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To investigate the mechanisms through which Yinchenhao decoction (YCHD) inhibits hepatocellular carcinoma (HCC), we
analyzed YCHD ingredients absorbed into the bloodstream by using network pharmacology. We conducted a weighted gene
coexpression network analysis on gene expression data collected from the Gene Expression Omnibus and The Cancer Genome
Atlas databases to derive an HCC gene set; moreover, we used four online prediction system databases to predict the potential
targets of YCHD ingredients absorbed into the bloodstream. We discovered that YCHD directly interfered with 17 HCC-related
disease targets. Subsequent gene ontology enrichment analyses of these 17 disease targets revealed that YCHD exhibited effects
through 17 biological processes, 7 molecular functions, and 9 cellular components. Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses indicated 14 pathways through which YCHD inhibits HCC. We observed similar trends in how
the 17 small molecules interfered with the key target set. We surmised that YCHD inhibits HCC by regulating inflammatory
and metabolic pathways. Network pharmacological analysis of YCHD ingredients absorbed into the bloodstream may provide
new insights and serve as a new method for discovering the molecular mechanisms through which YCHD inhibits HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is the fourth most com-
mon cancer and the third most deadly cancer in China,
accounting for 85%–90% of primary malignant liver tumors
[1]. Although the multikinase inhibitor sorafenib has been
approved as a first-line treatment for late-stage HCC because
of its favorable antiangiogenesis effects, it increases patients’
survival time by only a few months [2]. Traditional Chinese
medicine (TCM), which has a long history of clinical appli-
cation, exhibits multimolecule, multitarget, and synergistic
effects. TCM has subsequently become a valuable alternative
for HCC treatment. Therefore, the effectiveness of TCM in
inhibiting HCC merits further investigation [3].

Introduced in Shanghan Lun (Treatise on Cold Damage
Diseases), Yinchenhao decoction (YCHD)—which consists
of yinchen (Artemisiae Scopariae Herba), dahuang (Radix
et Rhizoma Rhei), and zhizi (Gardeniae Fructus)—is a popu-
lar remedy in TCM and is commonly used to treat yang jaun-
dice. A study identified 160 potential targets related to 16
diseases, including cancer; of these targets, 96 were related
to cancer [4]. Concerning oral TCM compounds (i.e., medi-
cine comprising two or more ingredients), the ingredients
must undergo absorption, distribution, metabolism, and
excretion before they enter the bloodstream; only molecules
that complete this process are considered active. These mol-
ecules merge with targets in the organism and then exhibit
medicinal effects. In a preliminary study, we obtained active
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chemical molecules by using oral bioavailability (OB) screen-
ing [5], drug-likeness (DL) assessments [6], and intestinal
epithelial permeability (Caco-2) screening. In that study, we
were able to predict which molecules were beneficial; how-
ever, their effects were minimal if the molecule content was
low or if the molecules were metabolized quickly. Sun et al.

used the highly sensitive ultraperformance liquid chromatog-
raphy–tandem mass technology to identify the 69 com-
pounds in YCHD, among which 41 were absorbed into the
bloodstream [7]. Wu et al. conducted a study on major
anti-HCC components in YCHD in vitro and in vivo [8].
Nevertheless, the active molecules in YCHD compounds
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Figure 1: Network pharmacology-based flowchart depicting how YCHD inhibits HCC.
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Figure 2: Continued.
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and the mechanisms through which these compounds miti-
gate HCC remain relatively unknown.

TCM incorporates complex chemical compositions, and
effective research methods for examining these compositions
are limited; additionally, the pharmacological mechanisms
governing TCM have yet to be systematically explained [9].
Systems pharmacology [10] is an emerging discipline that
involves systematically studying the interaction between
medicine and organisms as well as the patterns, effects, and
mechanisms of such medicine. Network pharmacology [11]
is used to study active substances in TCM, identify the targets
affected by these substances, determine the relationships
between effective substances and diseases, and elucidate the
molecular mechanisms governing the activities of TCM com-
pounds. Therefore, systems pharmacology- and network
pharmacology-based studies offer new perspectives and
insights into TCM compounds. Regarding the use of network
pharmacology to study TCM, our laboratory has performed
numerous experiments and explored the pharmacological
mechanisms governing zuojin pills [12], huanglian jiedu
decoction [13], and huachansu capsules [14] in the treatment
of HCC.

Accordingly, the present study analyzed data obtained
from the Gene Expression Omnibus (GEO) and The Cancer
Genome Atlas (TCGA) databases to identify the differentially
expressed genes (DEGs) of HCC. On the basis of the YCHD
ingredients absorbed into the bloodstream, network pharma-
cology was then used to identify active HCC-inhibitive phar-
maceutical ingredients and their possible molecular targets.
The workflow of our bioinformatics and network pharmacol-
ogy analyses of the effects of YCHD on HCC is presented in
Figure 1. The results may serve as a basis for subsequent
experimental research.

2. Materials and Methods

2.1. Data Collection. The GEO is a public gene expression
profile database of the National Center for Biotechnology
Information, National Institutes of Health (USA). By mining
public databases, medical researchers can obtain a clearer
understanding of the molecular mechanisms underlying the
onset of cancer. Such an understanding can enhance early
detection, diagnosis, and treatment of various cancers [15].
In the current study, we used “liver cancer” and “hepatocellu-
lar carcinoma” as search terms in the high-throughput GEO

database and collected disease-related gene expression profile
chips. After analyzing and comparing the different chips, we
selected the GSE121248 chip for analysis. This chip origi-
nated from the GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array platform, which con-
tains 70 liver cancer samples and 37 normal samples. TCGA
is a joint project initiated by the American National Cancer
Institute and the National Human Genome Research Insti-
tute in 2006. TCGA is the largest cancer gene database world-
wide and contains a wealth of clinical information [16]. We
searched TCGA for (and subsequently downloaded) liver
cancer-related RNA-seq gene expression data and the corre-
sponding clinical data files, which contained 373 tumor sam-
ples and 49 normal samples.

2.2. DEG-Based Disease Gene Analysis. We used the limma
package (version: 3.42.2) in R language to analyze DEGs
identified in the GSE121248 and TCGA data. Subsequently,
we filtered out upregulated and downregulated DEGs from
the GEO and TCGA chip data by using the following
conditions:jlog2FCj > 1:0 and adj:p:value < 0:05. Finally, we
employed the ggplot2 package (version: 3.3.1) and pheatmap
package (version: 1.0.12) to draw volcano maps and heat
maps corresponding to the DEGs, and we used Venny 2.1
(https://bioinfogp.cnb.csic.es/tools/venny/index.html) to
determine the intersection of TCGA and GEO data in order
to derive the differential gene analysis-based gene set GD.

2.3. Weighted Gene Coexpression Network Disease Gene
Analysis. We performed a weighted gene coexpression net-
work analysis (WGCNA) to analyze the gene expression data
from the GEO and TCGA. From this analysis, we identified
modules and hub genes related to clinical phenotypes (i.e.,
normal and disease-based).

A gene coexpression network was constructed using a
weighted gene expression correlation network analysis. The
soft-threshold power was extracted from PowerEstimated
and the topological overlap matrix (TOM). Subsequently,
on the basis of the weighted gene expression correlation
network, the TOM was used to cluster all the genes, and
dynamic tree cutting was employed to identify various gene
modules. To determine the correlation between the different
modules of the clustered genes, a minimum gene module size
of 50 and a dynamic shear height value of 0.25 were set. The
different gene modules are represented by various colors.

GEO TCGA

87 493 2220

(e)

Figure 2: (a) Volcano map of the GEO-based DEG analysis. (b) Heat map of the GEO-based DEG analysis. (c) Volcano map of TCGA-based
DEG analysis. (d) Heat map of TCGA-based DEG analysis. (e) Venn diagram of the intersection between the GEO and TCGA DEGs.
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Finally, the correlation between different gene modules and
clinical phenotypes was calculated, and a heat map of the cor-
relation between the modules and clinical phenotypic traits
was drawn. According to the correlation between the gene
module and the normal and control groups, we determined
modules with the highest positive and negative correlation
values in the GEO and TCGA data, respectively. Subse-
quently, gene modules with the highest positive and negative
correlation values in the GEO and TCGA data were inter-
sected, and two intersecting genes were combined to consti-
tute the HCC gene set GW through the WGCNA.

2.4. HCC Protein–Protein Interaction Network Construction
and Analysis. We combined the HCC gene set GD obtained
from the DEG-based analyses with the HCC gene set GW
obtained from the WGCNA to form the liver cancer disease
gene set GHCC; these gene sets were imported into the
STRING database (version: 11.0; https://string-db.org/).

Regarding the parameter settings, we set the parameter
“organism” to “homo sapiens” and set the “combine score”
threshold to 0.9 to produce an interaction network of all gene
targets. We then used Cytoscape (version: 3.7.2, https://
cytoscape.org/) to produce a protein–protein interaction
(PPI) network for the target proteins.

Furthermore, we used a Cytoscape-based CytoHubba
plug-in to mine the core genes in the PPI network and
selected the maximal clique centrality (MCC) algorithm for
the network. We also used default values for the other param-
eters and calculated the core gene set GP in the liver cancer
PPI network.

2.5. Gene Ontology Function and Kyoto Encyclopedia of Genes
and Genomes Pathway Enrichment Analysis. The Gene
Ontology (GO) resource is a standard, structured biological
model constructed by the GO Consortium in 2000 and
encompasses information on the biological processes,

1

0.5

0

–0.5

–1

–0.12
(0.2)

Module–trait relationships (GEO)

MEpurple

MEmagenta

MEturquoise

MEyellow

MEbrown

MEblack

MEgreen

MEgrey

Normal Tumor

–0.54
(1e–09)

–0.72
(3e–18)

0.55
(8e–10)

0.82
(5e–27)

–0.0044
(1)

0.34
(3e–04)

0.19
(0.05)

–0.19
(0.05)

–0.34
(3e–04)

0.0044
(1)

–0.82
(5e–27)

–0.55
(8e–10)

0.72
(3e–18)

0.54
(1e–09)

0.12
(0.2)

(c)

–0.16
(7e–04)

0.16
(7e–04)

0.4
(5e–18)

0.19
(1e–04)

–0.024
(0.6)

0.18
(3e–04)

–0.2
(4e–05)

–0.76
(5e–81)

–0.46
(3e–23)

Normal

MEpink

Module-trait relationships (TCGA)
1

0.5

0

–0.5

–1

MEturquoise

MEred

MEblack

MEgreen

MEbrown

MEblue

MEyellow

Tumor

0.46
(3e–23)

0.76
(5e–81)

0.2
(4e–05)

–0.18
(3e–04)

0.024
(0.6)

–0.19
(1e–04)

–0.4
(5e–18)

(d)

GEO_MEbrown TCGA_MEturquoise

628 63 4318

(e)

GEO_MEturquoise TCGA_MEblue

584 150 3388

(f)

Figure 3: (a) Dynamic tree cutting-based GEO gene module identification results. (b) Correlation between different GEO gene modules and
phenotypes. (c) Dynamic tree cutting-based GEO gene module identification results. (d) Correlation between different TCGA gene modules
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7BioMed Research International

https://string-db.org/
https://cytoscape.org/
https://cytoscape.org/


molecular functions, and cellular components of genes. A
group of genes, rather than a single gene, typically partici-
pates in a biological process or pathway. Enrichment analyses
are performed on the premise that if a biological process or
pathway is known to be abnormal, genes that function
together are extremely likely to be selected into the gene set
related to this process or pathway.

We usedOmicShare (http://www.omicshare.com/tools) to
annotate the GO functions for the HCC gene set GHCC and
applied the clusterProfiler package (version: 3.14.3) to con-
duct Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses. Moreover, we selected genes
using the conditions p:value < 0:05 and q:value < 0:05 and
employed Cytoscape to construct an HCC target–pathway
network according to the enrichment analysis results.

2.6. Discovery of Key Disease Genes through Survival Analysis.
We determined the key gene set GK through a survival
analysis and included all genes that satisfied the following
conditions in our subsequent analyses: (1) genes in the inter-
section between the gene sets GD and GW obtained from the
DEG-based analyses and WGCNA, respectively, and (2) the
core gene set GP obtained from the PPI network analyses
described in Section 2.4.

We downloaded clinical data files from TCGA. After
organizing the data, we used the survival package (version:
3.1) and survminer package (version: 0.4.7) to conduct sur-
vival analyses (where p < 0:05) and plot gene survival curves.

2.7. Collection of Effective YCHD Ingredients and Assessment
of Absorption, Distribution, Metabolism, Excretion, and
Toxicity.We referenced data on YCHD ingredients collected

in animal experiments performed in related studies [7]; we
also collected chemical information or data on effective
YCHD ingredients from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/) and organized them according
to PubChem name and CID, molecular formula, and the
simplified molecular-input line-entry system (SMILES)
strings (hereafter referred to as canonical SMILES). Addi-
tionally, we used Advanced Chemistry Development, Inc.
(ACD/Labs) software (version: 2019) and the SwissADME
online prediction system (http://www.swissadme.ch/) to
evaluate and analyze the absorption, distribution, metabo-
lism, excretion, and toxicity (ADMET) of the ingredients.

2.8. Prediction and Identification of Potential Targets of
Effective Ingredients. According to the canonical SMILES
corresponding to the effective YCHD ingredients, we used
four online prediction systems (i.e., HitPick (http://mips
.helmholtz-muenchen.de/proj/hitpick), the similarity ensem-
ble approach (SEA) (http://sea.bkslab.org/), SwissTargetPre-
diction (http://www.swisstargetprediction.ch/), and version
5.0 of the Search Tool for Interacting Chemicals (STITCH)
(http://stitch.embl.de/)) to predict and select the potential
targets of effective YCHD ingredients. The thresholds were
as follows: precision ≥ 80%; max Tc ≥ 0:9; probability ≥ 0:8;
and combined score ≥ 0:8. Concurrently, all the predicted
ingredients and targets were merged and sorted; the UniProt
database (https://www.uniprot.org/) was used to verify target
information, and Cytoscape was used to construct an ingre-
dient–effect network for YCHD.

We obtained the intersection between the predicted
target gene set and the disease gene set GW , identified the
potential targets of YCHD effective in treating HCC, and
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obtained the intersection gene set GYH. Additionally, we
conducted survival analyses on all genes in the intersection
gene set GYH.

2.9. Calculation Model-Based Effective Ingredient Regulatory
Network Analysis. In practice, some TCM ingredients do
not exhibit direct effects on disease-related targets. How-
ever, such ingredients occasionally affect or regulate key
disease targets by interfering with neighboring targets.
Therefore, we adopted a network calculation model to
detect small molecules consistent with the aforementioned
description.

We downloaded a high-quality, all-human PPI back-
ground network integrating 15 commonly used databases
and selected a high-quality PPI incorporating five types of
evidence. The PPI network contained a total of 16,677 pro-
teins and 243,603 interactive relationships, and it was sub-
sequently set as the background network of the current
study to determine the intensity of YCHD ingredients’
interference with and regulation of key genes and the key
gene set GK .

2.9.1. Analysis of Key Gene Set Interference with the Target
Sets of Different Ingredients. We performed the analyses by

using three network topological distances hdABi (i.e., hdSABi, h
dCABi, and hdKABi). These distances can be expressed as follows:

dSAB =
1

A × B
〠

a∈A, b∈B
d a, bð Þ,

dCAB =
1

A + B
〠
a∈A

minb∈Bd a, bð Þ + 〠
b∈B

mina∈Ad a, bð Þ
 !

,

dKAB =
−1

A + B
〠
a∈A

ln〠
b∈B

e− d a,bð Þ+1ð Þ

B
+〠

b∈B
ln〠

a∈A

e− d a,bð Þ+1ð Þ

A

 !
,

ð1Þ

whereA is the target set of an ingredient, kAk is the number of
targets in the target set, B is the key gene set, kBk is the number
of targets in the key gene set, and dða, bÞ is the distance
between two nodes in the PPI network.

2.9.2. Analysis of Network Proximity between the Key Gene
Set and the Target Sets of Different Ingredients. SPAB can be
expressed as follows:
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Figure 5: Flowchart of the key gene screening process.
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Figure 6: Survival curves of the 26 survival-related genes.
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SPAB = dSAB
D E

−
dSAA
D E

+ dSBB
D E

2
, ð2Þ

where hdSAAi is the average distance between the targets of
an ingredient, hdSBBi is the average distance between key
genes, and hdSABi is the average distance between the target
set of an ingredient and the key target set. SPAB < 0 signifies
that the target set A of an ingredient and the key gene set B
are close together in the network topological structure, indi-
cating that the ingredient can regulate the key gene set B by

interfering with the target set A. SPAB ≥ 0 signifies that the tar-
get set A of an ingredient and the key gene set B are far apart
in the network topological structure, indicating that the
ingredient cannot markedly regulate the key gene set B.
Therefore, by calculating hdSABi, hdCABi, hdKABi, and SPAB, one
can determine whether YCHD contains ingredients that
directly or indirectly affect key disease targets by interfering
in certain target (set) proteins, thereby achieving the goal of
alleviating or curing diseases.

In this study, we used R language (version 3.6.2) and the
igraph package (version 1.2.5) to complete the aforemen-
tioned programming, calculations, and analyses.

Table 1: ADMET assessment results and data on the 36 small YCHD molecules.

Number Ingredient name Molecular formula PubChem CID GI absorption Bioavailability (%)

MOL01 Gallic acid C7H6O5 370 High 7.73

MOL02 2,5-Dimethyl-7-hydroxy chromone C11H10O3 5316891 High 99.36

MOL03 Cacticin C22H22O12 5318644 Low 6.98

MOL04 Physcion C16H12O5 10639 High 75.28

MOL05 Chimaphylin C12H10O2 101211 High 89.68

MOL06 Chrysophanol C15H10O4 10208 High 72.78

MOL07 Rhein C15H8O6 10168 High 97.68

MOL08 Kaempferide C16H12O6 5281666 High 98.78

MOL09 Villosolside C16H26O9 127454 Low 3.69

MOL10 Scopoletin C10H8O4 5280460 High 99.43

MOL11 4′-Hydroxyacetophenone C8H8O2 7469 High 99.52

MOL12 7-Methoxycoumarin C10H8O3 10748 High 99.57

MOL13 Safflor yellow A C27H30O15 6448299 Low 0.02

MOL14 5,6-Dimethoxy-7-hydroxy coumarin C11H10O5 5316862 High 99.5

MOL15 Isofraxidin C11H15O5 5318565 High 99.41

MOL16 Isoquercitrin C21H20O12 5280804 Low 2.58

MOL17 Salicylic acid C7H6O3 338 High 83.24

MOL18 Isorhamnetin-3-glucoside C22H22O12 14704554 Low 7.84

MOL19 Scoparone C11H10O4 8417 High 99.61

MOL20 Azelaic acid C9H16O4 2266 High 10.58

MOL21 6-Demethoxycapillarisin C15H10O6 5316511 High 99.2

MOL22 Capillarisin C16H12O7 5281342 High 97.83

MOL23 Cirsimaritin C17H14O6 188323 High 99.37

MOL24 Capillartemisin C19H24O4 6439717 High 98.77

MOL25 Rhamnocitrin C16H12O6 5320946 High 99.2

MOL26 Gardenoside B C17H24O11 24721095 Low 1.68

MOL27 Picrocrocinic acid C16H26O8 5320582 Low 1.6

MOL28 Genipingentiobioside C23H34O15 3082301 Low 0.35

MOL29 Geniposide C17H24O10 107848 Low 5.72

MOL30 2,4-Decadienal C10H16O 5283349 High 99.66

MOL31 2-Ethyl-2-hexenal C8H14O 5354264 High 99.69

MOL32 Isosyringinoside C23H34O14 131752947 Low 0.22

MOL33 Naringenin C15H12O5 667495 High 98.38

MOL34 Neochlorogenic acid C16H18O9 7067335 Low 0.48

MOL35 Chlorogenic acid C16H18O9 1794427 Low 0.48

MOL36 6-Hydroxy-7-methoxy-2H-chromen-2-one C10H8O4 69894 High 99.36
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Table 2: YCHD molecular target information.

Numbers Targets Protein names UniProt ID

Tar001 ABCB1 ATP-dependent translocase ABCB1 P08183

Tar002 ABCC1 Multidrug resistance-associated protein 1 P33527

Tar003 ABCG2
Broad substrate specificity ATP-binding cassette

transporter ABCG2
Q9UNQ0

Tar004 ACHE Acetylcholinesterase (AChE) P22303

Tar005 ADORA1 Adenosine receptor A1 P30542

Tar006 ADORA2A Adenosine receptor A2a P29274

Tar007 ADORA3 Adenosine receptor A3 P0DMS8

Tar008 ADRA2C Alpha-2C adrenergic receptor P18825

Tar009 AKR1B1 Aldo-keto reductase family 1 member B1 P15121

Tar010 AKR1B10 Aldo-keto reductase family 1 member B10 O60218

Tar011 AKR1C2 Aldo-keto reductase family 1 member C2 P52895

Tar012 AKR1D1 Aldo-keto reductase family 1 member D1 P51857

Tar013 ALB Albumin P02768

Tar014 ALOXE3 Hydroperoxide isomerase ALOXE3 Q9BYJ1

Tar015 ALPI Intestinal-type alkaline phosphatase P09923

Tar016 APOB Apolipoprotein B-100 P04114

Tar017 ATM Serine-protein kinase ATM Q13315

Tar018 BDNF Brain-derived neurotrophic factor P23560

Tar019 CA1 Carbonic anhydrase 1 P00915

Tar020 CA12 Carbonic anhydrase 12 O43570

Tar021 CA13 Carbonic anhydrase 13 Q8N1Q1

Tar022 CA14 Carbonic anhydrase 14 Q9ULX7

Tar023 CA2 Carbonic anhydrase 2 P00918

Tar024 CA3 Carbonic anhydrase 3 P07451

Tar025 CA4 Carbonic anhydrase 4 P22748

Tar026 CA5A Carbonic anhydrase 5A P35218

Tar027 CA5B Carbonic anhydrase 5B Q9Y2D0

Tar028 CA6 Carbonic anhydrase 6 P23280

Tar029 CA7 Carbonic anhydrase 7 P43166

Tar030 CA9 Carbonic anhydrase 9 Q16790

Tar031 CASP3 Caspase-3 P42574

Tar032 CAT Catalase P04040

Tar033 CBR1 Carbonyl reductase [NADPH] 1 P16152

Tar034 CCL2 C-C motif chemokine 2 P13500

Tar035 CES4A Carboxylesterase 4A Q5XG92

Tar036 CES5A Carboxylesterase 5A Q6NT32

Tar037 CSNK2A1 Casein kinase II subunit alpha P68400

Tar038 CTDSP1
Carboxy-terminal domain RNA polymerase II

polypeptide A small phosphatase 1
Q9GZU7

Tar039 CYP19A1 Aromatase P11511

Tar040 CYP1A1 Cytochrome P450 1A1 P04798

Tar041 CYP1A2 Cytochrome P450 1A2 P05177

Tar042 CYP1B1 Cytochrome P450 1B1 Q16678

Tar043 CYP2C9 Cytochrome P450 2C9 P11712

Tar044 CYP2E1 Cytochrome P450 2E1 P05181

Tar045 CYP3A4 Cytochrome P450 3A4 P08684

Tar046 DECR1 2,4-Dienoyl-CoA reductase Q16698

Tar047 DNM1L Dynamin-1-like protein O00429
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Table 2: Continued.

Numbers Targets Protein names UniProt ID

Tar048 EIF2AK3 Eukaryotic translation initiation factor 2-alpha kinase 3 Q9NZJ5

Tar049 ELANE Neutrophil elastase P08246

Tar050 ERAP1 Endoplasmic reticulum aminopeptidase 1 Q9NZ08

Tar051 FTO Alpha-ketoglutarate-dependent dioxygenase FTO Q9C0B1

Tar052 FUT7 Alpha-(1,3)-fucosyltransferase 7 Q11130

Tar053 GATA3 Trans-acting T-cell-specific transcription factor GATA-3 P23771

Tar054 GFER FAD-linked sulfhydryl oxidase ALR P55789

Tar055 GGCX Vitamin K-dependent gamma-carboxylase P38435

Tar056 GLP1R Glucagon-like peptide 1 receptor P43220

Tar057 GSK3B Glycogen synthase kinase-3 beta P49841

Tar058 HMOX1 Heme oxygenase 1 P09601

Tar059 HSD17B1 Estradiol 17-beta-dehydrogenase 1 P14061

Tar060 IKBKB Inhibitor of nuclear factor kappa-B kinase subunit beta O14920

Tar061 IL6 Interleukin-6 P05231

Tar062 JUN Transcription factor AP-1 P05412

Tar063 LDLR Low-density lipoprotein receptor P01130

Tar064 MITF Microphthalmia-associated transcription factor O75030

Tar065 MMP2 Matrix metalloproteinase-2 P08253

Tar066 MMP7 Matrix metalloproteinase-7 P09237

Tar067 MPO Myeloperoxidase P05164

Tar068 NFKB1 Nuclear factor NF-kappa-B p105 subunit P19838

Tar069 NOS2 Nitric oxide synthase P35228

Tar070 NOX4 NADPH oxidase 4 Q9NPH5

Tar071 NPR1 Atrial natriuretic peptide receptor 1 P16066

Tar072 P4HB Protein disulfide-isomerase P07237

Tar073 PPARA Peroxisome proliferator-activated receptor alpha Q07869

Tar074 PPARG Peroxisome proliferator-activated receptor gamma P37231

Tar075 PTGS1 Prostaglandin G/H synthase 1 P23219

Tar076 PTGS2 Prostaglandin G/H synthase 2 P35354

Tar077 RAPGEF1 Rap guanine nucleotide exchange factor 1 Q13905

Tar078 RELA Transcription factor p65 Q04206

Tar079 RXRA Retinoic acid receptor RXR-alpha P19793

Tar080 SCD Acyl-CoA desaturase O00767

Tar081 SELE E-selectin P16581

Tar082 SERPINE1 Plasminogen activator inhibitor 1 P05121

Tar083 SHBG Sex hormone-binding globulin P04278

Tar084 SLC16A1 Monocarboxylate transporter 1 P53985

Tar085 SLC22A10 Solute carrier family 22 member 10 Q63ZE4

Tar086 SLC22A11 Solute carrier family 22 member 11 Q9NSA0

Tar087 SLC22A6 Solute carrier family 22 member 6 Q4U2R8

Tar088 SLC22A7 Solute carrier family 22 member 7 Q9Y694

Tar089 SLC22A8 Solute carrier family 22 member 8 Q8TCC7

Tar090 SLCO2B1 Solute carrier organic anion transporter family member 2B1 O94956

Tar091 TTR Transthyretin P02766

Tar092 TYR Tyrosinase P14679

Tar093 UCP1 Mitochondrial brown fat uncoupling protein 1 P25874

Tar094 UGT1A1 UDP-glucuronosyltransferase 1A1 P22309

Tar095 UGT1A10 UDP-glucuronosyltransferase 1A10 Q9HAW8

13BioMed Research International



3. Results

3.1. DEG-Based Disease Gene Analysis Results. We used the
limma package to conduct a DEG analysis on liver cancer data
obtained from GSE121248 and TCGA. For GSE121248, we
obtained 558 DEGs, 167 and 413 of which were upregulated
and downregulated genes, respectively. For TCGA, we
obtained 2713 DEGs, 1024 and 1689 of which were upregu-
lated and downregulated genes, respectively. Figures 2(a)–
2(d) illustrate the volcano and heat maps of the analysis
results. By obtaining the intersection of TCGA and
GSE121248 data, we identified that the two sets of data
shared 493 genes (GD set) (Figure 2(e)).

3.2. WGCNA Results for Disease Genes. We performed a
WGCNA on the gene expression profile data collected from
GSE121248 and identified that the modules most positively
and negatively correlated with the normal and disease phe-
notypes were MEbrown (0.82) and MEturquoise (−0.72),
which contained 691 and 33 genes, respectively. Conversely,
the WGCNA performed on TCGA data revealed that the
modules most positively and negatively correlated with the
normal and disease phenotypes were MEturquoise (0.4)
and MEblue (−0.76), which contained 4381 and 3538 genes,
respectively (Figures 3(a)–3(d)).

We obtained the intersection between the positively cor-
related module collected from the GEO-based WGCNA (i.e.,
MEbrown) and that collected from TCGA-based WGCNA
(i.e., MEturquoise), identifying 63 common genes. Subse-
quently, we obtained the intersection between the negatively
correlated module collected from the GEO-based WGCNA
(i.e., MEturquoise) and that collected from TCGA-based
WGCNA (i.e., MEblue), identifying 150 common genes.
We then combined the two sets of common genes (in total,
213 common genes) to form the WGCNA-based HCC gene
set GW (Figures 3(e) and 3(f)).

3.3. HCC PPI Network Analysis Results. We combined the
493 genes (in gene set GD) obtained from the DEG analysis
with the 213 genes (in gene set GW) obtained from the
WGCNA to form a liver cancer disease gene set GHCC, which
contained 670 genes. Subsequently, we imported the 670
genes into the STRING database to generate the HCC PPI

network. We then applied the MCC algorithm for analysis,
identifying 25 genes in the PPI network with much higher
scores compared with those of the other genes. The 25 genes
were thus determined to be core gene set GP in the HCC PPI
network (Figures 4(a) and 4(b)).

3.4. Discovery of Key HCC Genes Based on Survival Analysis.
We obtained the intersection between the DEG set GD and
WGCNA gene set GW , obtaining 36 common genes. We then
combined these genes with 25 core genes collected from the
PPI network-based analyses, resulting in a total of 61 key
genes (Gk) on which we performed a survival analysis that
revealed 26 genes related to survival in Gk (Figure 5). These
genes were ACADS, BUB1B, CCNA2, CCNB1, CDC20,
CDK1, CENPE, CEP55, DLGAP5, FAM149A, KIF11,
KIF20A, KIF4A, NDC80, NUF2, NUSAP1, PALM3, PBK,
PRC1, RBP7, RRM2, SFN, SPINK1, TOP2A, TPX2, and
TTK, as illustrated in Figure 6.

3.5. ADMET Assessment Results for Effective YCHD
Ingredients. We conducted a literature analysis and find that
of the 41 chemical components entered into blood, 5 compo-
nents could not be retrieved from PubChem CID informa-
tion. We derived data on 36 small YCHD molecules and
subsequently performed ADMET assessments on the effec-
tive ingredients by using ACD/Labs and SwissADME. The
corresponding structure of each small-molecule compound
and its corresponding canonical SMILES were obtained from
the PubChem database and then imported into the
ACD/LABS software and the SwissADME online prediction
system to evaluate these active ingredients.

In the assessments, we evaluated indicators such as
gastrointestinal absorption, bioavailability (%), and dose
(mg = 50), as presented in Table 1. Among the 36 molecules,
24 (66.7%) could be sufficiently absorbed by the stomach
and intestines, and 22 (61.1%) had a bioavailability greater
than 70%.

3.6. Results of the Prediction and Identification of Small
YCHD Molecular Targets. We imported all small YCHD
molecules into four online prediction systems (i.e., HitPick,
SEA, SwissTargetPrediction, and STITCH) by using the
method described in Section 2.8 to predict molecular targets.

Table 2: Continued.

Numbers Targets Protein names UniProt ID

Tar096 UGT1A3 UDP-glucuronosyltransferase 1A3 P35503

Tar097 UGT1A6 UDP-glucuronosyltransferase 1-6 Q64435

Tar098 UGT1A7 UDP-glucuronosyltransferase 1A7 Q9HAW7

Tar099 UGT1A8 UDP-glucuronosyltransferase 1A8 Q9HAW9

Tar100 UGT1A9 UDP-glucuronosyltransferase 1A9 Q62452

Tar101 UGT2B15 UDP-glucuronosyltransferase 2B15 P54855

Tar102 UGT2B17 UDP-glucuronosyltransferase 2B17 O75795

Tar103 VCAM1 Vascular cell adhesion protein 1 P19320

Tar104 VEGFA Vascular endothelial growth factor A P15692

Tar105 XDH Xanthine dehydrogenase/oxidase P47989
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Figure 7: (a) Network of the 105 potential targets of 24 small YCHD molecules; the circles and triangles denote the targets and small
molecules, respectively, and a greater node degree indicates a larger node size. (b) Five survival-related genes in YCHD targets.

15BioMed Research International



Biological process
(0, 1.3)

(1.3, 2)

(2, 5)

(5, 10)

(10, 15)

(15, 20)

> = 20

–Log10 (Q value)

Molecular function

Cellular component

(a)

Figure 8: Continued.

16 BioMed Research International



Chemical carcinogenesis

KEGG pathway term

Steroid hormone biosynthesis

Drug metabolism - cytochrome P450

Count
2
3
4

5

6

Metabolism of xenobiotics by cytochrome P450

Linoleic acid metabolism

Retinol metabolism

Drug metabolism - other enzymes

Bile secretion

Arachindonic acid metabolism

AGE-RAGE signaling pathway in diabetic complications

TNF signaling pathway

Nitrogen metabolism

Pentose and glucuronate interconversions

Malaria

0.2 0.3

Gene ratio

p.adjust

0.005

0.010

0.015

0.020

(b)

(c)

Figure 8: (a) Biological processes through which YCHD treats HCC. (b) KEGG pathways through which YCHD inhibits HCC. (c) YCHD
ingredient–target–pathway network diagram. In (c), the triangles, circles, and squares represent small molecules, targets, and pathways,
respectively, in which targets were enriched; the relationship between small molecules and targets and that between targets and pathways
are represented by solid and dotted lines, respectively, and a greater node degree indicates a larger node size.

17BioMed Research International



We then used thresholds to perform screening, obtaining 24
small YCHD molecules and 105 potential targets. Informa-
tion on the targets is presented in Table 2.

We obtained the intersection between the 105 potential
targets and the HCC disease gene set GHCC, which revealed
that YCHD directly interfered with 17 HCC-related disease
targets: AKR1B10, AKR1D1, CA2, CA5A, CCL2, CYP1A2,
CYP2C9, CYP2E1, CYP3A4, PPARG, PTGS2, SELE, SER-
PINE1, SHBG, SLC22A7, UGT1A6, and XDH. A survival
analysis performed on the 17 targets revealed that AKR1D1,
CYP2C9, CYP2E1, CYP3A4, and SLC22A7 were related to
the survival of patients with HCC (Figure 7(b)). The YCHD
ingredient–target effect network is illustrated in Figure 7(a).

3.7. Network Analysis of YCHD Ingredients Interfering with
HCC-Related Disease Targets

3.7.1. Enrichment Analysis of YCHD Ingredients Interfering
with HCC-Related Disease Targets.We performed an enrich-
ment analysis on YCHD molecules and 17 HCC-related dis-
ease targets. A GO functional enrichment analysis revealed
that the mechanisms underlying the effects of YCHD
involved 17 biological processes, 7 molecular functions, and
9 cellular components (Figure 8(a)). The main YCHD effects
included inhibition of abnormal cell proliferation, strength-
ening of the immune system, and facilitation of metabolism,
possibly explaining the mechanism through which YCHD
inhibits HCC. Through a KEGG enrichment analysis, we
derived 14 pathways (Figure 8(b)): a cancer overview path-
way (chemical carcinogenesis), an inflammatory signaling
pathway (tumor necrosis factor (TNF) signaling pathway),
and nine metabolic pathways (i.e., steroid hormone biosyn-
thesis, drug metabolism—cytochrome P450, metabolism of
xenobiotics by cytochrome P450, linoleic acid metabolism,
retinol metabolism, drug metabolism—other enzymes, ara-
chidonic acid metabolism, nitrogen metabolism, and pentose
and glucuronate interconversions). Therefore, we deduced
that the inflammatory signaling pathway and metabolic
pathways were the most critical pathways for the delivery of
the antiliver cancer effects of YCHD.

3.7.2. Construction and Analysis of the Network of YCHD
Ingredients Interfering with HCC-Related Disease Targets.
To determine the targets and pathways regulated by YCHD
compounds, we constructed a compound–target–pathway
network incorporating all compounds, targets, and signaling
pathways (Figure 8(c)).

As illustrated in Figure 8(c), salicylic acid (MOL17;
degree = 5) exhibited effects on five targets, naringenin
(MOL33; degree = 4) exhibited effects on four targets, and
gallic acid (MOL01; degree = 3) exhibited effects on three tar-
gets; moreover, UGT1A6 (degree = 9), CYP3A4 (degree = 9),
CYP2E1 (degree = 8), CYP2C9 (degree = 7), CYP1A2
(degree = 7), and CA2 (degree = 6) each contained one to
two small molecules that exhibited effects on targets. How-
ever, many of these targets were enriched in multiple path-
ways. Of the 17 targets, 6 were enriched in the chemical
carcinogenesis (degree = 6) signaling pathway.

The nitrogen metabolism and bile secretion signaling
pathways (degree = 7) were linked to seven chemical mole-
cules; chemical carcinogenesis (degree = 6) was linked to six
chemical molecules; steroid hormone biosynthesis, drug
metabolism—cytochrome P450, and xenobiotic metabolism
by cytochrome P450 (degree = 5) were linked to five chemical
molecules; retinol metabolism, drug metabolism—other
enzymes, and linoleic acid metabolism (degree = 4) were
linked to four chemical molecules; and the AGE-RAGE sig-
naling pathway in diabetes, pentose and glucuronate inter-
conversions, arachidonic acid metabolism, and the TNF
signaling pathway (degree = 3) were linked to three chemical
molecules. The remaining signaling pathways were linked to
at least two chemical molecules.

3.8. Regulatory Network Analysis of YCHD Ingredients
Interfering with Key Targets. SPAB < 0 was used to determine
whether small YCHD molecules affected and regulated the
key target set in the Gk set. The results indicated that 17 small
YCHD molecules interfered with the key target set (Table 3).

The results obtained using three distance formulas
revealed that the 17 small molecules had interference values
similar to those of the key target set. Among the 17 small
molecules, MOL02 (2,5-dimethyl-7-hydroxy chromone),
MOL12 (7-methoxycoumarin), MOL17 (salicylic acid), and
MOL23 (cirsimaritin) interfered with the target set most pro-
foundly (Figure 9).

Among the 34 targets directly acted on by the four small
molecules, we discovered six genes, namely, CA2, CA5A,
CYP2C9, PTGS2, SLC22A7, and XDH, to be related to
HCC. In addition, BCB1, ADORA1, ADORA2a, ADORA3,
AKR1B1, AKR1C2, ALB, ALOXE3, CA1, CA12, CA14, CA3,
CA4, CA5B, CA6, CA9, CAT, CES4A, FUT7, IKBKB, MPO,
NPR1, PTGS1, SLC16A1, SLC22A11, SLC22A6, SLCO2B1,

Table 3: Regulatory network analyses and calculation results of
small YCHD molecules interfering with key targets.

MOL dSAB dCAB dKAB SPAB
MOL17 2.68 2.09 5.11 -2.09

MOL01 2.59 1.87 4.99 -2.01

MOL33 2.53 2.09 4.94 -1.98

MOL02 2.81 2.19 5.33 -1.95

MOL16 2.58 2.14 5.01 -1.84

MOL10 2.60 2.15 5.03 -1.75

MOL12 2.88 2.22 5.42 -1.71

MOL07 2.40 2.03 4.79 -1.54

MOL29 2.42 1.94 4.78 -1.53

MOL36 2.48 2.21 4.91 -0.98

MOL08 2.59 2.25 5.03 -0.88

MOL23 2.87 2.24 5.44 -0.86

MOL19 2.16 2.04 4.52 -0.64

MOL03 2.64 2.22 5.11 -0.49

MOL34 2.64 2.22 5.11 -0.49

MOL35 2.64 2.22 5.11 -0.49

MOL06 2.48 1.93 4.82 -0.32
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and TTR were non-HCC-related genes (Figure 10). However,
the results revealed the inherent complex mechanism of
action, that is, these four small molecules could indirectly
regulate 25 key genes related to HCC survival by disturbing
208 proteins in the PPI network by acting on these 34 targets.

4. Discussion

HCC is a complex disease whose onset and progression is
related to multiple proteins and pathways [17]. TCM com-
pounds contain numerous ingredients that affect multiple
targets and exhibit diverse, multipathway pharmacological
activities [18] that may assist in HCC treatment. Hanahan
et al. proposed 10 theories of tumor hallmarks according to
modern tumorigenesis and tumor development mechanisms
[19]. Because TCM has a complex composition and affects
various targets, it may simultaneously interfere with multiple
tumor hallmarks.

TCM compounds contain numerous ingredients and
involve complex mechanisms that may be linked to multiple
targets and multiple pathways. In TCM, compounds without
certain pharmacokinetic properties cannot reach the target
organs; thus, they cannot effectively exhibit their biological
activity. In a preliminary study, we observed that OB screen-
ing and DL assessments were the most favorable predictors of
compounds with biological activity; however, the molecule
effects were minimal if the molecule content was low or if
the molecules metabolized quickly. In oral medication, ingre-
dients that enter the bloodstream contribute the most to
medicinal effects. Because of the complex characteristics of
TCM, comprehensively studying the internal mechanisms
of TCM compounds is difficult. Nevertheless, the use of bio-

informatics methods to analyze TCM compound ingredients
absorbed into the bloodstream may be a viable approach to
determining the properties of such complex mechanisms.
Thus, the current study employed such an approach to dem-
onstrate the pharmacological mechanisms through which
YCHD interferes with HCC.

YCHD is a traditional decoction commonly used in clin-
ical practice. The current study used the network pharmacol-
ogy method to study the anti-HCC effects of YCHD. We
posit that YCHD demonstrates inhibitory effects on HCC
by directly regulating the metabolism, inflammation, and sig-
naling transduction pathways. Among the 36 YCHD ingredi-
ents absorbed into the bloodstream, 17 were directly related
to liver cancer targets and inhibited HCC through interfer-
ence with 14 pathways. For example, the inflammation-
related signaling pathways have been identified to play a
key role in the treatment and prevention of HCC [20]. Our
research also revealed that MOL17 (salicylic acid), MOL29
(geniposide), and MOL33 (naringenin) can be used to treat
HCC by regulating the TNF signaling pathway. Two studies
have reported that geniposide [21] exerts anti-HCC effects
by suppressing vascular endothelial growth factor expression
and angiogenesis and that naringenin [22] suppresses the
invasiveness and metastatic potential of HCC by inhibiting
multiple signal transduction pathways. Energy metabolism
may also play a critical role in the inhibition of HCC [23].
Our study revealed that 12 YCHD compounds affected 9
metabolism pathways. Five of these compounds can be used
to treat HCC by regulating the energy metabolism pathway
(i.e., MOL01 (gallic acid), MOL02 (2,5-dimethyl-7-hydroxy-
chromone), MOL12 (7-methoxycoumarin), MOL16 (iso-
quercitrin), and MOL17 (salicylic acid)).
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We identified 17 HCC targets directly affected by YCHD,
of which 5 genes (AKR1D1, CYP2C9, CYP2E1, CYP3A4,
and SLC22A7) were associated with the prognosis of patients
with HCC. AKR1C3 plays crucial roles in multiple cancers,
and a low expression level of AKR1D1 predicted poor
prognosis and short median survival time [24]. CYP2C9 is
involved in the metabolism of many carcinogens and drugs,
and CYP2C9 was downregulated in human HCC progression
[25]. CYP2E1 is a unique gene expressed in the liver but not
expressed in HCC [26]. CYP3A4 expression is significantly
low in the liver tumor tissue of patients with HCC [27].
Low SLC22A7 expression indicates a high risk of poor prog-
nosis [28]. These five protein targets may be the prognostic
targets for HCC and the targets of YCHD in the treatment
of HCC. The network pharmacology analysis results demon-
strate that MOL17 (salicylic acid) regulates SLC22A7 and
CYP2C9, MOL20 (azelaic acid) regulates AKR1D1, MOL29
(geniposide) regulatesCYP2E1, and MOL33 (naringenin)
regulates CYP3A4. In addition, gallic acid [29], physcion
[30], rhein [31], isofraxidin [32], geniposide [21], naringenin

[22], and chlorogenic acid [33] have been reported to exhibit
anti-HCC effects.

The current study investigated how YCHD ingredients
regulated and interfered with key targets; the results reveal
similar trends in how the 17 small molecules interfered with
the key target set. Among the 17 small molecules, MOL02
(2,5-dimethyl-7-hydroxychromone), MOL12 (7-methoxy-
coumarin), MOL17 (salicylic acid), and MOL23 (cirsi-
maritin) exhibited the most profound interference with the
target set.

The current study adopted the network pharmacology
method and used YCHD ingredients absorbed into the
bloodstream to predict the targets of YCHD and construct
meaningful pathways. In addition, the relationships between
YCHD compounds, targets, and diseases were consolidated,
and the multi-ingredient and multitarget characteristics of
YCHD were analyzed. Finally, the mechanisms through
which YCHD treat HCC were revealed.

In the current study, we combined bioinformatics and
the network pharmacology method to predict which YCHD

34 Targets acted on directly by 4 small molecules 25 Core targets related to survival

Interfered targets in human PPI networks

Figure 10: Targets acted on directly by four YCHD small molecules, core targets related to survival, and targets interfered with. Purple
triangles represent the four small YCHD molecules, dark green octagons represent the 34 potential targets that the four small molecules
directly acted on, ellipses represent the proteins that interfered with the 34 direct action targets in the human PPI network, and the V
shapes represent the 25 key genes associated with HCC survival in Gk.
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ingredients entered the bloodstream as well as the molecular
targets and pathways through which YCHD treats HCC; the
current results may serve as a basis for subsequent experi-
mental studies. The specific mechanisms governing these
ingredients should be examined through experiments in
future studies.
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