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ARTICLE INFO ABSTRACT

Keywords: Sindbis virus (SINV), is an Alphavirus of the family Togaviridae. This zoonotic arbovirus is transmitted by

AlPha‘_’lrus mosquitoes, primarily from the Culex genus, with bird species acting as amplifying vertebrate hosts. Occasionally

2ﬂl’°‘”ms it can also affect humans that are accidental hosts. SINV genotype I (SINV-I) has been isolated in mosquitoes and
ulex

birds in South Africa and Northern Europe, producing fever outbreaks. In the last decades, there were several
detections of SINV in Europe. In 2022, during the West Nile virus (WNV) mosquito surveillance program in
Andalucia (Spain) implemented by the regional health administration, we detected the presence of both SINV
and WNV in a Culex perexiguus pool, representing the first detection of SINV in Spain. After this finding, we
screened 1149 mosquito pools to determine the status of SINV circulation in western Andalucia. We identified for
the first time the presence of SINV in five different mosquito species. Culex perexiguus presented the highest
infection rate by SINV. In addition, SINV was geographically widespread and distributed in four out of the five
Andalucia’s provinces studied, with Cadiz presenting the highest infection rate. All SINV genomes from South-
western Spain characterised in this study belonged to SINV-I, previously detected in Europe and Africa. These
isolated SINV-I strains presented low molecular variation among them and in the phylogenomic analyses they
formed a monophyletic group that clustered with strains from Algeria and Kenya. These results suggest that,
around 2017, a single new SINV introduction into the European continent occurred, probably from Northern
(Algeria) or Central Africa.

Vector-borne diseases
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One health

1. Introduction Chikungunya, Ross River, or Mayaro viruses, SINV infection may be

associated with symptoms like fever, exanthema, arthralgia, and

Sindbis virus (SINV), family Togaviridae and genus Alphavirus, was
initially isolated from mosquitoes in Cairo, Egypt, in 1952 [1]. This
zoonotic arbovirus primarily involves bird species as amplifying verte-
brate hosts, Culex mosquitoes as vectors, and occasionally affects
humans as accidental dead-end hosts [2]. Like other Alphaviruses such as

myalgia. These symptoms can persist as long-lasting polyarthralgia/
polyarthritis for several years in approximately 25 % of the patients [3].

SINV is a positive single-stranded RNA virus with a genome size of
11.7kb [4]. Six genotypes (Genotypes I to VI) have been identified, each
restricted to specific geographical regions. Genotype I (SINV-I) has been
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isolated in Europe, Africa, and the Middle East; SINV-II and SINV-VI in
Australia; SINV-III was discovered in Southeast Asia; SINV-IV in Asia
and the Middle East; and SINV-V (also known as Whataroa virus) in New
Zealand [2].

SINV-I is the genotype associated with the reported fever outbreaks
in South Africa, Northern Europe and Wester Russia [5,6]. The first cases
of SINV infection in Northern Europe were observed in Sweden in 1967
[3]. Since the 1980s numerous Sindbis fever outbreaks have occurred in
Russia (known as Karelian fever [6], and Northern Europe, (known as
Pogosta and/or Ockelbo disease in Finland and Sweden respectively),
with more than 3350 cases recorded in Finland and hundreds of cases in
Sweeden [7,8]. In addition, serological evidence of SINV infection has
also been found in humans [5] and birds [9] in other European countries
[5]. In Spain, antibodies against Alphavirus in humans were studied
using a hemagglutination inhibition assay. Although 4.1 % of the serum
analysed showed a reaction against alphavirus, it was not possible to
identify which virus caused the infection [10].

Geographic distribution of SINV-I has been linked with dispersal via
migratory birds [2]. Phylogenetic analysis suggested a single introduc-
tion from Africa to Sweden, and from Sweden to Finland, Germany and
Russia [11]. However, three independent introductions of SINV-I may
have occurred in Central Europe, two from Northern Europe and one
from Central Africa. These introductions led to a recombination of
strains in Central Europe, forming two main groups. One group contains
strains from Sweden, Finland, Norway, Germany, and Russia, while the
other includes strains from Central African countries [11].

In Europe, SINV-I has been detected/isolated in various mosquito
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species, including Culex torrentium, Culex pipiens [1,5], Culex modestus
[12], Culex univittatus [1], Culex neavei, Culiseta morsitans, and several
Aedes species [5,8,13]. In addition, vector competence assays confirmed
the capacity of Cx. neavei, Cx. pipiens and Cx. torrentium in the trans-
mission of SINV-I [13,14].

Mosquito-based virus surveillance has been proposed as a reliable
and cost-effective tool for the early detection of arbovirus outbreaks
[15]. In 2022, SINV was serendipitously discovered in Western Anda-
lucia (Spain) while analysing the WNV genome from a Culex perexiguus
pool that had mosquitoes infected with WNV and SINV. This event
represents the first detection of SINV in Spain. After this finding, we
determined the status of SINV circulation in mosquitos in this area and
characterised the genome sequences of SINV to analyse the genetic di-
versity and evolutionary relationships with the strains detected in other
countries.

2. Material & methods
2.1. Mosquito sampling

Between May and October 2022, we trapped mosquitoes at 42 study
sites in 5 different provinces (Cadiz, Cordoba, Huelva, Malaga and
Seville) in Southwest Spain (Fig. 1). We placed CDC traps or BG traps for
24 h baited with 1 kg of dry ice. Mosquitoes were transported in dry ice
to the laboratory and stored at —80 °C until morphological identification
was carried out on a chill table, always maintaining the cold chain.
Mosquito species identification was carried out following MoskeyTool

25 50 km

Fig. 1. Mosquito study sites. The size of the circle indicates the number of female mosquitoes analysed and the colour indicates SINV infection rates for each

study sites.
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key [16]. The identified mosquitoes were pooled by species, sex, date,
and study site [pool ranged from 2 to 50] (Table 1).

2.2. SINV screening

Before RNA extraction female mosquito pools were homogenised in
500 pl MEM buffer (minimum essential buffer) supplemented with 10 %
fetal bovine serum, 0.5 % penicillin and streptomycin, and 10 % 1-
Glutamine (Sigma-Aldrich, St. Louis, MO, USA) using a TissueLyser
homogenizer (QIAGEN, Valencia, CA) for 2 min at 30 cycles/s. To clarify
homogenates, they were centrifuged at 13,000 rpm for 5 min at 4C. Viral
RNA was extracted using a Maxwell® extraction robot and the Viral
Total Nucleic Acid Purification kit (Promega, Madison, WI, USA). We
tested the presence of SINV using two sequential approaches. First, we
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used a real-time RT-QPCR that amplified a fragment of 134 bp of the
non-structural proteins 1 (nsP1) region of SINV [17]. Samples with Ct >
40.0 were considered negative. The positive samples were further ana-
lysed using a generic alphavirus nested RT-PCR that amplified a frag-
ment of 195 bp of the nsP4 region [18]. Virus identification was
confirmed by sequencing the 195 bp fragments, and only successfully
sequenced samples were considered positive for SINV.

2.3. Viral sequencing

Viral isolation was assayed in those samples with Ct value <30 of
each study site (one or two samples from each study site), using African
green monkey kidney cells (Vero) culture in T-25 flask. A volume of 100
pl of mosquitoes’ homogenate was inoculated on Vero cells at 37 °C for

Table 1
Infection rates in the study sites analysed from the five provinces (95 % confident intervals are included).
Province  Study sites Total Range mosquitoes Pools analysed ~ Positive pools ~ Mean Ct- Infection CILow 95 CIHigh 95
mosquitoes per pool (N) (N) value rate % %

Cadiz Alcala de los Gazules 28 [1-7] 10 0 - 0 0 66
Barbate 385 [2-50] 12 5 30 20 7 46
Benalup Casas Viejas 802 [1-51] 35 1 35 1 0.7 6
Jerez de la Frontera 338 [1-50] 13 6 39 32 12 69
Puerto Real 21 [1-4] 11 0 - 0 0 87
Vejer de la Frontera 187 [2-50] 8 2 30 13 2 41

Cordoba  Lucena 87 [2-41] 8 0 - 0 0 21
Puente Genil 66 [1-24] 7 0 - 0 0 29

Huelva  Alamos 700 [1-50] 43 0 - 0 0 3
Calatilla 1577 [1-50] 47 5 30 3 1 7
Camping Giralda 109 [1-23] 19 0 - 0 0 18
Casa de los Ingleses 25 [1-7] 6 0 - 0 0 74
Celestino Mutis 1967 [1-50] 66 0 - 0 0 0.9
Ciudad de los Ninos 77 [1-15] 12 0 - 0 0 25
Corrales 204 [1-50] 22 0 - 0 0 9
Estacion de aguas residuales de 515 [1-50] 24 1 6 5 1 9
Huelva
Estacion de aguas residuales de 56 [1-7] 24 0 B 0 34
Moguer
El Rocio 2 [1] 2 0 - 0 0 617
Gibraleon 24 [1-4] 13 1 24 43 3 174
Golf El Rompido 74 [1-6] 23 0 - 0 0 26
Granja Escuela 47 [1-7] 17 0 - 0 0 40
Isla Canela 125 [3-50]1 9 0 - 0 0 15
Laguna de Santa Olalla 30 [1-7] 11 0 - 0 0 62
Finca Las Herrumbes 59 [2-31] 6 0 - 0 0 32
Palacia de Donana 106 [1-22] 26 0 - 0 0 18
Punta Umbria 13 [1-4] 6 0 - 0 0 137
Ribera de Guadiana 61 [1-24] 15 0 - 0 0 31
Silvasur 95 [1-49] 9 0 - 0 0 20

Malaga Campillos 809 [1-51] 21 0 - 0 0 2
Fuente de Piedra 1825 [1-50] 44 28 0.6 0.3 2

Seville Almensilla 157 [9-50] 4 3 33 56 11 253
Bollulos de la Mitacion 237 [2-50] 8 2 30 10 2 30
Los Palacios-Brazo del Este 6528 [1-51] 152 22 32 4 2 5
Las Cabezas de San Juan 1618 [1-51] 59 0 - 0 0 1
La Canada de los Pajaros (La
Puebla del Rio) 1301 [1-50] 35 5 29 4 2 9
Carmona 33 [1-9] 10 0 - 0 0 57
La Deflesa de Abajo (La Puebla 2090 [2-50] 52 15 32 9 5 14
del Rio)
Dos Hermanas 183 [1-24] 33 0 - 0 0 10
Finca La Hampa (Coria del
Rio) 3326 [1-50] 82 26 33 10 6 14
La Puebla del Rio 3179 [1-50] 73 24 33 9 6 13
Palomares del Rio 1330 [1-50] 38 11 27 10 5 18
Pinares de la Colina (La
Puebla del Rio) 1524 [1-50] 34 7 35 5 2 10
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one hour, then, the medium was removed and fresh maintenance me-
dium (MEM supplemented with 2 % FBS, 1 % penicillin-streptomycin, 1
% (200 mM) r-glutamine) was added. Cells were incubated at 37 °C and
examined daily cytopathic effect (CPE). Whole genome sequencing was
carried out on all the virus cultured that showed CPE. Viral RNA was
extracted using the Quick-RNA Viral kit (Zymo, Irvine, CA, USA),
quantified using QuantiFluor RNA System (Promega, Madison, WI, USA)
and verified its integrity using Bioanalyzer 2100 and Agilent RNA 6000
Nano Kit (Agilent Technologies, Santa Clara, CA, USA). Sample library
preparation was performed using the NEBNext Ultra II Directional RNA
Library Prep Kit for Illumina® and NEBNext® Multiplex Oligos for
[lumina®, Index Primers Set 3 (New England BioLabs Inc., Ipswich, MA,
USA) and sequenced on an Illumina MiSeq v2 (300 Cycles).

To obtain a viral consensus genome, sequences were analysed
following [19], using viralrecon pipeline v2.6.0 (https://github.com/
nf-core/viralrecon) (accessed on 23rd November 2023) [20] written in
Nextflow (https://www.nextflow.io/) in collaboration between the nf-
core community (https://nf-co.re/) and the Bioinformatics Unit of the
Institute of Health Carlos III (BU-ISCIII) (https://github.com/BU-ISCIII)
(further details in Supplementary Material).

2.4. Phylogenetic and molecular clock analysis

Complete genomes obtained were compared with 48 complete SINV
sequences available in Genbank (accessed on 25th January 2024) (Table
S1). Multiple alignment was carried out with ClustalW test using MAFFT
alignment [21]. GTR + G + I was chosen as the best fit model according
to the Akaike Information Criterion (AIC) using jmoldeltest 2.1.10 [22]
in CIPRES [23]. A maximum likelihood phylogeny was generated using
this model and 1000 bootstraps in MEGA11 [24]. The genome SINV
strain YN_22 (GenBank accession number: MH229928) was used as an
outgroup. The pairwise-distances between sequences isolated from
Spain were analysed using the Maximum Composite Likelihood model in
Mega 11 [24].

To study the evolutionary history and divergence times of SINV-I we
explored the temporal structure of the subset of sequences that belonged
to SINV-I genotype. We carried out a root-to-tip regression analysis
using TempEst [25]. The 53 sequences in the subset (Table S1) showed a
temporal signal with a correlation coefficient of 0.78 and thus this subset
was further analysed to estimate divergence time and evolutionary rates.
We ran Bayesian Markov Chain Monte Carlo (MCMC) analyses using
BEAST v.2.5 [26]. We tested 4 different combinations of demographic
and molecular clock models: i) Strict clock and Coalescent exponential
population model, ii) Strict clock and Coalescent Bayesian skyline
model; iii) Relaxed log-normal clock and Coalescent exponential popu-
lation model and iv) Relaxed log-normal clock and Coalescent Bayesian
skyline model. We ran 60 million Bayesian MCMC generations sampling
every 1000 generations. Convergence was assessed with Tracer v.1.7
[25]. We used Nested Sampling implemented in BEAST v.2.5 to select
the best model [27]. Then, Maximum clade credibility (MCC) phylog-
enies were built using TreeAnnotator with 10 % burn-in. MCC trees were
viewed and edited with the R package ggtree in R software v.4.3.1 (R
Core Development Team, 2016). For each dataset we calculated poste-
rior probabilities for each branch, nucleotide substitution rates and
divergence times with error reported as the 95 % highest probability
density (95 % HPD).

2.5. Statistical analysis

SINV infection rate for each study site, province and mosquito spe-
cies was estimated by Maximum Likelihood (MLE), considering the
number of mosquitoes in each pool. The infection rate is presented as the
estimated number of mosquitos with positive SINV detection out of 1000
mosquitos, (i.e., MLE * 1000). The mean and 95 % confidence intervals
were estimated with the function PoolPrev from the R package Pool-
TestR [28]. We carried out a Generalized Linear Model to analyse the
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differences in infection rates (dependent variable) between mosquito
species and provinces with positive pools (independent variables) using
the function PoolReg [28]. Statistical analyses were performed in R
software v.4.3.1 (R Core Development Team, 2016).

3. Results
3.1. Mosquito trapping and SINV screening

A total of 31,920 female mosquitoes from six different species were
collected in the study sites (Fig. 1). Among them, 1149 pools were
analysed for the presence of SINV, and 11.92 % (137 pools) showed
SINV amplification, with Ct values ranging from 16 to 40 (Ct value
mean = 32), obtaining a total infection rate of 4.7 % (Table 1). All the
positive samples by the RT-QPCR were confirmed by the generic
alphavirus nested RT-PCR. The positive pools correspond to mosquitoes
captured between June 23rd and October 21st, 2022. Culex perexiguus
showed significantly higher SINV infection rates than Ae. caspius and Cx.
pipiens. Meanwhile, Cx. modestus showed significantly higher SINV
infection rates than Cx. pipiens (Table 2 and Tables S2 and S3). Aedes
detritus was the only species where SINV was not detected.

The presence of SINV was confirmed in all the provinces except for
Cordoba. Among the provinces, Seville showed a significantly lower
SINV infection rate than Cadiz (Est = 0.70; Std. Error = 0.29; P-value =
0.02) (Table 2 and Table S3). The highest proportion of positive local-
ities was found in Cadiz, with four out of the six localities studied having
at least one positive pool (Fig. 1).

3.2. Virus isolation and phylogenetic analysis

SINV showed CPE at 3-4 days post-infection at passage 1 in Vero
cells. We isolated virus from 19 cell culture, of which, we obtained 16
SINV complete genomes, all of them isolated from Cx. perexiguus
captured at 14 study sites. Complete genome sequences were deposited
in GenBank (accession numbers: PP879145 - PP879160; Table S4).

For the 16 SINV isolated, we sequenced 11,442 nucleotides (nt)
corresponding to 3777 amino acids covering the four non-structural
proteins regions nsP1 (1620 nt, 540aa), nsP2 (2421 nt, 807aa), nsP3
(1809 nt, 568aa) and nsP4 (1848 nt, 616aa), the coding region of the
capsid C (798 nt, 264aa), the entire E3 protein (192 nt, 64aa), E2 protein
(1269 nt, 423aa), 6 K protein (165 nt, 55aa), and the E1 protein (1320
nt, 440aa).

The maximum likelihood phylogeny based on the complete genomes
showed that SINV isolates belonged to genotype I (Fig. 2). This genotype
is divided into two main clades with well-supported values. All the ge-
nomes sequenced in Spain cluster together and are grouped in a clade

Table 2

Results of the multivariate model analysing the relationship between the
infection rate estimate of SINV and the mosquito species and province (S.E. =
standard error).

Variables Category Estimate  S.E. Z P
Intercept —6.07 0.91 —6.69  <0.001
Aedes caspius 0*
Culex
laticintus 1.37 1.35 1.02 0.31
Culex
. . modestus 1.73 097 1.79 0.07
Mosquito species +
Province Culex
perexiguus 1.74 0.88 1.97 0.048
Culex pipiens —0.42 0.80 -0.52 0.60
Cadiz 0*
Huelva -0.57 0.70 —0.81 0.42
Malaga -1.39 1.21 -1.15 0.25
Seville —0.70 029 -241 0.016

*Cadiz is the category used as reference.
" Aedes caspius is the category used as reference.
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Fig. 2. Multiple likelihood phylogenetic tree of 64 complete genome sequences of SINV. Bootstrap values over 50 are given for 1000 replicates. Viral sequences are
identified by GenBank accession number. Sequences in red were generated in this study. Clade information is based on Ling et al. [9]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

that includes sequences from several African countries, the Middle East,
and Southern Europe, being the sequences from viruses detected in
Algeria in 2017 (3.8 % of identity, Table S5), in Kenya in 2013 and in
South Africa in 2021 the more closely related to the Spanish ones
(Fig. 2). Sequences from European countries with SINV-I outbreaks such
as Finland or Sweeden are grouped in a different sister clade, which
shares a common ancestor with sequences from Kenya. The evolutionary

history of SINV-I was reconstructed using a strict clock with a Bayesian
Skyline demographic model, which was the model with the best fit. The
evolutionary rate of SINV-I was 6.64*107° substitutions/site/year
(median = 6.61¥107>; 95 % HPD: 5.29*107°-8.01*10°). The time to
the most recent common ancestor (tMRCA) of the Spanish sequences
dated back to 4.66 years (95 % HPD: 2.93-6.64 years) before 2022,
indicating that SINV-I was introduced in the country around 2017
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Fig. 3. Maximum clade creditability tree obtained using complete genomes of SINV-I strains (see table S1). The red bars represent divergence times, with the 95 %
highest posterior density (HPD) intervals indicated by the highest probability density. The posterior probabilities (1-0.9) of the branches are shown in the tree. The
timescale is located below the phylogenetic tree, and the dashed vertical lines mark the corresponding years. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

(Fig. 3). Although the closest sample collected was collected in Algeria
in 2017, the time to the most recent common ancestor between this
sample and the Spanish ones was 57.74Y (95 % HPD: 44.87-72.71
years). These viruses diverged from the Kenyan and South African ones
more than 100 years ago. This clade and the clades that were introduced
in Northern Europe diverged around 500 years ago (Fig. 3).

3.3. Molecular characterisation

We compared the sequences obtained in this study with the reference
genome SINV-I strain EgAR339 (GenBank accession number:
NC001547). Our sequences presented differences at 443 nucleotides (nt)
positions (3.87 %), with six nt inserted in nsP3. By molecular regions,
nsP1 showed 46 differences, nsP2 showed 94 differences, nsP3 showed
84 differences, nsP4 showed 69 differences, capsid C showed 31 dif-
ferences, E3 showed 6 differences, E2 showed 61 differences, 6 K protein
showed 5 differences and E1 protein 47 differences. Compared to the
genome from the strain from Algeria P29 (GenBank accession number:
OK644705), we found 119 nucleotides differences (1.04 %). By molec-
ular regions, nsP1 showed 12 differences, nsP2 showed 26 differences,

nsP3 showed 27 differences, nsP4 showed 21 differences, E3 showed 1
difference, E2 showed 15 differences, 6 K protein showed 2 differences
and E1 protein 15 differences. The capsid C regions of the strains from
Spain did not show difference with the genome from Algeria.

We observed differences from the reference SINV genome in 55
amino acid (aa) positions (1.46 %) (Table 3). All the Spanish sequences
showed an insertion of valine and aspartic acid at positions 448 in nsP3.
Although the Spanish sequences shared identical aa changes at 37 sites,
three of them showed an exclusive change in at least one amino acid
position. In comparison with the Algeria strain sequence, there were
changes in 18 amino acid positions (Table 3).

4. Discussion

In the current study, we report the first evidence of SINV circulation
in mosquitoes in Southern Spain. In addition, sequencing whole ge-
nomes has confirmed that this is a new introduction into Europe,
probably around 2017, with a different origin than those previously
reported in other European regions.

The viruses detected in this study belong to the genotype I (SINV-I).
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Table 3

Deduced amino acids in the 16 SINV-I strains from mosquitoes collected in 2022 in Southwestern Spain, showing the similarities and differences to the prototype SINV strain EgAR339 (GenBank Accession number

), and SINV-I P29 Argelia strain (GenBank accession number OK644705), in the complete genome.

NC_001547

E1

E2

3 23 70 172 263| 73 211 237 278

NSP4

NSP3

459 470 472 476 479| 42 111 244 278 569 576/ 80

M

S

insertionVD

p

insertionVD
insertionVD
insertionVD
insertionVD
insertionVD
insertionVD
insertionVD
insertionVD
insertionVD
insertionVD
insertionVD
insertionVD
insertionVD
insertionVD
insertionVD
insertionVD

NSP2

Amino acid positions with changes in genes

NSP1

106 145 217 268 401 404 441 496|108 276 330 438 467 468 471 631 634 652 657 667 61 227 275 296 307 343 359 367 405 446 448*

GenBank accesion number

M

A

SINV reference Strain (NC001547)
SINV Algeria strain (OK644705)

PP879145

A M Q

PP879146
PP879147
PP879148
PP879149
PP879150
PP879151
PP879152
PP879153
PP879154
PP879155
PP879156
PP879157
PP879158
PP879159
PP879160

No changes were found in the gene E3 nor 6 k.

* Between amino acids 448 and 449 of the NSP3, the samples analysed showed an insertion of two amino acids (Valine “V” and Aspartic acid “D”).
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Despite the presence of SINV-I in other European countries, the strains
isolated in Spain are in a different clade and more related to sequences
from Northern-Central African countries, such as Argelia or Kenya
indicating a possible African origin for Spanish SINV. The molecular
clock analyses indicated that all the Spanish sequences derive from a
single, and recent introduction, probably around 2017, but the diver-
gence times with the African sequences ranged from around 50 to 100
years. Thus, before this new introduction in South Spain, there has been
viral circulation and spread of this clade across Africa. The clade where
the Spanish samples cluster also includes samples from the Middle East,
but the time to the most recent common ancestor estimated for these
strains is 200 years. Furthermore, the sister clade that includes samples
from South/Central Europe, Asia and Africa diverged from the Spanish
clade around 300 years ago supporting a long history of circulation and
introduction of SINV-I virus between Africa, Asia and Europe. This
recent introduction in Southwest Spain is also confirmed by the low rate
of amino acid changes observed among the sequences obtained in our
study (see Table S5). Previous studies investigating the evolutionary
history and spread of SINV-I in Europe indicated that the origin of the
virus in Northern Europe was a single introduction into Sweden that
later spread to Finland and Germany [11]. Ling et al. [11] proposed that
three introductions had occurred in Europe, two from Northern Europe,
and one from Central Africa. Our results add one new recent introduc-
tion from Africa. The intercontinental spread of bird-hosted viruses,
such as WNV, is frequently linked to migratory bird movements [29]. In
this sense, the study area in Southwest Spain is one of the main stopovers
in the migratory pathway northward, supporting the hypothesis that the
virus was probably introduced to Europe by migratory birds from Africa.

The presence of other mosquito-borne viruses with similar ecology
and life cycles to SINV (i.e., WNV and Usutu virus), has been previously
detected in Cx. perexiguus and Cx. pipiens in Southwestern Spain [30].
Notably, a significant WNV outbreak occurred in 2020 [31]. During this
outbreak, there was a WNV infection rate estimate of 1 % in Cx. perex-
iguus in the study site ‘Dehesa de Abajo’ [30]. The SINV-I infection rate
estimated in Cx. perexiguus in 2022 in the same area is 9 %, which in-
dicates a very intense circulation of SINV-I in Southwestern Spain in
2022 (Table 1). We detected SINV-I in five of the six mosquito species
analysed. Four of them belong to the genus Culex, and Cx. perexiguus,
showed the highest infection rate of SINV-I. This virus has been previ-
ously detected and/or isolated in Cx. perexiguus in Algeria [32]. The
feeding behaviour of these species is mainly ornithophilic, but occa-
sionally they also feed on mammals, including humans. This behaviour
allows the amplification of the virus between birds and facilitates the
spillover to humans [33]. In Southwestern Spain, Cx. perexiguus is well-
known for its important role in the cycle of other mosquito-borne viruses
such as WNV or Usutu virus [30]. This species is mainly linked to the
amplification of the viruses between birds because the analysis of its
feeding patterns shows a clear predominance of bloodmeals from
different avian species [33]. Thus, we propose that Cx. perexiguus would
also have a significant role in the enzootic transmission of SINV.
Currently, there are no studies that analyse the vector competence of Cx.
perexiguus for SINV. Experimental quantification of its vector compe-
tence is needed to determine the role of this mosquito species in SINV
transmission.

Additionally, other mosquito species of the genus Culex that feed
both on birds and humans, might act as bridge vectors, increasing the
likelihood of spillover to humans. This might be the case of Cx pipiens. Its
ecology is characterised by a high abundance in urban areas, a diverse
feeding behaviour that includes a wide range of bird species and a strong
attraction to humans, making it a potential bridge vector for enzootic
viruses [30,34].

Another potential bridge vector could be Cx. modestus, a competent
vector for WNV and USUV feeds on birds and mammals [35]. Although
Cx. modestus is one of the less abundant mosquito species in south-
western Spain [36], we found high infection rates, suggesting its role as
a SINV-I vector. In fact, SINV-I has also been detected in Cx. modestus in
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the Czech Republic [12].

SINV-I has been previously detected in Ae. caspius in Israel [37], as
well as in other Aedes species in Sweden as Aedes cinereus [7]. However,
the capacity of SINV transmission by Aedes mosquitos must be confirmed
by vector competence assays. Vector competence assays of these mos-
quito species for transmission of SINV-I would provide valuable infor-
mation about the potential role these species could play in the
transmission dynamics of this mosquito-borne virus.

The high infection rate of SINV-I in mosquitoes observed in 2022
suggests that some cases of human infections could be occurring in these
areas. Serological studies on residents in these localities are necessary to
clarify its incidence in humans. In addition to SINV-I negative impact on
human health, imported Chikungunya cases are frequently reported in
Spain in travellers coming from endemic areas [38]. Chikungunya dis-
ease and Sindbis fever, show similar symptomatology, and important
levels of antibodies cross-reactions between SINV infections and other
alphavirus have been previously demonstrated [39]. Consequently, dif-
ferential diagnosis against SINV should be considered to confirm Chi-
kungunya diagnosis based on serological analyses if human infections
are confirmed.

5. Conclusion

We identify, for the first time, SINV in mosquitoes from Spain
showing that Cx. perexiguus may be an important vector of this virus,
although its vectorial competence should be confirmed in laboratory
assays. The Spanish SINV isolates, which belong to Genotype I, are likely
to have been recently introduced in Spain by migratory birds from
Northern-Central Africa. Furthermore, studies are required to assess the
potential endemicity of SINV in Spain as well as to understand its future
spread and impact on public health. Given the high circulation in 2022,
we propose that it could be necessary to consider its inclusion in the
differential diagnosis of arboviral diseases by the Spanish National
Health System.
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