecular mechanisms and biological
functions of target genes by Metascape (http://metascape
.org/gp/index.html#/main/step1) [17]. Moreover, GO analy-
sis included biological process (BP), cellular component
(CC), and molecular function (MF) analysis.

2.4. Consensus Cluster Analysis. Setting the threshold as fol-
lows: iteration = 100 and resample rate = 80%, consensus
cluster analysis was conducted by “ConsensusClusterPlus”
package in R. “Survival” package was utilized to evaluate
the difference of each cluster in LIHC. Next, the difference
of clinical paraments in each cluster was explored by “pheat-
map” package. Furthermore, the ImmuneScore, ESTIMA-
TEScore, StromalScore, and abundance of immune cell in
each cluster were calculated by the ESTIMATE algorithm
[18]. The comparison of above indexes was visualized by
the “vioplot” and “ggpubr” package.

2.5. Prognostic Analysis and Prognostic Model Construction
of PRGs. The prognostic value of differently expressed PRGs
was assessed by the “survival” package in R and was
expressed as prognostic forest maps. The differently
expressed PRGs with OS difference in low-expression and
high-expression group were defined as prognostic PRGs.
According to the above prognostic PRGs, LASSO Cox
regression analysis in “glmnet” package was used to con-
struct prognostic model. Those PRGs that constituted prog-
nostic model were selected for further analyses. According to
the median risk score, patients were divided into low- and
high-risk group, and the OS curves of the two groups were
compared. The predictive accuracy of this prognostic model
was assessed by time ROC analysis. The univariate and mul-
tivariate Cox analysis was performed to excavate the influ-
ence of clinical factors, including age, gender, tumor grade,
clinical stage and TNM stage, and risk score on the progno-
sis of LIHC patients. Subgroup analyses on the influence of
clinical factors on the prognosis of low-risk and high-risk
group were also performed. We were also interested in the
difference of risk score in different subgroups, including
age, gender, cluster, tumor grade, clinical stage, Immune-
Score, and TNM stage. Besides, the correlation between
abundance of immune cells and risk score was also analyzed.

2.6. PPI Network Construction of PRGs in LIHC. The PRGs
that made up risk score were selected via above analyses.
Using STRING (https://string-db.org/), a PPI network was
constructed to illustrate the association among these genes
and seek for the core gene [19]. Further analyses were per-
formed to indicate the potential mechanisms, biological
functions, and applications of the core gene in LIHC.
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2.7. Immune Infiltration, MSI, and TMB Analysis of CASP8
in LIHC. TIMER (http://timer.cistrome.org/) [20] is a bioin-
formatics platform that aims to illustrate the correlation
between target gene and various immune cells. The “Gene”
module was used to validate the correlation between the
expression of CASP8 and the abundance of B cell, CD8+ T

cell, CD4+ T cell, macrophage, neutrophil, and dendritic
cell. Next, we investigated the correlation between somatic
copy number alterations (SCNAs) of CASP8 and immune
infiltration level of different immune cells by the “SCNA”
module. Furthermore, tumor mutation burden (TMB) and
microsatellite instability (MSI) analysis were used to assess
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Figure 1: Landscape of genetic variation and expression of PRGs in LIHC. (a) The mRNA levels of PRGs in LIHC and normal liver tissues.
(b, c) The mutation frequency and classification of PRGs in LIHC. (d) The location of CNV alteration of PRGs on 23 chromosomes in LIHC.
(e) The CNV variation frequency of PRGs in LIHC. The height of the column represented the alteration frequency. Note: ∗P < 0:05, ∗∗P
< 0:01, ∗∗∗P < 0:001.
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the relation between the expression of CASP8 and TMB and
MSI scores, respectively.

2.8. mRNA-miRNA-lncRNA Network Construction of CASP8
in LIHC. AmRNA-miRNA-lncRNA network was constructed
for finding out the potential regulatory axis of CASP8 in LIHC.
The miRNA targets binding to CASP8 in LIHC were excavated
by miRDB (http://www.mirdb.org/) [21], miRWalk (http://
mirwalk.umm.uni-heidelberg.de/) [22], and StarBase (https://
starbase.sysu.edu.cn/starbase2/index.php) [23] database. The
common ground in these three databases was identified as the
most significantly connected miRNAs. Next, according to the
selected miRNAs, the lncRNA targets interacting to miRNAs
were explored by StarBase and LncBase (https://diana.e-ce.uth
.gr/lncbasev3) [24], and the association between the miRNAs
and the lncRNAs was visualized. The expression level and prog-
nostic performance of the targeted miRNAs and lncRNAs were
also evaluated using TCGA-LIHC dataset.

3. Results

3.1. The mRNA Levels and Genetic Variation Landscape of
PRGs in LIHC. According to the RNA-sequencing data from
TCGA-LIHC dataset, the mRNA levels of 33 pyroptosis-
related genes in LIHC tissues and normal liver tissues were
shown in Figure 1(a). Compared to normal liver tissues, the
transcriptional levels of PRKACA, GSDMB, SCAF11, PJVK,
CASP9, NOD1, PLCG1, NLRP1, GSDME, TIRAP, CASP4,

GSDMD, GPX4, CASP3, CASP6, CASP8, GSDMA, GSDMC,
PYCARD, and NOD2 were elevated in LIHC tissues, while the
mRNA levels of NLRP7, IL-1B, NLRP6, AIM2, NLRP3, and
IL-6 were decreased in LIHC tissues. Moreover, no significant
difference was detected between the expression levels of
ELANE, NLRP2, TNF, IL-18, CASP5, NLRC4, and CASP1
in LIHC tissues and those in normal liver tissues. We were
also interested in the copy number variations and somatic
variations of 33 pyroptosis-related genes in LIHC. As
shown in Figures 1(b) and 1(c), genetic alterations were
detected in 46 (56.79%) of 81 LIHC samples. The categories
of genetic alteration included missense mutation, frame-
shift deletion, frame-shift insertion, splice-site variation,
in-frame deletion, nonsense mutation, and nonstop muta-
tion. And the most common variant classification was mis-
sense mutation. In addition, SNP was the most common
variant type, and C>T ranked top SNV class. Of these 33
PRGs, NLRP3 was the gene with the highest mutation fre-
quency. The location of the CNV variations on chromosomes
was also presented in Figure 1(d). The CNV variation fre-
quency of the 33 PRGs in LIHC was also summarized
(Figure 1(e)). Copy number deletion was detected in CASP3,
CASP9, ELANE, CASP6, GSDMB, GSDMA, GPX4, CASP1,
CASP4, CASP5, IL-18, TIRAP, NOD2, and NLRP1, while
copy number amplification was detected in AIM2, GSDMD,
GSDMC, NLRP3, TNF, PJVK, PRKACA, NLRC4, CASP8,
NLRP6, NLRP7, NLRP2, GSDME, IL-6, NOD1, PYCARD,
IL-1B, SCAF11, and PLCG1.
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Figure 2: Functional enrichment analysis of 26 upregulated or downregulated PRGs in LIHC. (a) The relationship network of the 26 PRGs
in GO analysis. (b) The relationship network of the 26 PRGs in KEGG pathway analysis. (c) The bar plot of GO analysis, including BP, CC,
and MF analysis. (d) The bar plot of KEGG pathway analysis.
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3.2. Functional Enrichment Analysis of PRGs in LIHC. The
26 PRGs with aberrant expression in LIHC tissues were
selected to perform GO and KEGG pathway analysis. To
capture the relationship between the enriched terms, the net-
works of GO analysis and KEGG pathway analysis were pre-

sented in Figures 2(a) and 2(b), respectively. For further
visualizing the potential biological functions and molecular
mechanisms of these 26 genes in LIHC tissues, the results
of GO analysis (Figure 2(c)) and KEGG pathways analysis
(Figure 2(d)) were shown in bar plots. The results of GO
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Figure 3: Consensus cluster analysis of the 26 PRGs in LIHC. The consensus matrix legend (a) and consensus clustering matrix (K = 2) (b)
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analysis revealed these 26 PRGs mainly participated in
pyroptosis, response to bacterium, positive regulation of
interleukin-1 beta production, and cysteine-type endopepti-
dase activity involved in apoptotic process. The results of
KEGG pathway analysis indicated these 26 PRGs were
mainly associated with NOD-like receptor signaling path-
way, pertussis, Epstein-Barr virus infection, apoptosis, and
NF-kappa B signaling pathway.

3.3. Consensus Clustering Categorized LIHC Patients. Based
on the above 26 PRGs with aberrant expression, we con-
sensus clustering categorized LIHC patients. According to
the similarity displayed by expression level and the pro-
portion of ambiguous clustering measure, optimal cluster-
ing stability appeared when k value = 2 (Figures 3(a) and
3(b)). The cumulative distribution function, increment
in the AUC, and the tracking plot of subgroup k value
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Figure 4: The correlation between cluster and immune cell infiltration. (a) Cluster 1 had a higher StromalScore than cluster 1. No statistical
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= 2 to 9 were visualized in Figures 3(c)–3(e), respec-
tively. Next, we analyzed the prognostic performance of
cluster 1 and cluster 2 (Figure 3(f)). There is no statisti-
cal difference between the overall survival curve of clus-
ter1 and that of cluster 2 (P value = 0.057). Moreover,
we also studied the association between clinical parame-
ters and gene expression of cluster 1 and cluster 2 and
found that age (>60 years or not) is a factor that influ-
ence the gene expression of cluster 1 and cluster 2
(Figure 3(g), P value < 0.01).

3.4. The Correlation between Cluster and Immune Cell
Infiltration. To investigate the difference of the 2 clusters
in tumor microenvironment of LIHC, we explored the
relationship between immune cell infiltration and cluster.
The StromalScore in cluster 1 was significantly higher than
that in cluster 2 (Figure 4(a), P value = 0.0035). However,
there was no significant difference in the ESTIMATEScore
(Figure 4(b), P value = 0.056) and ImmuneScore
(Figure 4(c), P value = 0.31) between the two clusters.
We next explored the difference between abundance of
different immune cells in the two clusters. Unexpectedly,
there was no significant difference in the abundance of
naive B cells (P value = 0.457), memory B cells (P value
= 0.743), plasma cells (P value = 0.430), CD8+ T cells
(P value = 0.345), naive CD4+ T cells (P value = 0.460),
resting memory CD4+T cells (P value = 0.285), activated
memory CD4+T cells (P value = 0.383), follicular helper
T cells (P value = 0.737), Tregs (P value = 0.635), gamma
delta T cells (P value = 0.775), resting NK cells (P value =
0.311), activated NK cells (P value = 0.168), monocytes (P
value = 0.448), M0 macrophages (P value = 0.318), M1
macrophages (P value = 0.478), M2 macrophages (P value
= 0.851), resting dendritic cells (P value = 0.697), activated

dendritic cells (P value = 0.443), resting mast cells (P
value = 0.618), activated mast cells (P value = 0.443),
eosinophils (P value = 0.782) and neutrophils (P value =
0.307) between the two clusters (Figure 4(d)).

3.5. Prognostic Performance and Prognostic Model
Construction of PRGs in LIHC. We also investigated the
prognostic performance of above 26 PRGs. LIHC patients
with high CASP3 (P value = 0.005), CASP4 (P value =
0.037), CASP6 (P value = 0.003), CASP8 (P value < 0.001),
GPX4 (P value = 0.019), GSDMA (P value = 0.022), GSDME
(P value < 0.001), NLRP3 (P value = 0.014), NLRP7 (P value
= 0.045), NOD1 (P value = 0.005), NOD2 (P value = 0.001),
PLCG1 (P value < 0.001), and SCAF11 (P value < 0.001) had
worse OS than those with low expression of these genes,
while LIHC patients with high NLRP6 expression had better
OS than those with low NLRP6 expression (Figure 5, P value
= 0.014). No significant difference was found in OS between
LIHC patients with high and low PRKACA, GSDMB, PJVK,
CASP9, NLRP1, TIRAP, GSDMD, GSDMC, PYCARD, IL-
1B, AIM2, and IL-6 expression (P value > 0.05). Thus, a total
of 14 genes were consider as prognostic PRGs and were
selected for further analyses. For better predicting the prog-
nosis of LIHC patients, the 14 prognostic PRGs were
selected to construct prognostic model by LASSO Cox anal-
ysis. The partial likelihood deviance and coefficients of prog-
nostic model were presented in Figures 6(a) and 6(b).
Risk score = ð0:0024Þ ∗ CASP6 expression + ð0:0468Þ ∗
CASP8 expression + ð0:0011Þ ∗GPX4 expression + ð0:0821Þ
∗GSDMA expression + ð0:0132Þ ∗GSDME expression + ð−
0:0240Þ ∗NLRP6 expression + ð0:0830Þ ∗NOD2 expression.
LIHC patients were divided into high-risk and low-risk
group according to the risk score. The OS plots of all LIHC
cohort (P value < 0.001, Figure 6(c)), test cohort (P value =
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Figure 5: The prognostic performance of the 26 PRGs in LIHC. LIHC patients with high CASP3, CASP4, CASP6, CASP8, GPX4, GSDMA,
GSDME, NLRP3, NLRP7, NOD1, NOD2, PLCG1, and SCAF1 had worse OS than those with low expression of these genes, while LIHC
patients with high NLRP6 expression had better OS than those with low NLRP6 expression. A total of 14 PRGs were identified as
prognostic PRGs.
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Figure 6: Continued.
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0.014, Figure 6(d)), and training cohort (P value = 0.006,
Figure 6(e)) revealed that high-risk group had worse OS
than low-risk group with AUC of 0.738, 0.742, and 0.738,
respectively. Figures 6(f)–6(h) illustrated the risk score dis-
tribution, patients’ survival status, and gene expression level
of low-risk and high-risk group in all LIHC cohort, test

cohort, and training cohort, respectively. Next, univariate
and multivariate analyses were performed to find out the
potential factors that influenced the prognosis of LIHC
patients. Evidently, risk score was considered as the inde-
pendent factor affecting LIHC patients’ prognosis in all
LIHC cohort (Figures 7(a) and 7(b)), test cohort
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Figure 6: Prognostic model constructed by the 14 prognostic PRGs. The partial likelihood deviance (a) and coefficients (b) of prognostic
model. The OS plots and corresponding ROC curves of high-risk group and low-risk group in all LIHC cohort (c), in test cohort (d),
and training cohort (e). Risk score distribution, patients’ survival status, and expression of 7 PRGS associated with risk score in all LIHC
cohort (f), in test cohort (g), and training cohort (h).
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(Figures 7(c) and 7(d)), and training cohort (Figures 7(e)
and 7(f)). Further, we also explored whether the prognostic
model was suitable for LIHC patients with different clinical
features. In the subgroup of age > 60 years (Figure 8(a), P
value = 0.003), male patients (Figure 8(b), P value =
0.003), patients with grades 1-2 (Figure 8(c), P value =
0.006), patients with stages I-II (Figure 8(d), P value =
0.020), patients with stages III-IV (Figure 8(e), P value =
0.009), patients with T1-2 (Figure 8(f), P value = 0.018),
patients with T3-4 (Figure 8(g), P value = 0.005), patients
with N0 (Figure 8(h), P value = 0.004), patients with N1
(Figure 8(i), P value = 0.022), patients with M0

(Figure 8(j), P value = 0.004), and patients with M1
(Figure 8(k), P value = 0.009), high-risk group showed worse
OS than low-risk group.

3.6. Risk Score Associated with Clinical Parameters and
Immune Cell Infiltration. We also focused on the influence
of clinical parameters on risk score. The expression of the
genes that constituted risk score and distribution of clinical
characteristics in low-risk and high-risk group is summa-
rized in Figure 9(a). Compared with cluster 1, LIHC patients
in cluster 2 had higher risk score (Figure 9(d), P value =
1.3E-14). LIHC patients with grades III-IV showed higher
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Figure 7: Univariate and multivariate Cox regression analysis considering age, gender, tumor grade, clinical stage, T stage, N stage, M stage,
and risk score in all LIHC cohort (a, b), in test cohort (c, d), and training cohort (e, f).
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risk score than those with grades I-II (Figure 9(e), P value
= 0.0031), and LIHC patients with high ImmuneScore
showed higher risk score than those with low Immune-
Score (Figure 9(g), P value = 0.043). However, no signifi-
cant difference was detected in the subgroups of gender,
age, clinical stage, T stage, N stage, and M stage
(Figures 9(b), 9(c), 9(f), and 9(h)–9(j), all P value >
0.05). In addition, the association between immune cell
infiltration and risk score was also explored. However,
only the correlation between abundance of activated mem-
ory CD4+ T cells and risk score was detected with a P
value of 0.27 (Supplementary Figure 1(a)). Thus, more
studies are urgently needed to fill the gaps.

3.7. Immune Cell Infiltration, MSI, and TMB Analysis of
CASP8 in LIHC. We also constructed PPI network to visual-
ize the association among the genes that constituted risk
score (Supplementary Figure 1(b)), which indicated that
CASP8 was the core gene in the PPI network. Therefore,
further analyses focusing on CASP8 in LIHC were
performed. Tumor-infiltrating immune cells regulate
occurrence and progression of tumor through extremely
complicated mechanisms. Thus, we attempted to illustrate
the correlation between immune cell infiltration and
CASP8 expression level in LIHC tissues. The expression
level of CASP8 was positively correlated with abundance of
B cell (cor = 0:331, P value = 3.17E-10), CD8+ T cell
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Figure 8: The OS curves of high-risk group and low-risk group based on the subgroups of age (a), gender (b), tumor grade (c), clinical stage
(d, e), T stage (f, g), N stage (h, i), and M stage (j, k).
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Figure 9: Continued.

12 Computational and Mathematical Methods in Medicine



(cor = 0:241, P value = 6.51E-06), CD4+ T cell (cor = 0:407,
P value = 3.58E-15), macrophage (cor = 0:431, P value =
7.24E-17), neutrophil (cor = 0:498, P value = 4.74E-23),
and dendritic cell (cor = 0:371, P value = 1.48E-12)
(Figure 10(a)). Next, we explored the correlation between
SCNAs of CASP8 and the infiltration levels of six immune
cells in LIHC tissues. The infiltration levels of B cell, CD8+
T cell, CD4+ T cell, macrophage, neutrophil, and dendritic
cell were generally decreased when SCNAs appeared
(Figure 10(b)). Tumor mutation burden (TMB) and
microsatellite instability (MSI) could assist clinicians to
predict the efficacy of cancer immunotherapy. However,
no significant correlation was detected between MSI
score and CASP8 expression (Figure 10(c), P value =
0.509). In TMB analysis, similar result was presented in
Figure 10(d) (P value = 0.745).

3.8. Construction of a mRNA-miRNA-lncRNA Network. The
above analyses indicated that CASP8 was correlated with
immune cell infiltration in LIHC. And CASP8 acted as
the core gene in the PPI network constructed by PRGs
associated with risk score. Thus, CASP8 was selected to
construct a mRNA-miRNA-lncRNA network, which might

uncover the potential CASP8-related regulatory axis in
LIHC. First of all, CASP8 targeting miRNAs in miRDB,
StarBase, and miRWalk database were compared to iden-
tify the common ground, which included hsa-miR-519a-
3p, hsa-miR-105-5p, and hsa-miR-130b-3p (Figure 11(a)).
Next, we explored the expression and prognostic value of
these three genes in LIHC. The result indicated that only
hsa-miRNA-130b-3p was differentially expressed in
tumors and is significantly associated with patient prognosis.
To be more specific, the expression level of hsa-miRNA-130b-
3p was significantly elevated in LIHC tissues compared with
normal liver tissues (Figure 11(b), P value = 7E-08), and LIHC
patients with high hsa-miRNA-130b-3p expression had worse
OS than those with low hsa-miRNA-130b-3p expression
(Figure 11(c), P value = 0.045). Thus, hsa-miRNA-130b-3p
was considered as the most promising miRNA target of
CASP8 in LIHC. The upstream lncRNA targets interacting
to the promising miRNA targets were also explored via
LncBase and StarBase database. A total of 3 lncRNA targets
were identified based on the data in above databases, including
H19, KCNQ1OT1, andMIR17HG (Figure 11(d)). The expres-
sion and prognostic performance of these three genes in LIHC
were also analyzed. Compared to normal liver tissues, the
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expression level of H19 was decreased in LIHC tissues
(Figure 11(e), P value = 1.6E-07), while the expression level
of KCNQ1OT1 (Figure 11(f), P value = 5.7E-24) and
MIR17HG (Figure 11(g), P value = 4.7E-24) were upregulated
in LIHC tissues. Nevertheless, only MIR17HG was correlated
with the prognosis of LIHC patients, which showed a better
OS in high expression group (Figure 11(h), P value =
0.00039). Thus, MIR17HG was considered as the most prom-
ising lncRNA target of CASP8 in LIHC. According the above
results, lncRNAMIR17HG/hsa-miRNA-130b-3p/CASP8 reg-
ulatory axis was detected and might influence the occurrence
and progression of LIHC.

4. Discussion

Pyroptosis is defined as a type of programed cell death that is
dependent on the gasdermin protein family, and its occur-
rence is often as a result of activation of inflammatory CASP
protein [25]. With the development of molecular biology,
genetics, and medicine, the biological functions, mechanisms,
and potential applications of pyroptosis are gradually uncov-
ered. In the field of cancer research, some studies have sum-
marized the important role of pyroptosis, which indicates
that pyroptosis may influence the occurrence and progression
of cancer in all stage [26, 27]. And pyroptosis is considered as a
promising mechanism in the cancer treatment due to the anti-
apoptotic effect of cancer cells [28]. However, the topic focus-
ing on the role of PRGs in the prognosis and immune
microenvironment of tumor is limited. Thus, we performed
this bioinformatics analysis to systematically enucleate the
expression, prognostic performance, and the effects on the
immune microenvironment of PRGs in LIHC.

We firstly explored the expression level of 33 PRGs in
LIHC tissues and normal liver tissues. Of these 33 PRGs,
26 genes with aberrant expression in LIHC tissues were
selected to perform functional enrichment analysis and con-
sensus cluster analysis. Programed cell death pathway,
mainly including apoptosis and pyroptosis, protects mam-
mals from infection. Outer membrane vesicles of Gram-
negative bacteria delivered various bacterial molecules to
host cells; outer membrane vesicle-associated molecules par-
ticipated in the activation of apoptosis and pyroptosis [29].
CASP1 could cleave inactive IL-1 family to generate mature
IL-1 family, such as IL-1β and IL-18, and GSDMD pore
could mediate the release of IL-1 via electrostatic filtering
[30]. He et al. reported that gene deletion of GSDMD inter-
dicted the occurrence of pyroptosis and the secretion of IL-
1β [31]. And the process of pyroptosis in various human
cancer types was associated with NLRP3-related signaling
pathways and NF-κB signaling pathway [12, 32–34]. To
some extent, the above studies supported the result of func-
tional enrichment analysis. However, more studies are
required to validate the biological functions and potential
mechanisms of PRGs in LIHC.

Prognostic model was widely utilized in prognostic eval-
uation of cancer patients, which provided epidemiological
evidence for clinicians. In the current study, a total of 14
prognostic PRGs were enrolled to build up a prognostic
model. Through further screening, the risk score consisted
of the seven PRGs, including CASP6, CASP8, GPX4,
GSDMA, GSDME, NLRP6, and NOD2. And the LIHC
patients in high-risk score group generally showed worse
OS compared to low-risk score group. Other three bioinfor-
matics analyses, respectively, constructed prognostic model
to explore the correlation between prognosis of lung
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adenocarcinoma, skin cutaneous melanoma and glioblas-
toma, and PRGs, which indicated a worse prognosis in
high-risk group [14–16]. The above results were similar with
ours; nevertheless, large-sample multicenter studies are
urgently needed to validate these results.

In the current study, CASP8 was detected as the core
gene in the PPI network constructed by PRGs associated
with risk score. Thus, we were interested on the role of
CASP8 in LIHC. Previous studies reported that CASP8 not
only induced apoptosis of LIHC cells but also had a nonap-
optotic function in proliferation-related DNA damage
response through CASP8/RIPK1/FADD/cFLIP complex in
LIHC cells [35]. And Koschny et al. found that a stronger
nuclear stain of CASP8 in LIHC cells and high nuclear
CASP8 stain was associated with unfavorable prognosis after
surgery and high tumor cell proliferation [36]. Thus, to find
out the balance point of CASP8 in anticancer function and
tumor-promoting action is of clinical significance.

A potential mRNA-miRNA-lncRNA regulatory axis in
LIHC, lncRNA MIR17HG/hsa-miRNA-130b-3p/CASP8
regulatory axis, was also detected in the present study.
MIR17HG participated in the generation of miRNA-17-92
cluster, which included miRNA-17, miRNA-18a, miRNA-
19a, miRNA-20a, miRNA-19b, and miRNA-92a [37]. These
six downstream miRNAs were detected increased expression
levels in LIHC tissues and could promote invasion and pro-
liferation of LIHC proliferation [38]. Wang et al. reported
that miRNA-130b was upregulated in LIHC tissues in com-
parison with normal liver tissues, and high miRNA-130b
was correlated with decreased survival, and overexpression
of miR-130b promoted proliferation and metastasis of LIHC
cells [39, 40]. The above studies revealed the potential of this
regulatory axis in LIHC cells. However, related in vivo and
in vitro researches are urgently required.

Some limitations still exist in the current study. Firstly,
most of the analyses in the current study are conducted at
the transcription level; some results may not apply to the
studies based on the protein level. Secondly, related funda-
mental and clinical studies that focus on the clinical value
and molecule mechanisms of PRGs in LIHC are rare. Third,
genetic background and etiology of LIHC patients are influ-
enced by many factors, such as patients’ race, patients’ gen-
der, and patients’ age. Thus, more in-depth studies are
necessary to validate the results.

5. Conclusion

In summary, the present study built up a pyroptosis-related
gene signature to predict LIHC patients’ prognosis and their
correlations with immune infiltration, which indicated that
pyroptosis-related genes were of great significance in the
LIHC patients’ prognosis and microenvironment of LIHC.
However, in-depth studies are needed to validate our results.
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